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Abstract: This paper deals with the extension of principal component analysis, canonical correlation
analysis, the Cramer–Rao inequality, and a few other statistical concepts in the real domain to
the corresponding complex domain. Optimizations of Hermitian forms under a linear constraint,
a bilinear form under Hermitian-form constraints, and similar maxima/minima problems in the
complex domain are discussed. Some vector/matrix differential operators are developed to handle
the above types of problems. These operators in the complex domain and the optimization problems
in the complex domain are believed to be new and novel. These operators will also be useful in
maximum likelihood estimation problems, which will be illustrated in the concluding remarks.
Detailed steps are given in the derivations so that the methods are easily accessible to everyone.
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1. Introduction

In most textbooks on statistics, scalar/vector/matrix-variate random variables in the
complex domain and the corresponding statistical analysis in the complex domain, are not
discussed. But, in a large number of physical situations, it is natural or more convenient to
represent variables in the complex domain. Hence, statistical techniques in the complex
domain are required for data analysis in these situations. In the physical science and
engineering literature, there are a number of papers dealing with random variables in
the complex domain. Data reduction techniques such as principal component analysis
in the complex domain seem to be the main topic in these areas. Most of the papers in
these applied areas, concentrate on developing algorithms for computing eigenvalues and
eigenvectors, which are useful and relevant in principal component analysis, independent
component analysis, factor analysis, and so on. Statistical analysis in the complex domain
is widely used in the analysis of multi-look return signals in radar [1], in multi-task
learning in artificial intelligence and machine learning [2], in problems such as signal
processing [3], in principal component analysis and independent component analysis in
analyzing meteorological data in the complex domain [4], in optimal allocation of resources,
especially energy resources [5], in holography, microscopy and optical metrology [6],
in delayed mixing in speech processing, in biomedical signal analysis, and in financial data
modeling, etc. [7].

In the present paper, vector/matrix differential operators in the complex domain
are defined. Then, these are applied in optimizing a Hermitian form under a linear con-
straint, a bilinear form under Hermitian-form constraints, etc. Then, as applications of
these optimization problems, the real-domain techniques of principal component analysis
and canonical correlation analysis are extended to the complex domain. Other statistical
concepts such as the Cramer–Rao inequality, least square procedure, and related aspects
are extended to the complex domain. Detailed derivations are given so that the methods
will be accessible even to beginners.
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The following notation is used in this paper: Scalar variables, whether mathematical
or random, are denoted by lower-case letters such as x, y. Vector/matrix variables are
denoted by capital letters such as X, Y. Scalar constants are denoted by a, b, etc., and
vector, matrix constants by A, B, etc. The wedge product of the differentials dx and dy
is defined as dx ∧ dy = −dy ∧ dx, where x and y are two real scalar variables, so that
dx ∧ dx = 0, dy ∧ dy = 0. Let X = (xjk) be an m × n matrix with distinct real scalar vari-
ables xjk as elements, then dX = ∧m

j=1 ∧n
k=1 dxjk. The transpose of a matrix X is denoted by

a prime as X′. For a p× p matrix X, if X = X′ (symmetric), then dX = ∧j≥kdxjk = ∧j≤kdxjk.
Variables in the complex domain are written with a tilde, such as x̃, ỹ, X̃, Ỹ. If X̃ is a p × q
matrix in the complex domain, then X̃ = X1 + iX2, i =

√
(−1), X1, X2 are real, then dX̃ is

defined as dX̃ = dX1 ∧ dX2. The determinant of a real p × p matrix Y is written as |Y| or as
det(Y) and if Ỹ is in the complex domain, then the absolute value of the determinant of Ỹ is
written as |det(Y)|. Also, tr(Y) means the trace of the square matrix Y. A p × p real matrix
A being positive definite is written as A > O, and X̃ = X̃∗ > O indicates that the matrix X̃,
in the complex domain, is Hermitian positive definite. Other notation is explained when it
occurs for the first time.

This paper is organized as follows: Section 2 starts with defining a vector differential
operator in the complex domain. Then, with the help of this operator, some optimization
problems such as optimizing a linear form subject to Hermitian-form constraint, a Her-
mitian form under Hermitian-form constraint, and a bilinear form with Hermitian-form
constraints are discussed. Then, a matrix differential operator in the complex domain is
defined. Differentiations of the trace of a product of matrices and determinant of a matrix,
by using the matrix differential operator in the complex domain, are dealt with. Section 3
deals with the extension of principal component analysis to the complex domain. Section 4
delves into the extension of canonical correlation analysis to the complex domain. Section 5
examines the extension of the Cramer–Rao inequality, Cauchy–Schwarz inequality, and
the least square estimation procedure to the complex domain. Detailed steps are given in
each situation.

2. Optimization Involving Linear Forms, Traces, and Determinants

Here, we will consider linear forms and their differentiations first, and then, we
will consider some situations of optimizing a Hermitian form with linear constraint and
optimization of a linear form with Hermitian-form constraint. We consider some basic
results to start with. Let

A =

a1
...

ap

, X̃ =

x̃1
...

x̃p

, A = A1 + iA2, i =
√
(−1), X̃ = X1 + iX2

where A1, A2, X1, X2 are real vectors. Assume that A is a non-null arbitrary coefficient
vector and X̃ is a known vector random variable in the complex domain.

Theorem 1. For A and X̃ as defined above,

ũ = A∗X̃ ⇒ ∂ũ
∂A

= 2X̃. (1)

Proof. This can be easily seen from the following: ũ = (A′
1 − iA′

2)(X1 + iX2) = A′
1X1 +

A′
2X2 + i(A′

1X2 − A′
2X1) Then,

∂ũ
∂A1

= X1 + iX2 and
∂ũ

∂A2
= X2 − iX1 (2)
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from the corresponding real variable case. That is,

(
∂

∂A1
+ i

∂

∂A2
)ũ =

∂ũ
∂A

= 2(X1 + iX2) = 2X̃.

Now, we consider a slightly more general result. Consider ũ = A∗Σ11X̃, Σ11 = Σ∗
11 > O.

Let ∂
∂Ac = ( ∂

∂A1
− i ∂

∂A2
) and ∂

∂A∗ = ( ∂
∂A′

1
− i ∂

∂A′
2
). Then, from (2) note that ∂ũ

∂Ac = O and
∂ũ

∂A∗ = O; ∂ũ
∂X̃ = O; ∂ũ

∂X̃c = 2A and ∂ũ
∂X̃∗ = 2A′, where Ac means the complex conjugate of A.

Theorem 2. For X̃ and A as defined above, let ũ = A∗Σ11X̃. Let Σ11 be a p × p matrix, free of
the elements in A and X̃. Then,

∂ũ
∂A

= 2Σ11X̃. (3)

Proof. Since Σ11 and X̃ are free of the elements in A, we may take Σ11X̃ = B = B1 + iB2,
i =

√
(−1), B1, B2 real. Then, from Theorem 1 the result follows.

Now, consider a p × 1 vector A and a p × p matrix Σ and the Hermitian form
ũ = A∗ΣA in the complex domain where Σ = Σ∗ > O is free of the elements in A.
Then, we have the following result:

Theorem 3. For the Hermitian form as defined above, where A = A1 + iA2, Σ = Σ1 + iΣ2,
Σ = Σ∗ > O, A1, A2, Σ1, Σ2 are real,

∂

∂A
[ũ] =

∂

∂A
[A∗ΣA] = 2ΣA. (4)

Proof. Opening up ũ, we have the following:

ũ = A∗ΣA = (A′
1 − iA′

2)Σ(A1 + iA2) = A′
1ΣA1 + A′

2ΣA2 + i(A′
1ΣA2 − A′

2ΣA1). (5)

Since Σ = Σ∗, we have Σ1 = Σ′
1 (real symmetric), Σ2 = −Σ′

2 (real skew symmetric).
A′

1ΣA1 = A′
1Σ1 A1 + iA′

1Σ2 A1 = A′
1Σ1 A1 because A′

1Σ2 A1 = 0 due to Σ2 being real skew
symmetric. Similarly, A′

2ΣA2 = A′
2Σ1 A2. Then, from the results in the real case, we have

the following:
∂

∂A1
[A′

1Σ1 A1] = 2Σ1 A1,
∂

∂A2
[A′

2Σ1 A2] = 2Σ1 A2. (6)

Consider

i(A′
1ΣA2 − A′

2ΣA1) = i[(A′
1Σ1 A2 − A′

2Σ1 A1) + i(A′
1Σ2 A2 − A′

2Σ2 A1)].

But, Σ1 = Σ′
1 and (A′

2Σ1A1)
′ = A′

1Σ1A2 and real 1 × 1, and hence, A′
1Σ1A2 − A′

2Σ1A1 = 0.
Also, A′

2Σ2A1 = −A′
1Σ2A2 because Σ2 = −Σ′

2, and hence, A′
1Σ2A2 − A′

2Σ2A1 = 2A′
1Σ2A2 =

−2A′
2Σ2A1. Therefore,

i(A′
1ΣA2 − A′

2ΣA1) = i22A′
1Σ2 A2 = −i22A′

2Σ2 A1.
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Then, from the real case,

∂

∂A1
[i22A′

1Σ2 A2] = 2i2Σ2 A2 = 2(iΣ2)(iA2) ⇒

∂

∂A1
(A∗ΣA) = 2Σ1 A1 + 2(iΣ2)(iA2)

∂

∂A2
(−2i2 A′

2Σ2 A1) = −2i2Σ2 A1 = 2Σ2 A1 ⇒

∂

∂A2
(A∗ΣA) = 2Σ1 A2 + 2Σ2 A1 (7)

from the corresponding real case. Then, from (2)–(5),

∂

∂A
[A∗ΣA] = (

∂

∂A1
+ i

∂

∂A2
)[A∗ΣA]

= [2Σ1 A1 + 2(iΣ2)(iA2)] + i[2Σ1 A2 + 2Σ2 A1]

= 2Σ1 A1 + i2Σ1 A2 + 2iΣ2(A1 + iA2) = 2Σ1 A + 2iΣ2 A = 2ΣA.

This establishes the result.

2.1. Optimization of a Linear Form Subject to Hermitian-Form Constraint

Consider a linear form ũ = A∗X̃, where A and X̃ are p × 1 non-null vectors, with A
being arbitrary, and X̃ being a known vector variable with variance Var(ũ) = A∗Σ11 A,
where Σ11 = Σ∗

11 > O is the covariance matrix in X̃. Consider the optimization of ũ, subject
to the constraint that the variance of ũ is fixed, say unity, that is, A∗Σ11 A = 1. Then, we
have the following result:

Theorem 4. For the linear form ũ = A∗X̃ and the constraint A∗Σ11 A = 1, as defined above,

max
A∗Σ11 A=1

[A∗X̃] =
√

X̃∗Σ−1
11 X̃. (8)

Proof. Let w̃ = A∗X̃ − λ(A∗Σ11 A − 1), where λ is a Lagrangian multiplier. Observe that
Σ11 = Σ∗

11 and we assume that it is Hermitian positive definite. From previous results
(1) and (2),

∂w̃
∂A

= 2X̃ − λ2Σ11 A = O ⇒ X̃ = λΣ11 A ⇒ λ = A∗X̃. (9)

That is,

A =
1
λ

Σ−1
11 X̃ ⇒ A∗ =

1
λc X̃∗Σ−1

11 ⇒ λ = A∗X̃ =
1
λc X̃∗Σ−1

11 X̃. (10)

But from (9), λ = A∗X̃ which means that the maximum of our linear form is the
largest λ and the minimum of our linear form is the smallest λ. But, from (9) and (10),
λλc = |λ|2 = X̃∗Σ−1

11 X̃, where |λ| means the absolute value of λ and λc is the complex
conjugate of λ.

max
A∗Σ11 A=1

[ũ] =
√

X̃∗Σ−1
11 X̃, X̃∗Σ−1

11 X̃ > 0

being positive definite Hermitian form. This completes the proof.

2.2. Optimization of a Hermitian Form Subject to Linear Constraint

Now, consider a problem of optimizing A∗Σ11 A subject to A∗X̃ = α fixed, where A
and X̃ are p × 1 vectors and Σ11 = Σ∗

11 > O is a p × p Hermitian positive definite matrix,
free of the elements of A. Then, we have the following result:
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Theorem 5. For the Hermitian form A∗Σ11 A and linear form constraint A∗X̃ = α, we have

max
A∗X̃=α

[A∗Σ11 A] = +∞, min
A∗X̃=α

[A∗Σ11 A] =
|α|2

X̃∗Σ−1
11 X̃

. (11)

Proof. Let λ be a Lagrangian multiplier and consider w̃ = A∗Σ11 A − λ(A∗X̃ − α). From
(1) and (2), we have

∂w̃
∂A

= 2Σ11 A − 2λX̃ ⇒ Σ11 A = λX̃ ⇒ A∗Σ11 A = λA∗X̃ = λα. (12)

From (12),

A = λΣ−1
11 X̃ ⇒ α = A∗X̃ = λcX̃∗Σ−1

11 X̃ ⇒ |λ| = |α|
X̃∗Σ−1

11 X̃
(13)

because X̃∗Σ−1
11 X̃ is Hermitian positive definite, where |λ| and |α| denote the absolute

values of λ and α, respectively. Then, max[X̃∗AX̃] = +∞ since A is arbitrary and since the
linear restriction cannot eliminate the effect of A fully. Hence, we look for the minimum.
From (13),

|λ| = |α|
X̃∗Σ−1

11 X̃
⇒ |λα| = |α|2

X̃∗Σ−1
11 X̃

.

Hence,

min
A∗X̃=1

[A∗Σ11 A] =
|α|2

X̃∗Σ−1
11 X̃

.

This completes the proof.

2.3. Differentiation of Traces of Matrix Products and Matrix Differential Operator

Now, we consider a few matrix-variate cases, where also the problem is essentially
optimization involving vector variable situations. Let A = (ajk) be a p × q matrix of
arbitrary elements ajk. Let X̃ = (x̃jk) be a p × q matrix in the complex domain with
distinct scalar complex variables x̃jk as elements. Consider ũ = tr(A∗X̃). Let Aj and X̃j

be the j-th columns of A and X̃, respectively. Then, ũ = ∑
q
j=1 A∗

j X̃j. Let Aj = Aj1 + iAj2,

i =
√
(−1), Aj1, Aj2 are real p × 1 vectors. Let ũj = A∗

j X̃j. Consider the operator

∂

∂Aj
= (

∂

∂Aj1
+ i

∂

∂Aj2
),

∂

∂A∗
j
= (

∂

∂A′
j1
− i

∂

∂A′
j2
),

∂

∂Ac
j
= (

∂

∂Aj1
− i

∂

∂Aj2
)

and then,
∂ũj
∂Aj

= ∂ũ
∂Aj

since we are taking partial derivatives. Then, we have the following result:

Theorem 6. Let ũ, A, Aj, X̃j be as defined above. Then,

∂ũ
∂A

=
∂

∂A
[tr(A∗X̃)] = 2X̃. (14)

Proof. From the previous result,

∂ũj

∂Aj
= (

∂

∂Aj1
+ i

∂

∂Aj2
)ũj

= (
∂

∂Aj1
+ i

∂

∂Aj2
)(A∗

j X̃j) = 2X̃j, j = 1, ..., q,
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from Theorem 1. But,
∂ũj
∂Aj

= ∂ũ
∂Aj

. Now, stack up these side by side as q columns for

j = 1, ..., q. Note that A = [A1, ..., Aq], ∂
∂A = [ ∂

∂A1
, ..., ∂

∂Aq
], and ∂ũ

∂Aj
= 2X̃j, and hence,

∂ũ
∂A = 2X̃. This completes the proof.

For the next result to be established, we need a result on matrices, which will be stated
here as a lemma.

Lemma 1. For two p × p real matrices A and B, where A = A′ (symmetric) and B = −B′ (skew
symmetric), tr(A′B) = 0.

Proof. For two p × p matrices A1 and B1, it is well known that tr(A1) = tr(A′
1) and

tr(A1B1) = tr(B1 A1). Then, for our matrices A and B, A = A′, B = −B′, we have
tr(A′B) = tr(A′B)′ = tr(B′A) = −tr(BA) = −tr(AB) = −tr(A′B). That is, tr(A′B) =
−tr(A′B) ⇒ tr(A′B) = 0 ⇒ tr(AB) = 0, tr(AB′) = 0.

For the next problem, let A = A∗ be a p × p Hermitian matrix of arbitrary elements
ajk. Let X̃ = X̃∗ be a Hermitian matrix in the complex domain with distinct complex scalar
variables as elements except for the Hermitian property. Let A = A1 + iA2, X̃ = X1 + iX2,
where A1, A2, X1, X2 are real. Then, A1 = A′

1, X1 = X′
1 (symmetric), A2 = −A′

2, X2 = −X′
2

(skew symmetric). Let ũ = tr(A∗X̃). Then, we have the following result:

Theorem 7. Let A, X̃, A, A1, A2, X1, X2, and ũ = tr(A∗X̃) be as defined above. Then,

∂ũ
∂A

= 2X̃ − diag(X̃)

where diag(X̃) means a diagonal matrix consisting of only the diagonal elements from X̃.

Proof. Opening up ũ, we have the following:

ũ = tr(A∗X̃) = tr{(A′
1 − iA′

2)(X1 + iX2)}
= tr{A′

1X1 + A′
2X2 + i(A′

1X2 − A′
2X1)}

= tr(A′
1X1 + A′

2X2)

since tr(A′
1X2) = 0, tr(A′

2X1) = 0 by Lemma 1. Now, from the known result for symmetric
matrices in the real case, we have

∂

∂A1
[tr(A1X1)] = 2X1 − diag(X1). (15)

If the (j, k)-th element, for j ̸= k, in A2 is +ajk, then the (j, k)-th element in A′
2 is −ajk and

the (k, j)-th element in A′
2 is ajk. Hence, tr(A′

2X2) = 2 ∑j<k ajkxjk = ∑j>k ajkxjk. Hence,

∂

∂A2
[tr(A′

2X2)] = 2X2 (16)

since the diagonal elements in A2 and X2 are already zeros. Combining (15) and (16),
we have

∂

∂A
[tr(A∗X̃)] = 2X̃ − diag(X̃)

which corresponds to the result in the real case.

2.4. Differentiation of a Determinant in the Complex Domain

Here, we will start with defining the derivative of a scalar quantity with respect to
a matrix or we will define a matrix differential operator first. Let X = (xjk) be an m × n
real matrix and let X̃ = (x̃jk) be an m × n matrix in the complex domain. Then, we can
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always write X̃ = X1 + iX2, where i =
√
(−1), X1, X2 are real m × n matrices. Then, matrix

differential operators ∂
∂X and ∂

∂X̃ will be defined as the following:

∂

∂X
=


∂

∂x11
... ∂

∂x1n
... ...

...
∂

∂xm1
... ∂

∂xmn

 and
∂

∂X̃
= (

∂

∂X1
+ i

∂

∂X2
).

Consider a p× p nonsingular matrix X̃ in the complex domain and let |X̃| be its determinant.
Then, we have the following result:

Theorem 8. For the p × p nonsingular matrix X̃ in the complex domain,

∂

∂X̃
[|X̃|] = 2|X̃c|(X̃∗)−1 for a general X̃

and

∂

∂X̃
[|X̃|] = |X̃|[2X̃−1 − diag(X̃−1)] for X̃ = X̃∗.

Proof. The cofactor expansion of a determinant holds in the real and complex domains
and it is the following:

|X̃| = x̃11C̃11 + ... + x̃1pC̃1p

= x̃21C̃21 + ... + x̃2pC̃2p

...

= x̃p1C̃p1 + ... + x̃ppC̃pp (17)

where C̃jk is the cofactor of x̃jk for all j and k. Let C̃ = (C̃jk) be the matrix of cofactors. For a
general matrix, all x̃jk’s are distinct and the corresponding C̃jk’s are also distinct. Hence, in
the real case, taking the partial derivative of the j-th line in (17) we have ∂

∂xjk
[|X|] = Cjk for

all j and k. Hence, in the real case

∂

∂X
[|X|] = C = |X′|(X′)−1 = |X|(X′)−1.

This is a known result. But, in the complex case, the situation is different. Before we tackle
the complex-domain situation, we will develop some necessary tools. It is a known result
that X̃−1 = 1

|X̃| C̃
′. But when X̃ = X̃∗ (Hermitian), the eigenvalues are real, and hence, the

determinant is real. Then, X̃−1 is Hermitian, thereby C̃ is also Hermitian. The following
results will be helpful when we apply our matrix differential operators to scalar functions
of matrices in the complex domain. For two scalar complex variables x̃ and ỹ the following
can be easily verified.

∂

∂x̃
[x̃ỹ] =0,

∂

∂x̃c [x̃
cỹc] = 0

∂

∂x̃
[x̃cỹ] = 2ỹ,

∂

∂x̃
[x̃cỹc] = 2ỹc,

∂

∂x̃c [x̃ỹ] = 2ỹ. (18)

For convenience, let us consider the term

ũjk = x̃c
jkC̃c

jk = (x1jk − ix2jk)(C1jk − iC2jk)

= x1jkC1jk − x2jkC2jk − i(x1jkC2jk + x2jkC1jk) (19)
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where x̃jk = x1jk + ix2jk, C̃jk = C1jk + iC2jk, with x1jk, x2jk, C1jk, C2jk being real scalar quanti-
ties. Note that x̃jk = x̃∗kj when X̃ is Hermitian. Hence, for example, when we differentiate
with respect to x̃21 it is equivalent to differentiating with respect to x̃∗12 and vice versa.
When x̃∗12C̃∗

12 is differentiated with respect to x̃12 it is equivalent to differentiating x̃21C̃21
with respect to x̃12, and so on. Then,

∂

∂x1jk
[ũjk] = C1jk − iC2jk,

∂

∂x2jk
[ũjk] = −C2jk − iC1jk,⇒ ∂

∂x̃jk
[ũjk] = 2C̃c

jk. (20)

This is the derivative of the complex conjugate of the (j, k)-th element in (18) for all j and k
when X̃ is a general matrix with distinct scalar complex variables as elements. Then,

∂

∂X̃
[|X̃|] = 0,

∂

∂X̃
[|X̃c|] = 2C̃c = 2|X̃c|[X̃∗]−1

∂

∂X̃c [|X̃|] = 2C̃ = 2|X̃|(X̃′)−1. (21)

When X̃ = X̃∗ (Hermitian) we have |X̃| = |X̃∗| = |X̃c|. Then, the result in (20) holds for
the k-th term in the j-th line in (18). But, when X̃ is Hermitian, there is one more element
contributing to x1jk and x2jk. This is the j-th term in the k-th line of (18). Thus, the sum
of the contributions coming from these two terms is the derivative of |X̃c| with respect to
x̃jk. The sum of the contributions is the following, observing that x1jk = x1kj, C1jk = C1kj,
x2jk = −x2kj, C2jk = −C2kj:

x1jkC1jk − x2jkC2jk − i(x1jkC2jk + x2jkC1jk)

+ x1kjC1kj − x2kjC2kj − i(x1kjC2kj + x2kjC1kj)

= 2x1jkC1jk − 2x2jkC2jk − i[x1jk(C2jk + C2kj) + C1jk(x2jk + x2kj)]

= 2x1jkC1jk − 2x2jkC2jk since C2jk + C2kj = 0, x2jk + x2kj = 0.

Now,
∂

∂x̃jk
[x̃c

jkC̃c
jk + x̃c

kjC̃
c
kj] = 2C̃c

jk = 2C̃kj

for all j ̸= k. When j = k, the diagonal elements in X̃ and C̃ are real, and hence, the term
occurs only once, and therefore,

∂

∂x̃jj
[x̃c

jjC̃
c
jj] = C̃c

jj = Cjj.

Since we are taking the partial derivative, the derivatives are the same as differentiation of
|X̃c|. Hence,

∂

∂X̃
[|X̃c|] = 2C̃c − diag(C̃c) = |X̃∗|[2(X̃∗)−1 − diag((X̃∗)−1)]

= |X̃|[2X̃−1 − diag(X̃−1)]

and then,
∂

∂X̃
[|X̃|] = |X̃|[2X̃−1 − diag(X̃−1)].

Here, we have used two properties that for a p × p matrix B, |B| = |B′| and (Bc)′ = B∗ = B
if B is Hermitian. Then, we have the following theorem:

Theorem 9. When the p × p nonsingular matrix X̃ in the complex domain is Hermitian, that is,
X̃ = X̃∗, then,

∂

∂X̃
[|X̃|] = |X̃|[2X̃−1 − diag(X̃−1)].
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In the following sections, we will consider some applications of the results obtained in
Section 2.

3. Principal Component Analysis in the Complex Domain

This is an application of the mathematical problem of optimization of a Hermitian
form under a Hermitian-form constraint.

In many physical situations, variables occur in pairs, such as time and phase, and
hence, the most appropriate representation of such variables is through complex variables
because a scalar complex variable can be taken as a pair of real variables. Let x̃ = x1 + ix2,
i =

√
(−1), x1, x2 are real scalar variables, be a scalar complex variable. Then, a statistical

density associated with x̃ is a real-valued scalar function f (x̃) of x̃ such that f (x̃) ≥ 0
over the entire complex plane, something like a hill on the complex plane, so that the
total volume under the surface is unity, that is,

∫
x̃ f (x̃)dx̃ = 1, where dx̃ = dx1 ∧ dx2,

the wedge product of the differentials dx1 and dx2, respectively. Then, the center of gravity
of the hill f (x̃) is at E[x̃] =

∫
x̃ x̃ f (x̃)dx̃ and the square of the measure of scatter in x̃ is

σ2 = E[(x̃ − E(x̃))(x̃ − E(x̃))∗], where E[(·)] means the expected value when x̃ is a scalar
complex random variable and f (x̃) is its density.

If the scatter is small, then the variable x̃ is concentrated near the center of gravity E[x̃].
If σ2 is large, then x̃ is spread thin far and wide, and hence, it is more or less unrecognizable.
If a large number of scalar variables are being considered as possible variables to be
included into a model, then the ones with the larger scatter are the important variables to
be included into the model. For convenience, one can consider linear functions of such
variables because linear functions also contain individual variables. A linear function is
of the form ũ = a∗1 x̃1 + ... + a∗p x̃k, where a∗1 , ..., a∗p are constants with x̃1, ..., x̃p being scalar
complex variables. For example, a∗2 = 0 = ... = a∗p = 0 gives x̃1, where a * indicates the
conjugate transpose and for a scalar quantity y, ỹ∗ = ỹc only, where c in the exponent
indicates the complex conjugate. We may write the linear function as ũ = A∗X̃, where

A =

a1
...

ap

, A′ = [a1, ..., ap] and X̃ =

x̃1
...

x̃p

, X̃′ = [x̃1...., x̃p]

where a prime indicates the transpose. The expected value of A∗X̃ is E[ũ] = A∗E[X̃]
and the variance–covariance matrix or the covariance matrix in X̃ is denoted by Σ > O
(Hermitian positive definite). Then, the variance of ũ, denoted by Var(ũ), is given by
Var(ũ) = E[(A∗(X̃ − E(X̃))(X̃ − E(X̃))∗A] = A∗ΣA. The most important linear function is
that linear function having the maximum variance. Hence, we may compute maxA[A∗ΣA].
But, since Σ > O we have a positive definite Hermitian form in A∗ΣA and its maximum
over A is at +∞. Thus, unrestricted maximization does not make sense. Without loss of
generality we may take A∗A = 1 because this can always be achieved for any non-null A.
Then, the maximization amounts to maximizing A∗ΣA within the unit sphere A∗A = 1.
There will be a maximum and a minimum in this case. We may incorporate the restriction
by using a Lagrangian multiplier. Consider

w̃ = A∗ΣA − λ(A∗A − 1) (22)

where λ is a Lagrangian multiplier. Maximization will be achieved by using the following
result, which will be stated as a lemma.

Lemma 2. Let Ỹ = Y1 + iY2, i =
√
(−1), Y1, Y2 are p × 1 vectors with distinct real scalar

variables as elements. Let B = B∗ be a p × p constant Hermitian matrix. Let the partial differential
operator ∂

∂Y be defined as

∂

∂Ỹ
=

∂

∂Y1
+ i

∂

∂Y2
.
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Then,
∂

∂Ỹ
[Ỹ∗BỸ] = 2BỸ, B = B∗ > O,

∂

∂Ỹ
[Ỹ∗Ỹ] = 2Ỹ.

Proof. Let B = B∗ = B1 + iB2. When B is Hermitian, B1 = B′
1, B2 = −B′

2, that is, B1 is
real symmetric and B2 is real skew symmetric. Let Ỹ = Y1 + iY2, i =

√
(−1), Y1, Y2 are

real. Then, Ỹ∗BỸ = (Y′
1 − iY′

2)B(Y1 + iY2) = Y′
1BY1 + Y′

2BY2 + i(Y′
1BY2 − Y′

2BY1), where
Y′

1BY1 = Y′
1B1Y1 + iY′

1B2Y1 = Y′
1B1Y1 because Y′

1B2Y1 = 0 due to B2 = −B′
2. From the real

case it is well known that ∂
∂Y1

[Y′
1B1Y1] = 2B1Y1. Similarly, ∂

∂Y2
[Y′

2BY2] = 2B1Y2. Now,

i
∂

∂Y1
[Y′

1BY2 − Y′
2BY1] = i

∂

∂Y1
[Y′

1B1Y2 − Y′
2B1Y1 + i(Y′

1B2Y2 − Y′
2B2Y1)]

= 0 + i2
∂

∂Y1
[Y′

1B2Y2 + Y′
1B2Y2] = i22B2Y2 = −2B2Y2.

Similarly,
∂

∂Y2
[−Y′

1BY2 − Y′
2BY1] = −2i2B2Y1 = 2B2Y1

where we have used two properties. When B1 = B′
1, that is, it is real symmetric, we have

Y′
1B1Y2 = Y′

2B1Y1 because both are 1 × 1 real, and hence, each is equal to its transpose, and
therefore, the difference is zero. When B2 = −B′

2 we have Y′
2B2Y1 = −Y′

1B2Y2, because
both are 1 × 1 real, and hence, each is equal to its transpose. Then, from the real operator
operating on a real linear form the result follows. Similar results hold when differentiating
with respect to the operator ∂

∂Y2
. Thus, we have the following:

∂

∂Y1
[Ỹ∗BỸ] = 2B1Y1 − 2B2Y2 = 2B1Y1 + i22B2Y2 and

∂

∂Y2
[Ỹ∗BỸ] = 2B1Y2 + 2B2Y1.

Therefore,

(
∂

∂Y1
+ i

∂

∂Y2
)[Ỹ∗BỸ] = 2B1(Y1 + iY2) + 2iB2(Y1 + iY2) = 2B1Ỹ + 2iB2Ỹ

= 2BỸ.

Hence, the result. For B = I, the identity matrix, the result on Ỹ∗Ỹ follows, that is,
∂

∂Ỹ
(Ỹ∗Ỹ) = 2Ỹ. Now, by using Lemma 1 we can differentiate w̃ in (22). That is,

∂

∂A
w̃ = O,

∂

∂λ
= 0 ⇒ ΣA − λA = O

⇒ (Σ − λI)A = O ⇒ |Σ − λI| = 0 (23)

where |(·)| means the determinant of the square matrix (·). From (23), ΣA = λA and
pre-multiplying by A∗ and using the fact that A∗A = 1, we have A∗ΣA = λ. Hence,

max
A∗A=1

[A∗ΣA] = λ1 and min
A∗A=1

[A∗ΣA] = λp (24)

where λ1 is the largest eigenvalue of Σ = Σ∗ > O and λp is the smallest eigenvalue of
Σ. When Σ is Hermitian, all its eigenvalues are real and when it is Hermitian positive
definite, all its eigenvalues are real positive also. Hence, the procedure is the following:
Take the largest eigenvalue of Σ, say λ1. Then, through (23), compute an eigenvector
corresponding to λ1, that is, solve ΣA = λ1 A for an A. Then, normalize this eigenvector
through A∗

1 A1 = 1. That is, if an eigenvector corresponding to λ1 is α1, then compute
A1 = 1√

α∗1 α1
α1. This A1 is the normalized eigenvector corresponding to λ1. Now, consider
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ũ1 = A∗
1 X̃. This ũ1 is the first principal component in the sense of the linear function

having the maximum variance. Now, take the second largest eigenvalue λ2. Go through
the same procedure and construct the normalized eigenvector A2 corresponding to λ2.
Then, ũ2 = A∗

2 X̃ is the second principal component. Continue the process and stop the
process when the variance of ũj, namely, λj, falls below a preassigned number. If there is
no preassigned number, then ũ1, ..., ũp will be the p principal components. Here, we have
assumed that the eigenvalues of Σ are distinct. When the eigenvalues are distinct, we can
show that the eigenvectors corresponding to the distinct eigenvalues of a symmetric or
Hermitian matrix are orthogonal to each other. Hence, our principal components will be
orthogonal to each other in the sense that the joint dispersion in the pair (ũi, ũj) is 0 for
i ̸= j or the covariance between ũi and ũj is zero when i ̸= j. The covariance is defined
as the following: Let Ũ be a p × 1 vector in the complex domain and let Ṽ be a q × 1
vector in the complex domain. Then, the covariance of Ũ on Ṽ is defined and denoted
as Cov(Ũ, Ṽ) = E[(Ũ − E(Ũ))(Ṽ − E(Ṽ))∗], whenever this expected value exists, so that
when Ṽ = Ũ, then Cov(Ũ, Ṽ) = Cov(Ũ), the covariance matrix in Ũ, and when p = 1, it is
the variance of the scalar complex variable ũ.

When the covariance matrix Σ is unknown, then we may construct sample principal
components. Let our population be the p × 1 vector X̃, X̃′ = [x̃1, ..., x̃p], where x̃j, j = 1, ..., p
are distinct scalar complex variables. Consider n independently and identically distributed
(iid) such p-vectors. Then, we have a simple random sample of size n from X̃. Then,
the sample matrix is the p × n, n > p matrix, denoted as the following:

X̃ = [X̃1, ..., X̃n] =


x̃11 x̃12 ... x̃1n
x̃21 x̃22 ... x̃2n

...
... ...

...
x̃p1 x̃p2 ... x̃pn

.

Let the sample average be denoted by ¯̃X = 1
n [X̃1 + ... + X̃n] and the matrix of sample

averages be denoted by the bold letter ¯̃X = [ ¯̃X, ..., ¯̃X]. Then, the sample sum of products
matrix S̃ is given by

S̃ = [X̃ − ¯̃X][X̃ − ¯̃X]∗ = (s̃jk)

where s̃jk = ∑n
r=1(x̃jr − ¯̃xj)(x̃rk − ¯̃xk)

∗. The motivation in using the sample sum of products
matrix S̃ is that 1

n−1 S̃ is an unbiased estimator of Σ. Since we will be normalizing the eigen-
vectors, operate with S̃ itself. Compute the eigenvalues of S̃. Take the largest eigenvalue
of S̃. Call it m1. Construct an eigenvector corresponding to m1 and normalize it through
M∗

1 M1 = 1, where M1 is the normalized eigenvector corresponding to m1. Then, ṽ1 = M∗
1 X̃

is the first sample principal component. When the columns of the sample matrix are not
linearly related then we have S̃ = S̃∗ > O (Hermitian positive definite) and all eigenvalues
m1, ..., mp will be positive. We assume that the eigenvalues are distinct m1 > m2 > ... > mp.
This will be true almost surely. Now, take m2 and construct M2 and the second principal
component ṽ2 = M∗

2 X̃ and continue the process. We can show that the covariances between
ṽj and ṽk will be zeros for all j ̸= k. This property follows from the fact that when the
matrix is symmetric or Hermitian, the eigenvectors corresponding to distinct eigenvalues
are orthogonal. When the population X̃ is p-variate complex Gaussian, then we can show
that S̃ will be a complex Wishart distributed with degrees of freedom n − 1 and parameter
matrix Σ. The distributions of the largest, smallest, and j-th largest eigenvalues and the
corresponding eigenvectors of S̃ in the complex domain are given in [8].

4. Canonical Correlation Analysis in the Complex Domain

This is an application of the mathematical problem of optimization of a bilinear form
in the complex domain, under two Hermitian-form constraints. The following application
is regarding the prediction of one set of variables by using another set of variables.
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Consider two sets of scalar complex variables

S1 = {x̃1, ..., x̃p} and S2 = {ỹ1, ..., ỹq}

where p need not be equal to q. Consider the appended vector

Z̃ =

[
X̃
Ỹ

]
, X̃ =

x̃1
...

x̃p

, Ỹ =

ỹ1
...

ỹq

, E[X̃] = µx, E[Ỹ] = µy,

Σ = E
[[

X̃ − µx
Ỹ − µy

]
[X̃∗ − µ∗

x, Ỹ∗ − µ∗
y ]

]
= Cov(Z̃) =

[
Σ11 Σ12
Σ21 Σ22

]
where Σ11 = Cov(X̃), Σ22 = Cov(Ỹ), Σ12 = Cov(X̃, Ỹ), and Σ∗

12 = Σ21, and vice-versa.
That is, Σ is the covariance matrix in Z̃, Σ11 is the covariance matrix in X̃, Σ22 is the
covariance matrix in Ỹ, and so on. Also, Σ = Σ∗ > O, Σ11 = Σ∗

11 > O, Σ22 = Σ∗
22 > O. Our

aim is to predict the variables in the set S1 by using the variables in the set S2 and vice-
versa, and obtain the “best” predictors; “best” in the sense of having the maximum joint
dispersion. In order to represent each set S1 and S2, we will take arbitrary linear functions
of the variables in each set. Consider linear functions ũ = A∗X̃ and ṽ = B∗Ỹ, where

A =

a1
...

ap

, B =

b1
...

bq

,
ũ = A∗X̃ = a∗1 x̃1 + ... + a∗p x̃p

ṽ = B∗Ỹ = b∗1 ỹ1 + ... + b∗q ỹq
,

where X̃ and Ỹ are listed above already. Since aj and bj are scalar constant quantities,
a∗j = ac

j , j = 1, ..., p and b∗j = bc
j , j = 1, ..., q. Variances for linear functions are already seen

in Section 2. Therefore, Var(ũ) = A∗Σ11 A, Var(ṽ) = B∗Σ22B and Cov(ũ, ṽ) = A∗Σ12B,
Σ21 = Σ∗

12, B∗Σ21 A = Cov(ṽ, ũ). Here, Σ12 and Σ21 can be taken as measures of joint dis-
persion or joint variation between X̃ and Ỹ and A∗Σ12B = Cov(ũ, ṽ) as the joint dispersion
between ũ and ṽ. As a criterion for the “best” predictor of ũ by using ṽ and vice versa, we
may take that the pair ũ and ṽ have the maximum joint variation. The best predictor of ũ by
using ṽ as that pair having the maximum A∗Σ12B and the best predictor of ṽ by using ũ as
that pair having the maximum value for B∗Σ21 A. Since covariances depend upon the units
of measurements of the variables involved, we may take a scale-free covariance by taking

ρ =
Cov(ũ, ṽ)√

Var(ũ)Var(ṽ)
=

A∗Σ12B√
[A∗Σ11 A][B∗Σ22B]

.

Further, as explained in Section 2, without loss of generality we may take A∗Σ11 A = 1
and B∗Σ22B = 1 or confine the bilinear form (hyperboloid) within unit positive definite
Hermitian forms (ellipsoids) in order to prevent them from going to +∞. Hence, our pro-
cedure simplifies to optimizing A∗Σ12B subject to the conditions A∗Σ11 A = 1,B∗Σ22B = 1
and computing that pair of A and B which will maximize A∗Σ12B. As before, we may use
the Lagrangian multipliers λ1 and λ2 and consider the function

w̃ = A∗Σ12B − λ1(A∗Σ11 A − 1)− λ2(B∗Σ22B − 1). (25)

In order to optimize this w̃ we need one result on differentiation of a bilinear form, which
will be stated as a lemma.

Lemma 3. Let X̃ = X1 + iX2, i =
√
(−1), X1, X2 are real, p × 1 vectors of distinct real scalar

variables x1j and x2j, respectively, where x̃j = xj1 + ixj2, j = 1, ..., p. Let Ỹ = Y1 + iY2,
i =

√
(−1), Y1, Y2 are real, q × 1 vectors of distinct real scalar variables yj1 and yj2, respec-
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tively, where ỹj = yj1 + iyj2, j = 1, ..., q, where xj1, xj2, yj1, yj2 are real. Let the partial differential
operators be as defined in Section 2, namely,

∂

∂X1
=


∂

∂x11
...
∂

∂xp1

,
∂

∂X2
=


∂

∂x12
...
∂

∂xp2

,
∂

∂X̃
= (

∂

∂X1
+ i

∂

∂X2
)

and similar operators involving Ỹ = Y1 + iY2. Then,

∂

∂X̃
[X̃∗AỸ] = 2AỸ and

∂

∂Ỹ
[Ỹ∗A∗X̃] = 2A∗X̃.

Proof. Opening up X̃∗AỸ we have the following:

X̃∗AỸ = (X′
1 − iX′

2)A(Y1 + iY2) = X′
1 AY1 + X′

2 AY2 + i(X′
1 AY2 − X′

2 AY1).

Then, from the known results in the real case, we have the following:

∂

∂X1
[X̃∗AỸ] = AY1 + iAY2 and

∂

∂X2
[X̃∗AỸ] = AY2 − iAY1

irrespective of whether A is real or in the complex domain. Then,

∂

∂X̃
[X̃∗AỸ] = (

∂

∂X1
+ i

∂

∂X2
)[X̃∗AỸ] = 2AỸ.

Similarly, ∂
∂Ỹ
[Ỹ∗A∗X̃] = 2A∗X̃. This completes the proof.

Now, differentiating w̃ in (25), we have the following:

∂w̃
∂A

= O ⇒ Σ12B − λ1Σ11 A = O (26)

∂w̃∗

∂B
= O ⇒ Σ21 A − λ2Σ22B = O. (27)

Now, premultiply (26) by A∗ and (27) by B∗ to obtain the following, observing that
Σ21 = Σ∗

12:
A∗Σ12B = λ1, B∗Σ21 A = λ2,⇒ λ2 = λc

1

or λ1 = λ, λ2 = λc. Take B from (27) and substitute in (26) to obtain the following:

(Σ−1
11 Σ12Σ−1

22 Σ21 − λλc I)A = O, λλc = |λ|2. (28)

This shows that λλc = |λ|2 = µ is an eigenvalue of Σ−1
11 Σ12Σ−1

22 Σ21, where the matrix is
p × p. From symmetry, it follows that µ is also an eigenvalue of Σ−1

22 Σ21Σ−1
11 Σ12, where the

matrix is q × q. Hence, all the nonzero µ’s are common to both of these matrices. Hence,
the procedure is the following: If p ≤ q, then compute the eigenvalues of Σ−1

11 Σ12Σ−1
22 Σ21,

otherwise, compute the eigenvalues of the other matrix Σ−1
22 Σ21Σ−1

11 Σ12, both will give the
same nonzero eigenvalues. Let µ1 be the largest and µr be the smallest nonzero eigenvalues.
Then, we have the results

max
A∗Σ11 A=1,B∗Σ22B=1

[A∗Σ12B] = µ1

and
min

A∗Σ11 A=1,B∗Σ22B=1
[A∗Σ12B] = µr.
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Then, the procedure is the following: If p ≤ q, then compute all the eigenvalues of
Σ−1

11 Σ12Σ−1
22 Σ21. Let the largest eigenvalue be µ1. Then, compute one eigenvector corre-

sponding to µ1. Use the equation (Σ12Σ−1
22 Σ21 − µ1Σ11)A = O. Let it be A11. Then, nor-

malize it through A∗
11Σ11 A11 = 1. That is, compute A1 = 1√

A∗
11Σ11 A11

A11. Then, compute

ũ1 = A∗
1 X̃. Then, use the same eigenvalue µ1 and compute one eigenvector from the equa-

tion (Σ21Σ−1
11 Σ12 − µ1Σ22)B = O. Let it be B11. Then, normalize it through B∗

11Σ22B11 = 1,
that is, compute B1 = 1√

B∗
11Σ22B11

B11. Now, compute ṽ1 = B∗
1 Ỹ. Then, (ũ1, ṽ1) is the first

pair of canonical variables in the sense ũ1 is the best predictor of ṽ1 and vice-versa. Now,
take the second largest eigenvalue µ2 of Σ−1

11 Σ12Σ−1
22 Σ21. Then, compute one eigenvector

corresponding to µ2, that is, solve the equation (Σ12Σ−1
22 Σ21 − µ2Σ11)A = O. Let A21 be that

eigenvector. Normalize it, that is, compute A2 = 1√
A∗

21Σ11 A21
A21. Now, compute ũ2 = A∗

2 X̃.

Use the same µ2 and solve for B from the equation (Σ21Σ−1
11 Σ12 − µ2Σ22)B = O. Let B21

be one solution. Then, normalize it, that is, compute B2 = 1√
B∗

21Σ22B21
B21. Now, compute

ṽ2 = B∗
2 Ỹ. Then, (ũ2, ṽ2) is the second pair of canonical variables. Continue the process

until µj falls below a preassigned limit. If there is no such preassigned limit, then compute
all the pairs, that is, p if p ≤ q; otherwise q. If q < p, then start with the computation
of the eigenvalues of Σ−1

22 Σ21Σ−1
11 Σ12 and proceed parallel to the steps used in the case

p ≤ q. Observe that the symmetric format of Σ−1
11 Σ12Σ−1

22 Σ21 is Σ− 1
2

11 Σ12Σ−1
22 Σ21Σ− 1

2
11 . This

form is also available from the same starting equation (28). The symmetric format can
always be written in the form C∗C for some matrix C, and hence, the symmetric form
is either Hermitian positive definite or Hermitian positive semi-definite, and therefore,
all the nonzero eigenvalues are positive. Let us assume that the eigenvalues µ1, µ2, ... are
distinct, µ1 > µ2 > ... > µp if p ≤ q. It is a known result that eigenvectors corresponding
to distinct eigenvalues of Hermitian or symmetric matrices are orthogonal to each other.
Hence, ũ1, ũ2, ... are non-correlated. Similarly, ṽ1, ṽ2, ... are non-correlated.

If Σ11, Σ12, Σ22 are not available, then take a simple random sample of size n, n > p+ q,

from Z̃ =

[
X̃
Ỹ

]
. Then, compute the sample sum of products matrix:

S̃ =

[
S̃11 S̃12
S̃21 S̃22

]
,

as for the case of principal component analysis. Now, continue with S̃jk’s as with Σjk’s. Then,
we will obtain the pairs of sample canonical variables. Some distributional aspects of sample

canonical variables and the sample canonical correlation matrix Ũ = S̃− 1
2

11 S̃12S̃−1
22 S̃21S̃− 1

2
11

are discussed in [8]. Note that when S11 is 1 × 1, then we have the square of the multiple
correlation coefficient in Ũ = ũ, which is scalar. In this case, our starting set S1 will have
only one complex scalar variable and the set S2 will have q variables. Here, the problem
is to predict one variable in S1 by using the variables in S2. The exact distributions of
the canonical correlation matrix Ũ and the square of the absolute value of the multiple
correlation coefficient ũ are available in explicit forms in [8].

5. Covariance and Correlation in the Complex Domain

Consider scalar complex variables first. Let x̃1 and ỹ1 be two scalar complex variables
or scalar variables in the complex domain. Then, the mean values or expected values
of x̃1 and ỹ1 are, respectively, E[x̃1] =

∫
x̃1

x̃1 f (x̃1)dx̃1, E[ỹ1] =
∫

ỹ1
ỹ1g(ỹ1)dỹ1, where E[·]

means the expected value of [·], and f and g are the densities of x̃1 and ỹ1, respectively.
Let x̃ = x̃1 − E[x̃1], ỹ = ỹ1 − E[ỹ1]. Let x̃ = x11 + ix12, i =

√
(−1), x11, x12 are real scalar

variables, and let ỹ = y11 + iy12, i =
√
(−1), y11, y12 are real scalar variables. Then, E[x̃] = 0,

E[ỹ] = 0. Then, the variance, denoted by Var(·), and covariance, denoted by Cov(·, ·), are
the following:
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Var(x̃1) = Var(x̃) = E[x̃x̃∗] = σ11

Var(ỹ1) = Var(ỹ) = E[ỹỹ∗] = σ22

Cov(x̃1, ỹ1) = Cov(x̃, ỹ) = E[x̃ỹ∗] = σ12

where, for example, x̃∗ = x̃c, with ∗ indicating the conjugate transpose and c indicating the
conjugate only. Here, we have only scalar variables, and hence, the complex conjugate trans-
pose is only complex conjugate. For convenience, we have used the notation σ11, σ22, σ12.
Then, σ21 = E[ỹx̃∗] = E[ỹx̃c] = Cov(ỹ, x̃). For a scalar complex variable x̃ = x11 + ix12,
x̃∗ = x′11 − ix′12 = x11 − ix12 = x̃c. Let us examine the variances of sum and difference. Let

ũ =
x̃1 − E[x̃1]√

Var(x̃1)
=

x̃√
σ11

, ṽ =
ỹ1 − E[ỹ1]√

Var(ỹ1)
=

ỹ√
σ22

.

Then,

Var(ũ + ṽ) = E[(ũ + ṽ − E(ũ + ṽ))(ũ + ṽ − E(ũ + ṽ))∗]

= E[
x̃x̃∗

σ11
+

ỹỹ∗

σ22
+

x̃ỹ∗ + ỹx̃∗√
σ11σ22

]

This can be simplified as the following:

Var(ũ + ṽ) = 2 + 2
[Cov(x̃, ỹ) + Cov(ỹ, x̃)]

2
√

σ11σ22
≥ 0 (29)

Var(ũ − ṽ) =
E[x̃x̃∗]

σ11
+

E[ỹỹ∗]
σ22

− E[x̃ỹ∗ + ỹx̃∗]√
σ11σ22

= 2 − 2
[Cov(x̃, ỹ) + Cov(ỹ, x̃)]

2
√

σ11σ22
≥ 0 (30)

From (29) and (30) we have

−1 ≤ Cov(x̃, ỹ) + Cov(ỹ, x̃)
2
√

σ11σ22
≤ 1. (31)

Let us examine the quantity, Cov(x̃, ỹ) + Cov(ỹ, x̃) = E[x̃ỹ∗] + E[ỹx̃∗]. Note that

E[x̃ỹ∗] = E[(x11 + ix12)(y11 − iy12)] = E[x11y11 + x12y12 + i(x12y11 − x11y12)]

E[ỹx̃∗] = E[x11y11 + x12y12 + i(y12x11 − y11x12)] ⇒
E[x̃ỹ∗] + E[ỹx̃∗] = Cov(x̃, ỹ) + Cov(ỹ, x̃) = 2E[x11y11 + x12y12] = 2E[ℜ(x̃ỹ∗)]

Hence,

1
2

[
Cov(x̃, ỹ) + Cov(ỹ, x̃)√

σ11σ22

]
= E[

x11y11 + x12y12√
σ11σ22

]

= E[
ℜ(x̃ỹ∗)√

σ11σ22
].

Therefore, we may define the correlation coefficient in the complex domain, denoted by r̃,
as the following:

r̃ =
ℜ(Cov(x̃, ỹ))√

σ11σ22
⇒ −1 ≤ r̃ ≤ 1 (32)
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where ℜ(·) denotes the real part in (·). Also, note that |x̃ỹ∗|2 = |x̃|2|ỹ|2. This will motivate
us to examine the dot product of two vectors in the complex domain and the Cauchy–
Schwarz inequality in the complex domain.

5.1. The Cauchy–Schwarz Inequality in the Complex Domain

Let X̃, X̃′ = [x̃1, ..., x̃p], and Ỹ, Ỹ′ = [ỹ1, ..., ỹp] be two p × 1 vectors in the complex
domain. We will define the dot product between X̃ and Ỹ, and it will be denoted and
defined as the following: X̃ ⊙ Ỹ = X̃∗Ỹ and

|X̃ ⊙ Ỹ|2 = |X̃∗Ỹ|2 = |x̃c
1ỹ1|2 + ... + |x̃c

pỹp|2

= |x̃1|2|ỹ1|2 + ... + |x̃p|2|ỹp|2

= (x2
11 + x2

12)(y
2
11 + y2

12) + ... + (x2
p1 + x2

p2)(y
2
p1 + y2

p2)

≤ (x2
11 + x2

12 + ... + x2
p1 + x2

p2)(y
2
11 + y2

12 + ... + y2
p1 + y2

p2)

⇒ |X̃ ⊙ Ỹ| ≤ |X̃| |Ỹ|. (33)

Thus, the Cauchy–Schwarz inequality holds for the complex domain also.

5.2. Minimum-Variance Unbiased Estimators in the Complex Domain

In the class of linear estimators A∗X̃ for the parametric function g(θ), which linear
function is the minimum-variance unbiased estimator for g(θ)? Let

A =

a1
...

ap

, X̃ =

x̃1
...

x̃p

 ⇒ E[A∗X̃] = A∗E[X̃] = A∗µ̃ = g(θ),

and Var(A∗X̃) = A∗ΣA, E[X̃] = µ̃ where Σ is the covariance matrix in X̃. Our aim here
is to minimize A∗ΣA subject to the constraint A∗µ̃ = g(θ) (given). Let λ be a Lagrangian
multiplier and let w̃ = A∗ΣA − λ(A∗µ̃ − g(θ)). Then,

∂w̃
∂A

= O ⇒ 2ΣA − 2λµ̃ = O ⇒ ΣA = λµ̃. (34)

That is, A∗ΣA = λA∗µ̃ = λg(θ). Hence, g(θ) multiplied by the minimum value of λ gives
the minimum of A∗ΣA. From (34),

A = λΣ−1µ̃ ⇒ g(θ) = A∗µ̃ = λcµ̃∗Σ−1µ̃ ⇒ λc =
g(θ)

µ̃∗Σ−1µ̃
.

Then,

λg(θ) =
gg∗

µ̃∗Σ−1µ̃
=

|g|2
µ̃∗Σ−1µ̃

is the minimum value of the variance of our linear estimator. Hence, the minimum-variance
unbiased estimator is

T(X̃) =
g

µ̃∗Σ−1µ̃
[µ̃∗Σ−1X̃].

Note also that

g = A∗µ̃ = (A∗Σ
1
2 )(Σ− 1

2 µ̃) ≤
√

A∗ΣA
√

µ̃Σ−1µ̃ ⇒
√

A∗ΣA ≥ g
µ̃∗Σ−1µ̃

.

The first inequality follows from the inequality established in Section 5.1.
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5.3. Cramer–Rao-Type Inequality in the Complex Domain

Let x̃1, ..., x̃n be a simple random sample from the population designated by the
density f (x̃j), where x̃j, j = 1, ..., n are independently and identically distributed (iid). Then,
the joint density L = ∏n

j=1 f (x̃j). Let T(x̃1, ..., x̃n), denoted as T(X̃), be a statistic with the
expected value g(θ). That is, E[T] =

∫
X̃ TL dX̃ = g(θ). Differentiating with respect to θ,

we have

∂g(θ)
∂θ

=
∫

X̃
T(

∂L
∂θ

)dX̃ =
∫

X̃
T(

∂ ln L
∂θ

) L dX̃ = E[T(
∂ ln L

∂θ
)] (35)

where we have assumed that the support of X̃ is free of θ and differentiation inside the
integral is valid. But, from the total integral being one, we have∫

X̃
L dX̃ = 1 ⇒

∫
X̃
(

∂ ln L
∂θ

)L dX̃ = 0 ⇒ E[
∂ ln L

∂θ
] = 0. (36)

From (35) and (36), we have E[T( ∂ ln L
∂θ )] = Cov(T, ∂ ln L

∂θ ) because for any two scalar random
variables u and v real, or ũ and ṽ in the complex domain, Cov(u, v) = E[(u − E(u))(v −
E(v))] = E[u(v − E(v))] = E[(u − E(u))v] and the corresponding results in the complex
domain also hold. Therefore, since E[ ∂ ln L

∂θ ] = 0, E[T( ∂ ln L
∂θ )] = Cov(T, ∂ ln L

∂θ ). Then,

|Cov(T,
∂ ln L

∂θ
)| ≤

√
Var(T)

√
Var(

∂ ln L
∂θ

) ⇒ Var(T̃) ≥
| ∂g

∂θ |
2

Var( ∂ ln L
∂θ )

. (37)

Note that
Var(

∂ ln L
∂θ

) = E[(
∂ ln L

∂θ
)2] = nVar(

∂ ln f
∂θ

) = nE[(
∂ ln L

∂θ
)2]. (38)

This shows that the Cramer–Rao-type inequality holds in the complex domain also.

5.4. Least Square Estimation in Linear Models in the Complex Domain

Let us examine whether the least square procedure, in the class of linear models, holds
in the complex domain also. Let x̃1, ..., x̃k be preassigned complex numbers or observations
on k random variables in the complex domain. Let ỹ be a scalar complex variable. Then,
a linear model of x̃1, ..., x̃k for predicting ỹ, can be of the following form:

ỹ = ac
0 + β∗X̃, β =

a1
...

ak

, X̃ =

x̃1
...

x̃k

.

But, in order to predict ỹ by using linear predictors we must know the conditional distri-
bution of ỹ, given x̃1, ..., x̃k, and also the conditional expectation must be linear in x̃1, ..., x̃k.
If the conditional distribution is not known, then we may use a distribution-free procedure.
One such procedure is the estimation procedure by using the least square method. In this
method, we set up a corresponding model of the following form for the j-th observation on
ỹ, namely, ỹj, for j = 1, ..., n, where n > k + 1 is the sample size.

ỹ = a0 + a1 x̃1j + ... + ak x̃kj + ϵj, j = 1, ..., n (39)

corresponding to the linear model in the real case, where ϵj is the random part or the sum
total contributions coming from unknown factors, corresponding to ỹj. Then, if we sum up
the observations and divide by n we obtain the sample averages ¯̃y, ¯̃xr, r = 1, ..., k, where,
for example, ¯̃xr =

1
n ∑n

j=1 x̃rj. Then, from (39), we have

¯̃y = a0 + a1 ¯̃x1 + ... + ak ¯̃xk + 0 ⇒ a0 = ¯̃y − a1 ¯̃x1 − ... − ak ¯̃xk

⇒ cc
0 = ¯̃y − ac

1
¯̃x1 − ... − ac

k
¯̃xk. (40)
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We have taken the error sum as zero without much loss of generality. Since a0 is available
from (40), we may rewrite (39) as follows:

ỹj − ¯̃y = a1(x̃1j − ¯̃x1) + ... + ak(x̃kj − ¯̃xk) + ϵj − ϵ̄, j = 1, ..., n. (41)

We may write all the equations in (41) together as Ũ = Z̃β + e, where

Ũ =

ỹ1 − ¯̃y
...

ỹn − ¯̃y

, Z̃ =

x̃11 − ¯̃x1 ... x̃k1 − ¯̃xk
... ...

...
x̃1n − ¯̃x1 ... x̃kn − ¯̃xk

, e =

ẽ1
...

ẽn

, β =

a1
...

ak

.

Note that Ũ is an n × 1 matrix, Z̃ is an n × k matrix, β is a k × 1 matrix, and ẽ is an n × 1
matrix. Then, the sum of squares of the absolute values of the errors is the following:

ẽ∗ ẽ = (Ũ − Z̃β)∗(Ũ − Z̃β). (42)

In the least square procedure, we minimize this error sum of squares of the absolute values of
the errors, and then, estimate the parameter vector β. Note that (Ũ − Z̃β)∗ = Ũ∗ − β∗Z̃∗ and

∂ẽ∗ ẽ
∂β

= O ⇒ O − O − 2Z̃∗Ũ + 2Z̃∗Z̃β = O

β = (Z̃∗Z̃)−1Z̃∗Ũ (43)

where we have assumed that Z̃∗Z̃ is a nonsingular matrix because x̃rj’s are preassigned
numbers, and hence, Z̃ can be taken as a full-rank matrix with rank k < n. Then, the esti-
mated β, as per the least square estimate, again denoted by β, is β = (Z̃∗Z̃)−1Z̃∗Ũ and the
estimated model for ỹ is ac

0 + β∗X̃, X̃′ = [x̃1, ..., x̃k], β∗ = Ũ∗Z̃(Z̃∗Z̃)−1 or the estimated ỹ is

ỹ = ac
0 + β∗X̃ = ac

0 + Ũ∗Z̃(Z̃∗Z̃)−1X̃ (44)

where β is available from (43) and ac
0 = ¯̃y − β∗ ¯̃X, ¯̃X = [ ¯̃x1, ..., ¯̃xk]

′. This shows that the least
square procedure in the complex domain also runs parallel to that in the real domain. If ẽ is
assumed to have an n-variate complex Gaussian distribution, then the inference problems
also runs parallel to those in the real domain.

6. Concluding Remarks

In this paper, we have introduced vector/matrix differential operators in the complex
domain. These differential operators in the complex domain are believed to be new.
With the help of these operators, we have examined the optimization of a linear form with
Hermitian-form constraint, optimization of a Hermitian form with linear form as well
as Hermitian-form constraint, and optimization of a bilinear form with Hermitian-form
constraints, where the linear forms and bilinear forms involve vectors and matrices in
the complex domain. As applications of these optimization problems, we have extended
principal component analysis and canonical correlation analysis to the complex domain.
Also extended to the complex domain are the Cramer–Rao inequality, the Cauchy–Schwarz
inequality, minimum-variance unbiased estimation, and least square analysis. If we use
the general definition of a density f (X) as a real-valued scalar function such that f (X) ≥ 0
in the domain of X and

∫
X f (X)dX = 1, where the argument X may be scalar or vector or

matrix or a sequence of matrices in the real or complex domains [8], then the structures
of the joint density, marginal density, conditional density, etc., will be parallel to those
in the real domain. Then, we will be able to extend Bayesian analysis to the complex
domain. One can also explore extending other multivariate statistical techniques such as
factor analysis, classification problems, cluster analysis, analysis of variance, analysis of
covariance, etc., to the complex domain. These are some of the open problems. Since the
likelihood function L is a product of densities at the observed sample point, in the simple
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random sample case, this L will be a real-valued scalar function. Then, one can extend the
maximum likelihood method of estimation to the complex domain. For example, in the
p-variate complex Gaussian case, in the case of a simple random sample of size n, we have

ln L = c − np ln |Σ̃| − tr(Σ̃−1S̃)−
n

∑
j=1

(X̃j − µ̃)∗Σ̃−1(X̃j − µ̃)

where c is a constant, S̃ is the sample sum of squares and cross-products matrix, µ̃ is
the population mean value, and Σ̃ > O is the Hermitian positive definite covariance
matrix. We have already established results on vector and matrix differential operators
in the complex domain, operating on the trace and determinant involving a Hermitian
positive definite matrix. Hence, all the terms in ∂

∂µ̃ [ln L] = O and ∂
∂Σ̃ [ln L] = O are defined

and such equations are already solved in our discussion of our operators operating on
traces and determinants. Thus, we will see that ∂

∂µ̃ [ln L] = O yields the sample average

as the estimate/estimator of µ̃, and ∂
∂Σ̃ [ln L] = O, with the estimate on µ̃, yields the

estimate/estimator of Σ̃ as 1
n S̃. One can also examine the maximum likelihood estimation

involving other scalar/vector/matrix-variate densities in the complex domain. The above
are some of the open problems.
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