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Abstract: This paper considers a system with one robot and n safety units (one of which works while
the others remain on standby), which is described by an integro-deferential equation. The system can
fail in the following three ways: fails with an incident, fails safely and fails due to the malfunction of
the robot. Using the C0–semigroups theory of linear operators, we first show that the system has a
unique non-negative, time-dependent solution. Then, we obtain the exponential convergence of the
time-dependent solution to its steady-state solution. In addition, we study the asymptotic behavior of
some time-dependent reliability indices and present a numerical example demonstrating the effects
of different parameters on the system.
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1. Introduction

Robots are increasingly being used for a variety of tasks, including welding, forging,
resource exploration and development, disaster relief and evacuation, complex surgery,
bomb disposal, and machining. Because robots use electronic, electrical, mechanical,
hydraulic, and pneumatic components, reliability issues are quite difficult to address due
to the diversity of failure factors in robotic systems. However, the reliability of robots, as
the main technical indicator for measuring the quality of industrial robots, is receiving
unprecedented attention. The unreliable robot can bring a range of issues, including human
damage. Thus, it is important to carefully consider the reliability of the robot. The robots
must be both reliable and safe, so it is equipped with several safety devices. To analyze the
reliability of a robot, we need to consider the relationship between the reliability and the
safety device.

In reliability theory, there are many methods to analyze the reliability of engineer-
ing systems. In particular, the use of supplementary variables technique to establish
models and analyze the reliability of robot systems has been widely studied. In 1955,
Cox [1] first proposed the “supplementary variable technique (SVT)” and established the
M/G/1 queuing system. Gaver [2] was the first to apply this technique for reliability
models, and subsequently, other authors followed this line of research, such as Linton [3],
Gupta and Gupta [4], Shi and Li [5], Chung [6], Oliveira et al. [7], Zhang and Wu [8],
Shakuntla et al. [9], Singh et al. [10], Ke et al. [11], Shekhar et al. [12], Gao and Wang [13].

There is a considerable amount of research literature on robot-safety systems, yet the
research on system reliability remained limited. Most articles focus on repeatability and
accuracy [14,15]. Dillon and Yang [16] first studied a system with a robot and its safety
device. The mathematical model was established by introducing SVT, and the steady-
state solution (S-SS) was examined by the Laplace transforms. They then investigated a
system with two robots and a safety device, one working and the other in storage [17].
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Many researchers subsequently used the SVT to establish various robot-safety systems
and studied the steady-state reliability indices of these systems, see [18–21] and references
therein. All of these researchers studied the reliability models of robot-safety systems under
the assumption that the dynamic solution converges to its S-SS. The S-SS is well known
to depends on the time-dependent solution (T-DS), and the T-DS can clearly reflect the
operating trend of the system. As a result, it is necessary to investigate the existence and
uniqueness of T-DS, as well as their asymptotic behavior and the instantaneous reliability
index. In 2001, Gupur first introduced the dynamic analysis for the study of reliability
models by the C0–semigroups theory [22,23]. Guo and Xu [24] studied a system composed
of one robot and one safety device, and determined the existence and uniqueness of the
system’s T-DS as well as its asymptotic behavior. Chen and Xu [25] introduced the repair
rate as a periodic function for the above system and analyzed the exponentially stability.
Gupur [26] considered a human–machine system and demonstrated the well posedness of
the system and the asymptotic behavior of the T-DS, proved the quasi-compactness of the
C0-semigroup, determined that the C0-semigroup exponentially converges to a projection
operator [27], and finally obtained an expression for the projection operator using the
residual theorem [28]. Zhang [29] considered a system consisting two robots and one safety
unit and investigated the exponential stability of the T-DS. Qiao and Ma [30] discussed the
system composed of a safety component and two redundant robots. Zhou and Wei [31]
have further investigated the system studied in [24].

Based on the above literature, we found that the results of dynamic analysis of robot-
safety systems are few and limited to special cases, i.e., simple systems consisting of one
robot or two robots and one safety device. Recent advances have allowed robot-safety
systems to become more and more complex to improve their performances. However, these
complex systems have strong applicability in engineering. Thus, the reliability of complex
robot-safety systems has become a serious and urgent problem. In this paper, we consider
a system with one robot and n safety units and perform dynamic analysis on the system.

The robot safety system, according to Cheng and Dhillon [32], is described by the
following integro-differential equations:

dP0(t)
dt

= −a0 P0(t) + µsP1(t) +
n+3

∑
k=n+1

∫ ∞

0
Pk(y, t)µk(y)dy,

dPj(t)
dt

= λsPj−1(t)− ajPj(t) + µsPj+1(t), 1 ⩽ j ⩽ n − 1,

dPn(t)
dt

= λsPn−1(t)− an Pn(t),

∂Pk(y, t)
∂t

+
∂Pk(y, t)

∂y
= −µk(y)Pk(y, t),

Pn+1(0, t) = λssPn(t),

Pn+2(0, t) = λsiPn(t),

Pn+3(0, t) = λr

n−1

∑
j=0

Pj(t).

P0(0) = 1, Pi(0) = 0, 1 ⩽ i ⩽ n, Pk(y, 0) = 0, n + 1 ⩽ k ⩽ n + 3.

(1)

where a0 = λs + λr, aj = λs + λr + µs (1 ⩽ j ⩽ n − 1), an = λss + λsi + µs, and
(y, t) ∈ [0, ∞) × [0, ∞). Pi(t) denotes the probability that the system is in state
i (1 ⩽ i ⩽ n) at time t; Pk(y, t) dx denotes the probability that at time t, the system is
in state k (n + 1 ⩽ k ⩽ n + 3) and the elapsed repair time is in (y, y + ∆y); λs/λr represents
the robot/the safety unit’s failure rate; λss/λsi represents the failure rate of the system
failing safely/failing with an incident; the repair rate of the safety unit is denoted by µs;
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and µk(y)(n + 1 ⩽ k ⩽ n + 3) represents the system’s repair rate when it is in state k
and satisfies

µk(y) ≥ 0,
∫ ∞

0
µk(y)dy = ∞.

The organization of the remainder of this paper is outlined below. Section 2 introduces
the transformation of the given system into an abstract Cauchy problem. Section 3 examines
the system’s well posedness. Section 4 investigates the exponential convergence of the T-DS
to its S-SS. Section 5 discusses the asymptotic behavior of instantaneous reliability indices.
Section 6 uses numerical examples to illustrate the sensitivity of reliability indices to system
parameter variations. Section 7 concludes with a summary of findings and suggestions for
future research.

2. The Abstract Cauchy Problem

We begin by introducing the following notation:

Υ =

(
Γ0 0
Γ1 0

)
where 0 is a zero matrix. Γ0 = [(ai,j)0] is an n × n matrix whose elements are

(ai,j)0 =

{
1, if 0 ⩽ i = j ⩽ n,
0, other.

Γ1 = [(al,m)1] is a 3 × n matrix whose elements are

(al,m)1 =


λss, if l = 1, m = n,
λsi, if l = 2, m = n,
λr, if l = 3, 1 ⩽ m ⩽ n − 1,
0, other.

Take the following state space

X =

{
P ∈ Rn ×

(
L1[0, ∞)

)3
∣∣∣∣∥P∥ =

n

∑
i=0

|Pi|+
n+3

∑
k=n+1

∥Pk∥L1[0,∞) < ∞

}
.

Clearly, X is a Banach space. Following that, operators and their domains are defined
as follows

AP =

(
A0 0
0 A1

)
P,

D(A) =
{

P ∈ X
∣∣∣∣∣

dPk(y)
dy ∈ L1[0, ∞), Pk(y)(n + 1 ⩽ k ⩽ n + 3)

are absolutely continuous and P(0) = ΥP(y)

}
,

UP =

(
U0 0
0 0

)
P, D(U) = X ,

EP =

(
E0 0
0 0

)
P + E1, D(E) = X ,
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where

A0 =


−a0 0 · · · 0 0

0 −a1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −an−1 0
0 0 · · · 0 −an

,

A1 =

− d
dy − µn+1(y) 0 0

0 − d
dy − µn+2(y) 0

0 0 − d
dy − µn+3(y)

,

U0 =


0 0 · · · 0 0
λs 0 · · · 0 0
0 λs · · · 0 0
...

...
. . .

...
...

0 0 · · · λs 0

,

E0 =


0 µs 0 · · · 0 0
0 0 µs · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 µs
0 0 0 · · · 0 0

, E1 =


n+3
∑

k=n+1

∫ ∞
0 Pj(y, t)µj(y)dy

0
0
...

.

Thus, the above system of Equation (1) can be rewritten as an abstract Cauchy problem
in X : {

d P(t)
dt = (A+U+E)P(t), t ∈ (0, ∞),

P(0) =
(
1, 0, 0, 0

)T .
(2)

3. Well Posedness of (2)

We begin by demonstrating thatA+U+E generates a positive contraction C0−semigroup
T(t) on X .

Theorem 1. If µk = sup
x∈[0,∞)

µk(x) < ∞ for n + 1 ⩽ k ⩽ n + 3, then A+U+ E generates a

positive contraction C0−semigroup T(t).

Proof. We will estimate ∥(γI −A)−1∥ as a first step. To do this, consider (γI −A)P = Z,
for Z ∈ X , that is,

(γ + aj)Pj = Zj, j = 0, 1, . . . , n, (3)

dPk(y)
∂d

= −(γ + µk(y))Pk(y)− Zk(y), n + 1 ⩽ k ⩽ n + 3, (4)

Pn+1(0) = λssPn, (5)

Pn+2(0) = λsiPn, (6)

Pn+3(0) = λr

n−1

∑
j=0

Pj. (7)

Solving (3) and (4), we have

Pj =
1

γ + aj
Zj, j = 0, 1, . . . , n, (8)
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Pk(y) =Pk(0)e−
∫ y

0 (γ+µk(τ))dτ

+ e−
∫ y

0 (γ+µk(τ))dτ
∫ y

0
Zk(ξ)e

∫ ξ
0 (γ+µk(τ))dτdξ, n + 1 ⩽ k ⩽ n + 3. (9)

For (5)–(7) together with (8) and (9), we can get that

Pn+1(0) =λriPn =
λss

γ + an
Zn, (10)

Pn+2(0) =λrsPn =
λsi

γ + an
Zn, (11)

Pn+3(0) =λr

n−1

∑
j=0

Pj =
n−1

∑
j=0

λr

γ + aj
Zj. (12)

By using (9), the Fubini theorem and the following inequalities

e−
∫ y

ξ µk(τ)dτ ≤ 1, for y ≥ ξ ≥ 0; e−
∫ y

0 µk(τ)dτ ≤ 1, for y ∈ [0, ∞),

we deduce (without loss of generality, assume γ > 0)

∥Pk∥L1[0,∞) ≤|Pj(0)|
∫ ∞

0
e−γydy

+
∫ ∞

0
e−γy

∫ y

0
|Zk(ξ)|e

∫ y
ξ (γ+µk(τ))dτdξdy

≤|Pk(0)|
∫ ∞

0
e−γydy +

∫ ∞

0
e−γy

∫ y

0
|Yk(ξ)|eγydξdy

=
1
γ
|Pk(0)|+

∫ ∞

0
|Zk(ξ)|eγξ

∫ ∞

ξ
e−γydydξ

=
1
γ
|Pk(0)|+

1
γ
∥Zk∥L1[0,∞), n + 1 ⩽ k ⩽ n + 3. (13)

Combinging (13), (12), (11), (10) and (8), we deduce

∥P∥ ≤
n

∑
j=0

1
γ + aj

|Zj|+
1
γ

n+3

∑
k=n+1

|Pk(0)|+
1
γ

n+3

∑
k=n+1

∥Zk∥L1[0,∞)

=
n

∑
j=0

1
γ + aj

|Zj|+
1
γ

{
λss

γ + an
|Zn|+

λsi
γ + an

|Zn|+
n−1

∑
j=0

λr

γ + aj
|Zj|

}

+
1
γ

n+3

∑
k=n+1

∥Zk∥L1[0,∞)

=
γ + λr

γ(γ + a0)
|Z0|+

n−1

∑
j=1

γ + λr

γ(γ + aj)
|Zj|

+
γ + λss + λsi

γ(γ + an)
|Zn|+

1
γ

n+3

∑
k=n+1

∥Zk∥L1[0,∞)

<
1
γ

{ n

∑
j=0

|Zj|+
n+3

∑
k=n+1

∥Zk∥L1[0,∞)

}
=

1
γ
∥Z∥. (14)
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Equation (14) shows that

(γI −A)−1 : X → D(A), ∥(γI −A)−1∥ ≤ 1
γ

.

The second step will be to demonstrate that D(A) is dense in X . Let

L =

{
P
∣∣∣∣ P(y) = (P0, P1, . . . , Pn, Pn+1(y), Pn+2(y), Pn+3(y)),

Pk(y) ∈ C∞
0 [0, ∞), n + 1 ⩽ k ⩽ n + 3

}
,

then L = X . Take

S =

P

∣∣∣∣∣∣
P(y) = (P0, P1, . . . , Pn, Pn+1(y), Pn+2(y), Pn+3(y)),
Pk(y) ∈ C∞

0 [0, ∞), ∃ αk > 0, such that Pk(y) = 0,
for y ∈ [0, αk], n + 1 ⩽ k ⩽ n + 3

,

then S = L by Adams [33]. As a result, proving D(A) = X suffices to show that S ⊂ D(A).
Hence, if S ⊂ D(A), then X = L = S = S ⊂ D(A) = D(A) ⊂ X gives X = D(A).

Take any P ∈ S, such that, Pk(y) = 0, for all y ∈ [0, αk], that is Pk(y) = 0, for all
y ∈ [0, ς] (n + 1 ⩽ k ⩽ n + 3), here 0 < ς < min{αn+1, αn+2, αn+3}. Define

F ς(y) =(F0,F1, . . . ,Fn,Fn+1(x),Fn+2(x),Fn+3(x)),

F ς(0) =

(
P0, P1, . . . , Pn, λssPn, λsiPn

n−1
∑

j=0
λrPj

)
,

where

F ς
k (y) =

{
F ς

k (0)(1 −
y
ς )

2, y ∈ [0, ς),

Pk(y), y ∈ [ς, ∞).
n + 1 ⩽ k ⩽ n + 3.

Then, F ς ∈ D(A). Moreover,

∥P − Fς∥ =
n+3

∑
k=n+1

∫ ς

0
|F ς

k (0)|
(

1 − y
ς

)2
dy

=
n+3

∑
k=n+1

∫ ς

0
|F ς

k (0)|
ς

3
→ 0, as ς → 0.

This implies S ⊂ D(A), thus, D(A) is dense in X .
We can conclude that A generates a C0−semigroup based on the preceding two steps

and the Hille–Yosida Theorem. Furthermore, we can deduce that A+U+E generates a
C0−semigroup T(t) using perturbation theory of C0−semigroup (see Gupur et al. [34]).

In the final step, we show that A+ U+ E is a dispersive operator. Choosing, for
P ∈ D(A),

Ψ(y) =
(
[P0]

+

P0
,
[P1]

+

P1
, . . . ,

[Pn]+

Pn
,
[Pn+1(y)]+

Pn+1(y)
,
[Pn+2(y)]+

Pn+2(y)
,
[Pn+3(y)]+

Pn+3(y)

)
,

where

[Pi]
+ =

{
Pi, if Pj > 0,
0, if Pj ≤ 0,

0 ⩽ j ⩽ n,

[Pk(y)]+ =

{
Pk(y), if Pk(y) > 0,
0, if Pk(y) ≤ 0,

n + 1 ⩽ k ⩽ n + 3.
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Let Wj = {y ∈ [0, ∞)
∣∣Pk(y) > 0} and W̃k = {y ∈ [0, ∞)

∣∣Pk(y) ≤ 0}, then we get

∫ ∞

0

dPk(y)
dy

[Pk(y)]+

Pk(y)
dy =

∫
Wk

dPk(y)
dy

[Pk(y)]+

Pk(y)
dy +

∫
W̃k

dPk(y)
dy

[Pk(y)]+

Pk(y)
dy

=
∫

Wk

d[Pk(y)]+

dy
dy = −[Pk(0)]

+, n + 1 ⩽ k ⩽ n + 3. (15)

Using (15) for such Ψ and boundary conditions, we deduce

⟨(A+U+E)P, Ψ⟩

=

[
− a0P0 + µsP1 +

n+3

∑
k=n+1

∫ ∞

0
Pk(y)µk(y)dy

]
[P0]

+

P0

+
n−1

∑
j=1

[
λsPj−1 − ajPj + µsPj+1

]
[Pj]

+

Pj

+

[
λsPn−1 − anPn

]
[Pn]+

Pn

+
n+3

∑
k=n+1

∫ ∞

0

[
− dPk(y)

dy
− µk(y)Pk(y)

]
[Pk(y)]+

Pk(y)
dy

≤ −a0[P0]
+ + µs[P1]

+ +
[P0]

+

P0

n+3

∑
k=n+1

∫ ∞

0
[Pk(y)]+µk(y)dy

+
n−1

∑
j=1

λs[Pj−1]
+ −

n−1

∑
j=1

aj[Pj]
+ +

n−1

∑
j=1

µs[Pj+1]
+

+ λs[Pn−1]
+ − an[Pn]

+ + λss[Pn]
+ + λsi[Pn]

+

+ λr

n−1

∑
j=0

[Pj]
+ −

n+3

∑
k=n+1

∫ ∞

0
[Pk(y)]+µk(y)dy

=

(
[P0]

+

P0
− 1
) n+3

∑
k=n+1

∫ ∞

0
[Pk(y)]+µk(y)dy ≤ 0. (16)

The conclusion follows from (16).
Therefore, from above results together with Fillips theorem, we deduce that A+U+E

generates a positive contraction C0−semigroup, and it is just T(t) by the uniqueness
theorem of the semigroup.

The following is the dual space of X .

X ∗ =

{
Q∗ ∈ Rn × (L∞[0, ∞))3

∣∣∣∣ ∥|Q∗∥| = sup
{

sup
0⩽j⩽n

|Q∗
j |, sup

n+1≤k≤n+3
∥Q∗

k∥L∞ [0,∞)

}
< ∞

}
,

obviously, it is a Banach space.

Define

Y =

{
P ∈ X

∣∣∣∣ P(y) = (P0, P1, . . . , Pn, Pn+1(y), Pn+2(y), Pn+3(y))
Pj ≥ 0, for 0 ⩽ j ⩽ n; Pk(y) ≥ 0, n + 1 ⩽ k ⩽ n + 3, y ∈ [0, ∞)

}
⊂ X .
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Then, by Theorem 1, it follows that T(t)Y ⊂ Y. Choose Q∗ = ∥P∥(
n︷ ︸︸ ︷

1, 1, . . . , 1, 1, 1, 1),
for P ∈ D(A) ∩ Y, thus, we have Q∗ ∈ X ∗ and

⟨(A+U+E)P, Q∗⟩ =
[
− a0P0 + µsP1 +

n+3

∑
k=n+1

∫ ∞

0
Pk(x)µk(y)dy

]

+
n−1

∑
j=1

[
λsPj−1 − ajPj + µsPj+1

]
∥P∥+

[
λsPn−1 − anPn

]
∥P∥

+
n+3

∑
k=n+1

∫ ∞

0

[
− dPk(y)

dy
− µk(y)Pk(y)dy

]
∥P∥

=

[ n−1

∑
j=0

λsPj −
n

∑
j=0

ajPj +
n

∑
j=1

µsPj+1

]
∥P∥

−
n+3

∑
k=n+1

∫ ∞

0

dPk(y)
dy

dy∥P∥

=

[ n−1

∑
j=0

λsPj − (λs + λr)P0 −
n−1

∑
j=1

(λs + λr + µs)Pj

− (λss + λsi + µs)Pn +
n

∑
j=1

µsPj+1

]
∥P∥

+

[
λssPn + λsiPn + λr

n−1

∑
j=0

Pj

]
∥P∥ = 0.

As a result, A+U+E is conservative with respect to the set

Λ(P) =
{

Q∗ ∈ X ∗ | ⟨P, Q∗⟩ = ∥P∥2 = ∥|Q∗∥|2
}

,

and we can now deduce the following result from the Fattorini theorem [35] (p. 155).

Theorem 2. T(t) is isometric for P(0) = (1, 0, 0, 0)T , i.e., ∥T(t)P(0)∥ = ∥P(0)∥, ∀t ∈ [0, ∞).

This section’s main result is derived from Theorems 1 and 2.

Theorem 3. Equation (2) has a unique positive T-DS P(y, t) satisfying

∥P(·, t)∥ = 1, ∀t ∈ [0, ∞).

Proof. Since P(0) ∈ D(A2) ∩ Y, Theorem 1 and Theorem 1.81 in [34] show that the
system (2) has a unique positive T-DS P(x, t), i.e.,

P(x, t) = T(t)P(0), t ∈ [0, ∞).

We can deduce
∥P(·, t)∥ = ∥P(0)∥ = 1, ∀t ∈ [0, ∞).

4. Asymptotic Behavior of the T-DS of (2)

Analysis show that, similar to the proof of Theorem 1, operator A generates a positive
contraction C0−semigroup T0(t). Therefore, we will demonstrate quasi-compactness of
T(t) by showing that T0(t) is a quasi-compact operator.
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Lemma 1. If P(y, t) = (T0(t) υ)(y) is a solution of the system

d P(t)
dt

= AP(t), t ∈ [0, ∞),

P(0) = υ ∈ D(A).
(17)

Then,

P(y, t) =





υ0e−a0t

υ1e−a1t

...
υne−ant

Pn+1(0, t − y)e−
∫ y

0 µn+1(σ)dσ

Pn+2(0, t − y)e−
∫ y

0 µn+2(σ)dσ

Pn+3(0, t − y)e−
∫ y

0 µn+3(σ)dσ


as y < t,



υ0e−a0t

υ1e−a1t

...
υne−ant

υn+1(y − t)e−
∫ y

y−t µn+1(σ)dσ

υn+2(y − t)e−
∫ y

y−t µn+2(σ)dσ

υn+3(y − t)e−
∫ y

y−t µn+3(σ)dσ


as y > t,

where Pj(0, t − y) are given by (4).

Proof. Because P(y, t) = (T0(t) υ)(y) is a solution of (17), it satisfies

dPj(t)
dt

= −ajP0(t), 0 ⩽ j ⩽ n, (18)

∂Pk(y, t)
∂t

+
∂Pj(y, t)

∂y
= −µk(y)Pk(y, t), n + 1 ⩽ k ⩽ n + 3, (19)

Pn+1(0, t) = λriPn(t), (20)

Pn+2(0, t) = λrsPn(t), (21)

Pn+3(0, t) = λr

n−1

∑
j=0

Pj(t), (22)

Pj(0) = υj, 0 ≤ j ≤ n, Pk(y, 0) = υk(y), n + 1 ⩽ k ⩽ n + 3. (23)

Take z = y − t and Πk(t) = Pk(z + t, t), n + 1 ⩽ k ⩽ n + 3, then from (19), we get

dΠk(t)
dt

=− µk(z + t)Πk(t), n + 1 ⩽ k ⩽ n + 3. (24)

If z < 0 (i.e., y < t), then using Πk(−z) = Pk(0,−z) = Pk(0, t − y), n + 1 ⩽ k ⩽ n + 3
and integrating (24) from −z to t separately, we deduce

Pk(y, t) = Πk(t) = Πk(−z)e−
∫ t
−z µk(z+σ)dσ y=z+σ

===== Pk(0, t − y)e−
∫ z+t

0 µk(y)dy

= Pk(0, t − y)e−
∫ y

0 µk(σ)dτ , n + 1 ⩽ k ⩽ n + 3. (25)

Soving (18) and applying (23) gives

Pj(t) =υje
−ajt, 0 ⩽ j ⩽ n. (26)
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If z > 0 (i.e., y > t), using the relations Πk(0) = Pk(z, 0) = υk(t− y), n+ 1 ⩽ k ⩽ n+ 3
and integrating (19) from 0 to t, as well as a similar argument to (25), we obtain

Pk(y, t) = Πk(t) = Πk(0)e−
∫ t

0 µk(z+σ)dσ

δ=z+σ
===== υk(y − t)e−

∫ z+t
z µk(δ)dδ

= υk(y − t)e−
∫ y

y−t µk(σ)dσ, n + 1 ⩽ k ⩽ n + 3. (27)

Equations (25)–(27) complete the proof.

Define

(S(t)P)(y) =

{
0, y ∈ [ 0, t),
(T0(t)P)(y), y ∈ [ t, ∞),

(V(t)P)(y) =

{
(T0(t)P)(y), y ∈ [ 0, t),
0, y ∈ [ t, ∞).

Clearly,
(T0(t)P)(y) = (S(t)P)(y) + (V(t)P)(y), ∀P ∈ X .

From Theorem 1.35 in [34], we can conclude the following Lemma.

Lemma 2. If and only if the following two conditions are satisfied, a bounded and closed subset
S ⊂ X is relatively compact.

(1)
n+3

∑
k=n+1

lim
τ→0

∫ ∞

0
|ψk(y + τ)− ψk(x)|dx = 0,

uniformly for ψ = (ψ0, ψ1, . . . , ψn, ψn+1, ψn+2, ψn+3) ∈ S.

(2)
n+3

∑
k=n+1

lim
τ→∞

∫ ∞

τ
|ψk(y)|dy = 0,

uniformly for ψ = (ψ0, ψ1, . . . , ψn, ψn+1, ψn+2, ψn+3) ∈ S.

Theorem 4. V(t) is a compact operator on X .

Proof. We only need to prove condition (1) in Lemma 2 by definition of V(t). Take
P(y, t) = (T0(t)υ)(y), y ∈ [0, t), for bounded υ ∈ X , then P(y, t) is a solution of (17).
Hence, from Lemma 1, we deduce, for y ∈ [0, t), τ ∈ (0, t], y + τ ∈ [0, t)

n+3

∑
k=n+1

∫ t

0
|Pk(y + τ, t)− Pk(y, t)|dy

=
n+3

∑
k=n+1

∫ t

0

∣∣∣Pk(0, t − y − τ)e−
∫ y+τ

0 µk(σ)dσ − Pk(0, t − y)e−
∫ y

0 µk(σ)dσ
∣∣∣dy

=
n+3

∑
k=n+1

∫ t

0

∣∣∣Pk(0, t − y − τ)e−
∫ y+τ

0 µk(σ)dσ − Pk(0, t − y − τ)e−
∫ y

0 µk(σ)dσ

+ Pk(0, t − y − τ)e−
∫ y

0 µk(σ)dσ − Pk(0, t − y)e−
∫ y

0 µk(σ)dσ
∣∣∣dy

≤
n+3

∑
k=n+1

∫ t

0
|Pk(0, t − y − τ)|

∣∣∣e− ∫ y+τ
0 µk(σ)dσ − e−

∫ y
0 µk(σ)dσ

∣∣∣dy

+
n+3

∑
k=n+1

∫ t

0
|Pk(0, t − y − τ)− Pk(0, t − y)|e−

∫ y
0 µk(σ)dσdy. (28)
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The procedure is to estimate each term of (28). Applying the boundary conditions,
we get

|Pn+1(0, t − y − τ)| = λss|υne−an(t−y−τ)| ≤ λss|υn| ≤ λss∥υ∥X , (29)

|Pn+2(0, t − y − τ)| = λsi|υne−an(t−y−τ)| ≤ λrs|υn| ≤ λsi∥υ∥X , (30)

|Pn+3(0, t − y − τ)| ≤ λr

n−1

∑
j=0

∣∣∣υje
−aj(t−y−τ)

∣∣∣ ≤ λr

n−1

∑
j=0

|υj| ≤ λr∥υ∥X . (31)

We can estimate the first term of (28) using (29)–(31).

n+3

∑
k=n+1

∫ t

0
|Pk(0, t − y − τ)|

∣∣∣e− ∫ y+τ
0 µk(σ)dσ − e−

∫ y
0 µk(σ)dσ

∣∣∣dy

≤ {λss + λsi + λr}∥υ∥X
n+3

∑
k=n+1

∫ t

0

∣∣∣e− ∫ y+τ
0 µk(σ)dσ − e−

∫ y
0 µk(σ)dσ

∣∣∣dy

−→ 0, as τ → 0, uniformly for υ. (32)

Now, we will estimate the second term in (28). Using Lemma 1 and boundary condi-
tions, we calculate

|Pn+1(0, t − y − τ)− Pn+1(0, t − y)| ≤ |λss(υne−an(t−y−τ) − υne−an(t−y))|

≤ λss∥υ∥X |e−an(t−y−τ) − e−an(t−y)|
−→ 0 as τ → 0, uniformly for υ, (33)

|Pn+2(0, t − y − τ)− Pn+2(0, t − y)| ≤ |λsi(υne−an(t−y−τ) − υne−an(t−y))|

≤ λsi∥υ∥X |e−an(t−y−τ) − e−an(t−y)|
−→ 0 as τ → 0, uniformly for υ, (34)

|Pn+3(0, t − y − τ)− Pn+3(0, t − y)| ≤
∣∣∣∣∣λr

n−1

∑
j=0

υj(e
−aj(t−y−τ) − e−aj(t−y))

∣∣∣∣∣
≤ λr∥υ∥X

n−1

∑
j=0

∣∣∣e−aj(t−y−τ) − e−aj(t−y)
∣∣∣

−→ 0 as τ → 0, uniformly for υ. (35)

From (33)–(35), we deduce

n+3

∑
k=n+1

∫ t

0
|Pk(0, t − y − τ)− Pj(0, t − y)|e−

∫ y
0 µk(σ)dσ −→ 0, as τ → 0, uniformly for υ. (36)

Combining (32) with (36), we obtain, for y ∈ [0, t), τ ∈ (0, t], y + τ ∈ [0, t)

n+3

∑
k=n+1

∫ t

0
|Pk(y + τ, t)− Pk(y, t)|dy −→ 0, as τ → 0, uniformly for υ. (37)

The same conclusion can be drawn for τ ∈ [−t, 0), y + τ ∈ [0, t). This finishes
the proof.

Theorem 5. If 0 < µk ≤ µk(y) ≤ µk < ∞, for n + 1 ⩽ k ⩽ n + 3, then S(t) satisfies

∥S(t) υ∥X ≤ e−min{a0,an ,µn+1,µn+2,µn+3}t∥υ∥X .
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Proof. For any υ ∈ X , we estimate

||S(t) υ(·)||X =
n

∑
j=0

|Pj(t)|+
n+3

∑
k=n+1

∫ ∞

t
|Pk(y, t)|dy

≤
n

∑
j=0

|υj|e−ajt +
n+3

∑
k=n+1

∫ ∞

0
|υk(y − t)|e−

∫ y
y−t µk(σ)dσdy

≤e−min{a0,an}t
n

∑
j=0

|υj|+ e−min{µn+1,µn+2,µn+3} t
n+3

∑
k=n+1

∥υk∥L1[0,∞)

≤e−min{a0,an ,µn+1,µn+2,µn+3}t∥υ∥X .

Theorems 4 and 5 give

∥T0(t)−V(t)∥ = ∥S(t)∥ ≤ e−min{a0,an ,µn+1,µn+2,µn+3}t → 0, t → ∞.

Hence, we can obtain the following result by Definition 1.85 in [34].

Theorem 6. If 0 < µk ≤ µk(y) ≤ µk < ∞, for n+ 1 ⩽ k ⩽ n+ 3, then T0(t) is a quasi-compact
operator on X .

We get the following result by combining Theorem 6 and Proposition [36] (p. 215), as
well as the compactness of the U and E on X .

Corollary 1. If 0 < µk ≤ µk(y) ≤ µk < ∞, for n + 1 ⩽ k ⩽ n + 3, then T(t) is a quasi-compact
operator on X .

Lemma 3. 0 ∈ σp(A+U+E), and geometric multiplicity of 0 is one.

Proof. Take (A+U+E)P = 0. Hence,

a0P0 = µ1P1 +
n+3

∑
k=n+1

∫ ∞

0
Pk(y)µk(y)dy, (38)

ajPj = λsPj−1 + µsPj+1, 1 ⩽ j ⩽ n − 1, (39)

anPn = λsPn−1, (40)

dPk(y)
∂y

= −µk(y)Pk(y), n + 1 ⩽ k ⩽ n + 3, (41)

Pn+1(0) = λssPn, (42)

Pn+2(0) = λsiPn, (43)

Pn+3(0) = λr

n−1

∑
j=0

Pj. (44)

Solving (41), we have

Pk(y) =Pk(0)e−
∫ y

0 µk(σ)dσ, n + 1 ⩽ k ⩽ n + 3. (45)

If we take
bn = an, bl = al −

λsµs

bl+1
, l = 1, 2, . . . , n − 1.
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Then, from (38)–(40) we can show that

Pn =
λsPn−1

an
=

λs

bn
Pn−1,

an−1Pn−1 = λsPn−2 + µnPn = λsPn−2 +
λsµs

bn
Pn−1

=⇒

Pn−1 =
λsPn−2

an−1 − λsµs
bn

=
λs

bn−1
Pn−2,

an−2Pn−2 = λsPn−3 + µsPn−1 = λsPn−3 +
λsµsPn−2

bn−1

=⇒

Pn−2 =
λsPn−3

an−2 − λsµs
bn−1

=
λs

bn−2
Pn−3,

· · ·

a2P2 = λsP1 + µsP3 = λsP1 +
λsµs

b3
P2

=⇒

P2 =
λs

a2 − λsµs
b3

P1 =
λs

b2
P1,

a1P1 = λsP0 + µsP2 = λsP0 +
λsµ2

b2
P1

=⇒

P1 =
λs

a1 − λsµ2
b2

P0 =
λs

b1
P0,

=⇒

Pn =
λs

bn

λs

bn−1
Pn−2 = · · · = λn

s
n
∏
l=1

bl

P0.

Thus,

Pj =
λ

j
s

j
∏
l=1

bl

P0, j = 1, 2, . . . , n. (46)

Combining (42)–(44) and (45) with (46), we estimate

∥P∥ =
n

∑
j=0

|Pj|+
n+3

∑
k=n+1

∫ ∞

0
|Pk(0)|e−

∫ y
0 µk(τ)dτdy

≤

1 +
n

∑
j=1

λ
j
s

(
j

∏
l=1

bj

)−1|P0|+
n+3

∑
k=n+1

|Pk(0)|
∫ ∞

0
e−
∫ y

0 µk(τ)dτdy

=

1 +
n

∑
j=1

λ
j
s

(
j

∏
l=1

bj

)−1|P0|

+ λssλn
s

(
n

∏
l=1

bl

)−1 ∫ ∞

0
e−
∫ y

0 µn+1(τ)dτdy|P0|
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+ λsiλ
n
s

(
n

∏
l=1

bl

)−1 ∫ ∞

0
e−
∫ y

0 µn+2(τ)dτdx|P0|

+ λr

1 + λn
s

n−1

∑
j=0

(
j

∏
l=1

bl

)−1 ∫ ∞

0
e−
∫ y

0 µn+3(τ)dτdy|P0| < ∞. (47)

Equation (47) show that 0 ∈ σp(A+U+ E), i.e., the point spectrum of A+U+ E,
and from (46), it can be seen that the geometric multiplicity of 0 is one.

Lemma 4. The adjoint operator of A+U+E is given by

(A+U+E)∗Q∗ =(M+N + L)Q∗,

where

M =

(
M0 0(n+1)×3

03×(n+1) M1

)
, N =

(
0(n+1)×(n+1) 0(n+1)×3

N0 03×3

)
, L =

(
0(n+1)×(n+1) L0

03×(n+1) 03×3

)
,

and

M0 =



−a0 λs 0 · · · 0 0
µs −a1 λs · · · 0 0
0 µs −a2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −an−1 λs
0 0 0 · · · µs −an


,

M1 =

− d
dy − µn+1(y) 0 0

0 − d
dy − µn+2(y) 0

0 0 − d
dy − µn+3(y)

,

N0 =

µn+1(y) 0 · · · 0
µn+2(y) 0 · · · 0
µn+3(y) 0 · · · 0

, L0 =

 02×(n+1)

λr
λr

λr
λss λsi 0

,

0m×n denotes the m × n − zero matrix.

D((A+U+E)∗) =
{

dQ∗
k (y)

dy
exists and Q∗

k (∞) = α, n + 1 ⩽ k ⩽ n + 3
}

,

and the constant α in D((A+U+E)∗) is independent of j.

Proof. For Q∗ ∈ D((A+U+E)∗), we have

⟨(A+U+E)P, Q∗⟩ = Q∗
0

[
− a0P0 + µsP1 +

n+3

∑
k=n+1

∫ ∞

0
Pk(y)µk(y)dy

]

+
n−1

∑
j=1

Q∗
j

[
λsPj−1 − ajPj + µsPj+1

]
+ Q∗

n

[
λsPn−1 − anPn

]

+
n+3

∑
k=n+1

∫ ∞

0
Q∗

k (y)
[
− dPk(y)

dy
− µk(y)Pk(y)

]
dy

= P0[−a0Q∗
0 + λsQ∗

1 ] +
n−1

∑
j=1

Pj

[
µjQ∗

j−1 − ajQ∗
j + λsQ∗

j+1

]
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+ Pn

[
µsQ∗

n−1 − anQ∗
n

]
+ λssPnQ∗

n+1(0) + λsiPnQ∗
n+2(0)

+ λr

n−1

∑
j=0

PjQ∗
n+3(0)

+
n+3

∑
k=n+1

∫ ∞

0
Pk(y)

[
dQ∗

k (y)
dy

− µk(y)Q∗
k (y) + µk(y)Q∗

0

]
dy

= P0
[
−a0Q∗

0 + λsQ∗
1 + λrQ∗

n+3(0)
]

+
n−1

∑
j=1

[
µjQ∗

j−1 − ajQ∗
j + λsQ∗

j+1 + λrQ∗
n+3(0)

]

+ Pn

[
µsQ∗

n−1 − anQ∗
n + λssQ∗

n+1(0) + λsiQ∗
n+2(0)

]
+

n+3

∑
k=n+1

∫ ∞

0
Pk(y)

[
dQ∗

k (y)
dy

− µk(y)Q∗
k (y) + µk(y)Q∗

0

]
dy

= ⟨P, (M+N + L)Q∗⟩.

Lemma 5. 0 ∈ σp((A+U+E)∗) and geometric multiplicity of 0 is one.

Proof. Consider (A+U+E)∗Q∗ = 0, i.e.,

− a0Q∗
0 + λsQ∗

1 + λrQ∗
n+3(0) = 0, (48)

µjQ∗
j−1 − ajQ∗

j + λsQ∗
j+1 + λrQ∗

n+3(0) = 0, 1 ⩽ j ⩽ n − 1, (49)

µnQ∗
n−1 − anQ∗

n + λssQ∗
n+1(0) + λsiQ∗

n+2(0) = 0, (50)

dQ∗
k (y)

dy
= µk(y)Q∗

k (y)− µk(y)Q∗
0 , k = n + 1, n + 2, n + 3. (51)

Q∗
k (∞) = α, n + 1 ⩽ k ⩽ n + 3. (52)

Solving (51), we deduce

Q∗
k (y) = bke

∫ y
0 µk(τ)dτ − e

∫ y
0 µk(τ)dτ

∫ y

0
Q∗

0µk(ξ)e−
∫ ξ

0 µk(τ)dτdξ, n + 1 ⩽ k ⩽ n + 3. (53)

Multiplying e−
∫ y

0 µ(τ))dτ to the both side of (53), we have

bk =
∫ ∞

0
µk(ξ)Q∗

0e−
∫ ξ

0 µk(τ)dτdξ, n + 1 ⩽ k ⩽ n + 3. (54)

Substituting (54) into (53), we get

Q∗
k (y) = Q∗

0 e
∫ y

0 µk(τ)dτ
∫ ∞

y
µk(ξ)e−

∫ ξ
0 µk(τ)dτdξ

= Q∗
0 e
∫ y

0 µk(τ)dτ

(
−e−

∫ ξ
0 µk(τ)dτ

∣∣∣∞
y

)
= Q∗

0 , n + 1 ⩽ k ⩽ n + 3. (55)

Substituting (55) into (48)–(50), we have

Q∗
j = Q∗

0 , 1 ⩽ j ⩽ n. (56)
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Equations (55)–(56) give

|||Q∗||| = max
{

max
1⩽j⩽n

|Q∗
j |, max

n+1⩽k⩽n+3
∥Q∗

k∥L∞ [0,∞)

}
= |Q∗

0 | < ∞,

which imply 0 ∈ σp((A+U+E)∗). Furthermore, from (55) and (56), it is easy to verify that
the geometric multiplicity of 0 is one.

By using Lemmas 3 and 5 and Theorem 3, we can deduce that the algebraic multiplicity
of 0 is one and the spectral bound s(A+U+ E) = 0. Finally, the conditions of Theorem
1.90 in [34] are fulfilled. Therefore, we get the following result.

Theorem 7. If 0 < µk ⩽ µk(y) ⩽ µk < ∞, for n + 1 ⩽ k ⩽ n + 3, then there exist a spectral
projection P with rank one such that

∥ T(t)−P ∥⩽ Ke−ϱt,

where P = 1
2πi
∫

Γ(η I −A−U−E)−1dz and Γ is a circle with a radius of sufficiently small and a
center of 0.

It is evident that
{

η ∈ σ(A+U+ E)
∣∣ Reη = 0

}
=
{

0
}

by Theorem 3, Corollary 1
and Lemma 3. In other words, the resolvent set of A+U+ E includes all points on the
imaginary axis except zero.

Remark 1. Based on the analysis above, we can conclude that the system’s T-DS strongly converges
to its S-SS, i.e., lim

t→∞
P(y, t) = ζP(y), where P(y) is the eigenvector corresponding to 0.

In the following, we investigate exponential convergence of system’s T-DS. For this
goal, we first determine the explicit expression of P by the growth bound of T(t).

Lemma 6. For any η ∈ ρ(A+U+E), we get

(η I −A−U−E)−1



y0
y1
...
yn
yn+1
yn+2
yn+3


=



b0
b1
...
bn
bn+1
bn+2
bn+3


, ∀b ∈ X ,

where

yj =
|Gi(η)|
|G(η)| , j = 0, 1, 2, . . . , n,

yn+1(y) =λss
|Gn(η)|
|G(η)| e−

∫ y
0 (η+µn+1(ξ))dξ

+ e−
∫ y

0 (η+µj(ξ))dξ
∫ y

0
bn+1(τ)e

∫ y
0 (η+µn+1(ξ))dξdτ,

yn+2(y) =λsi
|Gn(η)|
|G(η)| e−

∫ y
0 (η+µn+2(ξ))dξ

+ e−
∫ y

0 (η+µn+2(ξ))dξ
∫ y

0
bn+2(τ)e

∫ y
0 (η+µn+2(ξ))dξ dτ,

yn+3(y) =λr

n−1

∑
j=0

|Gj(η)|
|G(η)| e−

∫ y
0 (η+µn+3(ξ))dξ
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+ e−
∫ x

0 (η+µn+3(ξ))dξ
∫ y

0
bn+3(τ)e

∫ y
0 (η+µn+3(ξ))dξdτ,

G(η) =



η + a0 − λrβn+3 −µs − λrβn+3 −λrβn+3 · · · −λrβn+3 −λssβn+1 − λsiβn+2
−λs η + a1 −µs · · · 0 0

0 −λs η + a2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · η + an−1 −µs
0 0 0 · · · −λs η + an


,

βk =
∫ ∞

0
µk(τ)e−

∫ y
0 (η+µk(τ))dτdy, n + 1 ⩽ k ⩽ n + 3,

and |G(η)| denotes the determinant of G(η), and Gi(η) is the same matrix G(η) such that ith
column is replaced with constants.

Proof. Consider the equation (η I −A−U−E)y = b, for b ∈ X . Hence,

(η + a0)y0 − µsy1 −
n+3

∑
k=n+1

∫ ∞

0
yk(y)µk(y)dy = b0, (57)

− λsyj−1 + (η + aj)yj − µsyj+1 = bj, 1 ⩽ j ⩽ n − 1, (58)

− λsyn−1 + (η + an)yn = bn, (59)

dyk(y)
∂y

= −(η + µk(y))yk(y) + bk(y), n + 1 ⩽ k ⩽ n + 3, (60)

yn+1(0) = λssyn, (61)

yn+2(0) = λsiyn, (62)

yn+3(0) = λr

n−1

∑
j=0

yj. (63)

Solving (60) and using (61)–(63), we have

yn+1(y) =λss yn e−
∫ y

0 (η+µn+1(ξ))dξ

+ e−
∫ y

0 (η+µn+1(ξ))dξ
∫ y

0
bn+1(τ)e

∫ y
0 (η+µn+1(ξ))dξ dτ, (64)

yn+2(y) =λsi yn e−
∫ y

0 (η+µn+2(ξ))dξ

+ e−
∫ y

0 (η+µn+2(ξ))dξ
∫ y

0
bn+2(τ)e

∫ y
0 (η+µn+2(ξ))dξ dτ, (65)

yn+3(y) =λr

n−1

∑
j=0

yj e−
∫ y

0 (η+µn+3(ξ))dξ

+ e−
∫ y

0 (η+µn+3(ξ))dξ
∫ y

0
bn+3(τ)e

∫ y
0 (η+µn+3(ξ))dξ dτ. (66)

Substituting (64)–(66) into (57)–(59), we get

(
η + a0 − λr

∫ ∞

0
µn+3(y) e−

∫ y
0 (η+µn+3(ξ))dξdy

)
y0

−
(

µs + λr

∫ ∞

0
µn+3(y) e−

∫ y
0 (η+µn+3(ξ))dξ dy

)
y1

− λr

∫ ∞

0
µn+3(y) e−

∫ y
0 (η+µn+3(ξ))dξdy

n−1

∑
j=2

yj
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−
(

λss

∫ ∞

0
µn+1(y) e−

∫ y
0 (η+µn+1(ξ))dξ dy + λsi

∫ ∞

0
µn+2(y) e−

∫ y
0 (η+µn+2(ξ))dξdy

)
yn

=
n+3

∑
k=n+1

∫ ∞

0
µk(y) e−

∫ y
0 (η+µk(ξ))dξ

∫ y

0
bk(τ)e

∫ y
0 (η+µk(ξ))dξdτdy + b0, (67)

− λsyj−1 + (η + aj)yj − µsyj+1 = bj, j = 1, 2, · · · , n − 1, (68)

− λsyn−1 + (η + an)yn = bn. (69)

Equations (67)–(69) give

G(η)y = b,

where

y =
(
y0,y1, . . . ,yn−1,yn

)T ,

b =

(
n+3
∑

k=n+1
Bk(η) + b0,b1,b2, . . . ,bn−1,bn

)T

,

Bk =
∫ ∞

0
µk(ξ)e−

∫ y
0 (η+µk(ξ))dξ

∫ y

0
bk(τ)e

∫ y
0 (η+µk(ξ))dξ dτdy.

Using Cramer’s rule, we derive

yj =
|Gj(η)|
|G(η)| , j = 0, 1, 2, . . . , n. (70)

Substituting (70) into (64), (65), and (66) separately, we get the rest of the Lemma’s results.

In summary, we present the following main results.

Theorem 8. If 0 < µk ⩽ µk(y) ⩽ µk < ∞, for n + 1 ⩽ k ⩽ n + 3, then

∥P(·, t)− P(·)∥ ≤ Ke−ϱt, t > 0.

that is, the system’s T-DS exponentially converges to its S-SS.

Proof. Obviously,

∥T0(t)−V(t)∥ = ∥S(t)∥ ≤ e−min{a0,an ,µn+1,µn+2,µn+3}t

=⇒

lim
t→∞

ln ∥T0(t)−V(t)∥
t

≤ −min{a0, an, µn+1, µn+2, µn+3}.

Thus, the essential growth bound of T0(t) satisfies ωess(T0(t)) ≤ −min{a0, an, µn+1, µn+2,
µn+3} by Proposition 2.10 in Engel and Nagel [37] (p. 258).

Since E and U are compact operators, by Proposition 2.12 in [37], we have

ωess(A+U+E) = ωess(T(t)) = ωess(T0(t)) ≤ −min{a0, an, µn+1, µn+2, µn+3}.

Thus, 0 is a pole of (η I −A−U−E)−1 of order 1 by Corollary 2.11 in [37]. Moreover,
from Theorem 8, Lemma 6 and residue theorem, we have
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P



b0
b1
...
bn
bn+1
bn+2
bn+3


= lim

η→0
η(η I −A−U−E)−1



b0
b1
...
bn
bn+1
bn+2
bn+3


= lim

η→0
η



y0
y1
...
yn
yn+1
yn+2
yn+3


.

By calculating the above limit, we can now determine the projection operator. Let

αk =
∫ ∞

0
e−ηye−

∫ y
0 µk(τ)dτdy, αk =

∫ ∞

0
e−
∫ y

0 µk(τ)dτdy,

βk = 1 − η
∫ ∞

0
e−ηye−

∫ y
0 µk(τ)dτdy = 1 − ηαk, n + 1 ⩽ k ⩽ n + 3.

Then, we can simplify |G(η)| as

|G(η)| = η

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + λrαn+3 1 + λrαn+3 1 + λrαn+3 · · · 1 + λrαn+3 1 + λssαn+1 + λsiαn+2
−λs η + a1 −µs · · · 0 0

0 −λs η + a2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · η + an−1 −µs
0 0 0 · · · −λs η + an

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

lim
η→0

η
1

|G(η)|

=
1∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + λrαn+3 1 + λrαn+3 1 + λrαn+3 · · · 1 + λrαn+3 1 + λssαn+1 + λsiαn+2
−λs a1 −µs · · · 0 0

0 −λs a2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 −µs
0 0 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣

.
=

1
M .

By Lemma 6, the Fubini theorem and∫ ∞

0
µk(y)e−

∫ y
0 µk(τ)dτdy = 1, n + 1 ⩽ k ⩽ n + 3,∫ ∞

0
µk(ξ)e−

∫ y
0 µk(ξ)dξ

∫ k

0
bk(τ)e

∫ y
0 µk(ξ)dξdτdy =

∫ ∞

0
bk(y)dy, n + 1 ⩽ k ⩽ n + 3.

We obtain that

lim
η→0

|G0(η)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n+3
∑

k=n+1

∫ ∞
0 bk(y)dy + b0 −µs − λr −λr · · · −λr −λss − λsi

b1 a1 −µs · · · 0 0
b2 −λs a2 · · · 0 0
...

...
...

. . .
...

...
bn−1 0 0 · · · an−1 −µs
bn 0 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n+3
∑

k=n+1

∫ ∞
0 bk(y)dy +

n
∑

j=0
bj 0 0 · · · 0 0

b1 a1 −µs · · · 0 0
b2 −λs a2 · · · 0 0
...

...
...

. . .
...

...
bn−1 0 0 · · · an−1 −µs
bn 0 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a1 −µs · · · 0 0
−λs a2 · · · 0 0

...
...

. . .
...

...
0 0 · · · an−1 −µs
0 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣
.
= M0,

lim
η→0

|G1(η)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 − λr
n+3
∑

k=n+1

∫ ∞
0 bk(y)dy + b0 −λr · · · −λr −λss − λsi

−λs b1 −µs · · · 0 0
0 b2 a2 · · · 0 0
...

...
...

. . .
...

...
0 bn−1 0 · · · an−1 −µs
0 bn 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
n+3
∑

k=n+1

∫ ∞
0 bk(y)dy +

n
∑

j=0
bj 0 · · · 0 0

−λs b1 −µs · · · 0 0
0 b2 a2 · · · 0 0
...

...
...

. . .
...

...
0 bn−1 0 · · · an−1 −µs
0 bn 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a2 −µs · · · 0 0
−λs a3 · · · 0 0

...
...

. . .
...

...
0 0 · · · an−1 −µs
0 0 · · · −λs an

∣∣∣∣∣∣∣∣∣∣∣
.
= M1,

lim
η→0

|Gi(η)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0
n+3
∑

k=n+1

∫ ∞
0 bk(y)dy +

n
∑

j=0
bj 0 · · · 0 0 0

−λs a1 −µs · · · 0 b1 0 · · · 0 0 0
0 −λs a2 · · · 0 b2 0 · · · 0 0 0
0 0 −λs · · · 0 b3 0 · · · 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · ai−1 bi−1 0 · · · 0 0 0
0 0 0 · · · −λs bi −µs · · · 0 0 0
0 0 0 · · · 0 bi+1 ai+1 · · · 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · 0 bn−2 0 · · · an−2 −µs 0
0 0 0 · · · 0 bn−1 0 · · · −λs an−1 −µs
0 0 0 · · · 0 bn 0 · · · 0 −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−λs)
i ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai+1 −µs 0 · · · 0 0 0
−λs ai+2 −µs · · · 0 0 0

0 −λs ai+3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · an−2 −µs 0
0 0 0 · · · −λs an−1 −µs
0 0 0 · · · 0 −λs an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−i)×(n−i)

.
= Mi, i = 2, 3, · · · , n − 1,

lim
η→0

|Gn(η)| = (−λs)
n .
= Mn.

Finally, we derive

lim
η→0

ηyj = lim
η→0

η
|Gj(η)|
|G(η)| =

Mj

M
.
= Pi, j = 0, 1, 2, · · · , n, (71)

lim
η→0

ηyn+1(y) =λss e−
∫ y

0 µn+1(ξ)dξ lim
η→0

ηyn

=λss e−
∫ y

0 µn+1(ξ)dξ Mn

M
.
= Pn+1(y), (72)

lim
η→0

ηyn+2(y) =λsi e−
∫ y

0 µn+2(ξ)dξ lim
η→0

ηyn

= λsi e−
∫ y

0 µn+2(ξ)dξ Mn

M
.
= Pn+2(y), (73)

lim
η→0

ηyn+3(y) =λr e−
∫ y

0 (η+µn+3(ξ))dξ
n−1

∑
j=0

lim
η→0

ηyj

=λr e−
∫ y

0 (η+µn+3(ξ))dξ
n−1

∑
j=0

Mj

M
.
= Pn+3(y). (74)

Combining (71)–(74) with Lemma 6 we obtain

PP(0) = P(y). (75)

Thus, we conclude by (75), Theorems 3 and 7 that

∥P(·, t)− P(·)∥ ≤ ∥T(t)−P∥∥P(0)∥
≤ Ke−ϱt∥P(0)∥ = Ke−ϱt, t ≥ 0.

5. Reliability Indices

Some reliability indices is discussed briefly in this section. For detailed discussion, we
refer the reader to [34] (p. 256). From the Remark 1, we have

lim
t→∞

Pj(t) = Pj, j = 0, 1, · · · , n, (76)

lim
t→∞

∫ ∞

0
|Pk(y, t)− Pk(y)|dx = 0, n + 1 ⩽ k ⩽ n + 3. (77)

Equation (77) implies

lim
t→∞

∫ ∞

0
|µk(y)Pk(y, t)− µk(y)Pk(y)|dx = 0, n + 1 ⩽ k ⩽ n + 3. (78)

We know

A(t) =
n−1

∑
j=0

Pj(t).
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Which together with (46) and (76), we obtain

A = lim
t→∞

A(t) =
n−1

∑
j=0

Pj =

1 +
n−1

∑
j=1

(
j

∏
k=1

bk

)−1

λ
j
s

P0.

We have

m f = lim
t→∞

m f (t) = λr

n−1

∑
i=0

Pi + (λss + λsi)Pn = λr A + (λss + λsi)Pn.

The system’s time-dependent renewal frequency indicates that the frequency of sys-
tem’s state returns to the initial states, and we have

mr = lim
t→∞

mr = lim
t→∞

{
µsP1(t) +

n+3

∑
k=n+1

∫ ∞

0
µk(y)Pk(t, y)dy

}

=µsP1 +
n+3

∑
k=n+1

∫ ∞

0
µk(y)Pk(y)dy

=
λsµs

b1
P0 + (λss + λsi)λ

n
s

(
n

∏
j=1

bj

)−1

P0

+ λr

1 + λn
s

n−1

∑
j=0

(
j

∏
k=1

bk

)−1P0.

If we set µk(y) = 0, (for n + 1 ⩽ k ⩽ n + 3 ), then we get the new system shown below.

dP̃0(t)
dt

=a0P̃0(t) + µs P̃1(t),

dP̃j(t)
dt

=− aj P̃j(t) + µs P̃j+1(t) + λs P̃j−1(t), 1 ⩽ j ⩽ n − 1,

dP̃n(t)
dt

=− an P̃n(t) + λs P̃n−1(t),

dP̃n+1(t)
dt

=λss P̃n(t),

dP̃n+2(t)
dt

=λsi P̃n(t),

dP̃n+3(t)
dt

=λr

n−1

∑
j=0

P̃j(t).

As a result, by a similar argument, the system’s time-dependent reliability converges
to a constant number

lim
t→∞

R(t) = lim
t→∞

n+3

∑
j=0

P̃j(t) =
n+3

∑
j=0

P̃j = R.

Remark 2. It is clear from the above results that we can obtain the results in [32] by the normalizing

condition
n
∑

j=0
Pj(t) +

n+3
∑

k=n+1

∞∫
0

Pk(y, t)dy = 1. Hence, our results generalize those in [32].
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6. Numerical Results

This section provides numerical examples to investigate how changes in system
parameters affect the reliability indices, using Matlab 2017a for calculations. To begin,
we assume that n = 3 without losing generality and the system’s repair time is Gamma
distributed with µk(y) = µk, (n + 1 ⩽ k ⩽ n + 3). The system parameters are fixed as

λs = 0.001, λr = 0.0009, λss = 0.0006, λsi = 0.0004

µs = 0.007, µn+1 = 0.0018, µn+2 = 0.0012, µn+3 = 0.003.

For different values of β, the variations in the system’s time-dependent availability
(Figure 1a), failure frequency (Figure 1b), and renewal frequency (Figure 1c) are plotted with
respect to t in Figure 1. In each case, the A(t) and m f (t) decrease rapidly as time increases,
eventually becoming constant at some value. As time passes, the mr(t) increases rapidly in
the early stages, then becomes constant at some value after a long run.

(a) (b)

(c)

Figure 1. Time-dependent reliability indices for different β. (a) A(t) for for different β; (b) m f (t) for
different β; (c) m f (t) for different β.

Furthermore, we observe that as β increases, the system’s time-dependent availability,
failure frequency, and renewal frequency decrease.

In the following, we further analyze the effect of different values of the failure and
repair rates on the system’s reliability indices for β = 1 (i.e., the repair time is exponential
distributed). Figure 2 shows that as time increases, these reliability indices converge to some
fixed value. As expected, A(t) decreases with increasing λs (Figure 2a) and λr (Figure 2b).
m f (t) decreases with increasing λs, but its effect on the failure frequency is not evident
(Figure 2c), and m f (t) increases as λr (Figure 2d) increases. mr(t) increases with increasing
λs (Figure 2e) and decreases with increasing λr (Figure 2f). Furthermore, changes in the
system parameters λss and λsi had almost no effect on the system reliability indices. In
Table 1, we only list the effect of λss and λsi on the time-dependent availability A(t).
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Time-dependent reliability indices for different failure rates. (a) A(t) for for different λs;
(b) A(t) for for different λr; (c) m f (t) for different λs; (d) m f (t) for different λr; (e) mr(t) for different
λs; (f) mr(t) for different λr.

Table 1. Time-dependent system availability A(t) for different λss and λsi.

Time t
λss λsi

0.0005 0.001 0.0015 0.0003 0.0006 0.0009

500 0.800906 0.800872 0.800840 0.800908 0.800882 0.800858
1000 0.772421 0.772313 0.772217 0.772430 0.772339 0.772254
2000 0.767730 0.767579 0.767447 0.767751 0.767598 0.767456
3000 0.767603 0.767448 0.767313 0.767629 0.767459 0.767301
4000 0.767592 0.767437 0.767301 0.767620 0.767444 0.767282
5000 0.767589 0.767434 0.767298 0.767617 0.767440 0.767276
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The behavior of the reliability indices for different repair rates is depicted in Figure 3,
showing that these indices increase as µs and µn+3 increase. From this figure, we conclude
that the changes in parameter µs have little effect on A(t) and m f (t). Moreover, Table 2
reveals that the effect of the changes of the parameters µn+1 and µn+2 on A(t) are not
significant. It is also observed that the changes in the parameter µn+1 and µn+2 on m f (t)
and mr(t) are not significant. Furthermore, these indices approach a constant value that
time goes to infinity.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Time-dependent reliability indices for different repair rates. (a) A(t) for for different µs;
(b) A(t) for for different µn+3; (c) m f (t) for different µs; (d) m f (t) for different µn+3; (e) mr(t) for
different µs; (f) mr(t) for different µn+3.
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Table 2. Time-dependent system availability A(t) with different µn+1 and µn+2.

Time t
µn+1 µn+2

0.0018 0.0036 0.0072 0.0012 0.0024 0.0048

500 0.800899 0.800921 0.800949 0.800897 0.800929 0.800947
1000 0.772399 0.772490 0.772564 0.772385 0.772519 0.772558
2000 0.767698 0.767854 0.767938 0.767660 0.767914 0.767955
3000 0.767571 0.767736 0.767820 0.767517 0.767813 0.767854
4000 0.767559 0.767726 0.767810 0.767498 0.767810 0.767850
5000 0.767557 0.767724 0.767807 0.767492 0.767810 0.767850

Figure 4 illustrates the effect of λr on system’s time-dependent reliability and MTTF.
We note that R(t) decreases as λr increases and vanishes as time goes to infinity (Figure 4a).
The MTTF decreases as λr increases (Figure 4b).

(a) R(t) for different λr (b) MTTF versus λr

Figure 4. Reliability and MTTF for different λr. (a) R(t) for different λr; (b) Effect of λr on MTTF.

Finally, in Table 3, we show the effect of the number of safety units in the system on
the system transient availability. The availability increases as the number of safety units
increases. However, having too many safety units does not contribute as much to the
availability of this system.

Table 3. Time-dependent system availability A(t) with different numbers of safety units.

λs = 0.001, λr = 0.0009, λss = 0.0006, λsi = 0.0004
µs = 0.007, µn+1 = 0.0018, µn+2 = 0.0012, µn+3 = 0.003

n A(t)

2 0.755816691376763
3 0.767557102387178
5 0.769204802928852
8 0.769230719866391

10 0.769230769237539
20 0.769230770014985

7. Conclusions

In this paper, a robot-safety system consisting of one robot and n safety units with
perfect switching is studied. We converted the model into an abstract Cauchy problem in
Banach space and did dynamic analysis by the operator semigroup theory of linear opera-
tors. We proved that the system has unique nonnegative T-DS and that T-DS exponentially
converges to its S-SS. Furthermore, we discussed the asymptotic property of the system’s
instantaneous reliability indices and showed that they all converge to some constant. In
order to investigate the impact of parameter changes on system reliability indices, some
numerical examples are also presented.
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We concluded that the increase in the number of safety units for this system does
not necessarily improve the system’s instantaneous availability from the above numerical
results. Thus, in the future, we can further study the robot-safety system consisting of n
robots and m standby safety units.
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