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Abstract: There are many families of bivariate distributions with given marginals. Most families,
such as the Farlie–Gumbel–Morgenstern (FGM) and the Ali–Mikhail–Haq (AMH), are absolutely
continuous, with an ordinary probability density. In contrast, there are few families with a singular
part or a positive mass on a curve. We define a general condition useful to detect the singular part of
a distribution. By continuous extension of the bivariate diagonal expansion, we define and study
a wide family containing these singular distributions, obtain the probability density, and find the
canonical correlations and functions. The set of canonical correlations is described by a continuous
function rather than a countable sequence. An application to statistical inference is given.
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continuos dimensionality
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1. Introduction

In probability theory, a copula is a bivariate cumulative distribution function (cdf)
C(u, v) with uniform (0, 1) marginals, which captures the dependence properties of two
r.v.’s U, V defined on the same probability space.

Constructing copulas is important because they are versatile and allow us to gen-
erate bivariate distributions. A copula can model the dependence between two random
variables, without the influence of marginal distributions. Copulas have applications in
finances, credit risk, insurances, hydrology, physics, psychometry, quality control, statistics,
and other fields. Most copulas have absolutely continuous distributions, but there are
copulas containing a singular part. These copulas are useful in situations where there are
coincidences between the variables.

Section 2 defines a general family of copulas. Section 3 describes the absolutely
continuous and singular parts (which could be non-null) of a copula, showing that this
family can deal with copulas with a non-null singular part. In Section 3, a general definition
of singularity is introduced, which can obtain the probability density with respect to a
suitable measure. Section 4 is devoted to the canonical correlation analysis of a copula
with singular part. The concept of singularity is extended in Section 5. Section 6 studies
the singularity of general bivariate distributions. An application to Bayesian statistics is
proposed in Section 7.

We use the following notations

M = min(u, v), Π = uv, W = max(u + v − 1, 0),

where M, Π, and W are copulas. The quotient Π/M = max(u, v) will have an important
role in defining singularities.

W and M are the Fréchet-Hoeffding bounds. Any copula C satisfies

W ≤ C ≤ M
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uniformly in u, v. Both W and M are singular copulas. The “shuffle of min” is another
example of a singular copula. But most distributions are absolutely continuous and there
are few probability models with a singular part. This is studied in Section 3.

For properties and construction of copulas, see [1–5]. For applications in finances
(including copulas with a singular component) and marketing, see [6,7]. For general
applications, see [3,8].

Based on [9], we present a general method of generating copulas, putting special
emphasis on constructing copulas with a singular part.

2. Correlation Functions and Families

We indicate the unit interval [0, 1] by I and the unit square [0, 1]× [0, 1] by I2. In all
cases, we suppose 0 ≤ θ ≤ 1.

Definition 1. A parametric canonical correlation function is an integrable function fθ : I → I.

Definition 2. A quotient function Q : I2 → R is a two-variable function satisfying

Q(u, v) ≥ 0, Q(1, v) = Q(u, 1) = 1.

The adjective “canonical” for a correlation function is justified in Section 4. It can
also be called a “dependence generator”. For the sake of simplicity, and following the
terminology used in [9], we say “correlation function”.

Examples of correlation and quotient functions are

fθ(t) = θ, Q(u, v) = max(u, v).

Note that max(u, v) = Π/M is the quotient of two copulas. In general, for two arbitrary
copulas C1, C2

Q(u, v) = C1(u, v)/C2(u, v)

gives rise to a quotient function.
The definition below is a continuous extension of the diagonal expansion of a bivariate

distribution. It is mainly based on [9], but it is presented here as a general family constructed
by combining correlation and quotient functions. This family is quite useful for constructing
copulas with a singular part.

Definition 3. Given a correlation function fθ and a quotient function Q, we define the general
family of copulas

Cθ = Π + Π
∫ 1

Q

fθ(t)
t2 dt. (1)

Properties. Most of them are readily proved.

1. Independence copula. If fθ(t) = 0 then Cθ = Π.
2. Self-generation. If fθ(t) = 1 and Q = Π/C, where C is any copula, then Cθ = C.
3. If Q is a quotient function then 1/Q is also a quotient function.
4. If Q = C1/C2 is the quotient of two copulas then

W
M

≤ Q ≤ M
W

.

5. If C is a copula and Q = Π/C then

Π
M

≤ Q ≤ Π
W

.
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6. Quadrant dependence. Let ρ and τ be Spearman’s rank correlation and Kendall’s
correlation coefficients, respectively. We have:
Cθ is positive quadrant dependent (PQD) if Q < 1. Then ρ and τ are positive.
Cθ is negative quadrant dependent (NQD) if Q > 1.Then ρ and τ are negative.
Using a simplified notation, Spearman’s rank correlation coefficient is given by

ρ = 12
∫
I2
(C − Π)dΠ,

where dΠ = dudv. Then ρ ≥ 0 if C ≥ Π (PQD) and ρ ≤ 0 if C ≤ Π (NQD).
Kendall’s tau is

τ = 4
∫
I2

CdC − 1.

If C ≥ Π (PQD) then
∫
I2 CdC ≥

∫
I2 ΠdC =

∫
I2 CdΠ ≥

∫
I2 ΠdΠ = 1/4 shows that

τ ≥ 0. Analogously, C ≤ Π (NQD) implies τ ≤ 0 .
7. Fréchet family. If fθ(t) = θ, 0 ≤ θ ≤ 1, and Q = Π/M then

Cθ = θM + (1 − θ)Π.

As a useful alternative of Definition 1, we give an equivalent expression for family (1).

Definition 4. If fθ and Q are correlation and quotient functions, we define the general family
of copulas

Cθ = Π[1 + Gθ(1)− Gθ(Q)], (2)

where Gθ(t) is a primitive of fθ(t)/t2.

Clearly, from the above property 3,

C∗
θ = Π[1 + Gθ(1)− Gθ(1/Q)]

is also a copula, being related to Cθ by

C∗
θ = Cθ + Π[Gθ(Q)− Gθ(1/Q)].

However, (2) could not provide a copula for some Gθ and Q values. For instance,
Gθ(t) = θt and Q = M/Π give Cθ = (1 + θ)Π − θM. But this Cθ is not a copula for
0 < θ ≤ 1.

Examples.

1. With fθ(t) = θt2 and Q(u, v) = 1 − (1 − u)(1 − v) we obtain the FGM copula

Cθ(u, v) = uv[1 + θ(1 − u)(1 − v)]

and

C∗
θ (u, v) = uv

[
1 − θ(1 − u)(1 − v)

1 − (1 − u)(1 − v)

]
.

2. With fθ(t) = θt2/[1− θ(1− t)]2 and Q(u, v) = 1− (1− u)(1− v) we obtain the AMH
copula

Cθ(u, v) =
uv

1 − θ(1 − u)(1 − v)

and

C∗
θ (u, v) = uv

1 − (1 − u)(1 − v)
1 + (θ − 1)(1 − u)(1 − v)

.
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Remark 1. In some sense, family (1) is a continuous extension of the diagonal expansion

C(u, v) = uv + ∑
n≥1

ρn

∫ 1

0
L(u, s)dan(s)

∫ 1

0
L(t, v)dbn(t),

where L(u, s) = min(u, s)− us, L(t, v) = min(t, v)− tv. The set {ρn} is the countable sequence
of canonical correlations and {an(U)} and {bn(V)} are the related sequences of canonical variables
and functions of U and V, respectively. This expansion can be obtained integrating the Lancaster
diagonal expansion of a bivariate density [8,10–14].

3. Singular Copulas

From the above property 5, the quotient function Q = Π/C satisfies

Q ≥ Π/M = max(u, v).

Thus, max(u, v) is an infimum quotient function that may provide a class of copulas with
singular parts.

Let us consider the class of copulas CQ
θ constructed from a correlation function fθ and

a fixed quotient Q.

Proposition 1. If fθ is increasing in θ, then the class CQ
θ with Q ≤ 1 is ordered in θ.

Proof. If fθ1(t) ≤ fθ2(t) for θ1 ≤ θ2, then

CQ
θ1
= Π + Π

∫ 1

Q

fθ1(t)
t2 dt

≤ Π + Π
∫ 1

Q

fθ2(t)
t2 dt

= CQ
θ2

.

Proposition 2. If fθ is increasing in θ and we suppose f1(t) = 1, then

CQ
θ ≤ Cmax(u,v)

θ ≤ Cmax(u,v)
1 = M.

Proof. It follows from Q(u, v) ≥ max(u, v), fθ(t) ≤ f1(t) = 1, considering the primitive of
1/t2.

As a consequence, Cmax(u,v)
θ is a supremum copula for the sub-family CQ

θ generated by
fθ and Q ≤ 1, where fθ is fixed and Q may vary.

If Gθ(t) is a primitive of fθ(t)/t2, an equivalent expression for this supremum family,
generated by fθ and achieved in Q = Π/M, is given by

Π + Π[Gθ(1)− Gθ(Π/M)]. (3)

This class of copulas was (implicitly) introduced in [15] and studied in [16]. We next
study this class for different correlation functions.

3.1. Defining Singularity

Let C be a general copula. Suppose that the partial derivatives ∂C/∂u and ∂C/∂v exist.
Consider the step function

g(u) = lim
v→u+

∂C(u, v)
∂u

− lim
v→u−

∂C(u, v)
∂u

. (4)
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This function is the limit of ∂C/∂u as v → u with v > u, minus the limit of ∂C/∂u as v → u
with v < u. If the bivariate distribution is absolutely continuous, then g(u) = 0, 0 ≤ u ≤ 1.

If the joint distribution of (U, V) is C, it is s worth noting [4] that, for any v ∈ I,

∂C(u, v)
∂u

= P(V ≤ v|U = u),

and this partial derivative exists for almost all u ∈ I. Therefore, g(u) ̸= 0 in (4) means that
the conditional distribution function of V given U = u has a discontinuity at V = u.

Indeed, any copula C defines a measure µC in I2 which has an absolutely continuous
part and a singular part, i.e.,

C = Cac + Cs.

C is absolutely continuous if Cs = 0, whereas C is singular if Cac = 0. In short, C has a
singular part if there exists a non-empty Borel set B ⊂ I2 with Lebesgue measure µ2(B) = 0,
but µC(B) > 0. In plain words, the “area” of B is zero but the probability is positive. For
instance, C has a singular part if B is a line. See [17–19] for further details.

We introduce a class of copulas with singular part.

Definition 5. Suppose that the cdf of (U, V) is the copula C. We say that the joint distribution is
M-singular if g defined in (4) satisfies

g(u) ̸= 0, 0 ≤ u ≤ 1.

This means that there is positive probability concentrated on the diagonal D of I2.
Note that D has zero Lebesgue measure, i.e., µ2(D) = 0.

Now we consider the class (2) with Q = max(u, v). Let µ1 be the Lebesgue measure
on the diagonal D. Dirac’s delta function is the indicator of the diagonal D, i.e., δ{u=v} = 1
if u = v, and 0 if u ̸= v. Similarly, δ{u ̸=v}.

Theorem 1 can be proven using Schwartz’s distribution theory [15,20] or by means of
the Radon–Nykodim theorem [17,18,21,22]. We present a more affordable proof by proper
use of limits and integrals, which can be quite useful in practice. See the Appendix A.

Theorem 1. Suppose that (U, V) has the joint cdf

Cθ = Π[1 + Gθ(1)− Gθ(Π/M)].

Let µ2 and µ1 be the Lebesgue measures on I2 and the diagonal D of I2, respectively. The probability
density of (U, V) with respect to the measure µ = µ2 + µ1 is given by

hθ(u, v) =
[
1 + Gθ(1)− Gθ(max(u, v))− max(u, v)G′

θ(max(u, v))
]
δ{u ̸=v}

+ u2G′
θ(u)δ{u=v}.

Proof. If u ̸= v, the second partial derivative of Cθ is given by

∂2Cθ(u, v)
∂u∂v

=

{
1 + Gθ(1)− Gθ(v)− vG′

θ(v) if u < v,
1 + Gθ(1)− Gθ(u)− uG′

θ(u) if u > v.

Considering gθ defined in (4), we have

Cθ(u, v) =
∫ u

0

∫ v

0

∂2Cθ(s, t)
∂s∂t

dsdt +
∫ min(u,v)

0
gθ(t)dt,
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as these integrals give the mass in [0, u]× [0, v] plus the mass on the line from (0, 0) to
[w, w], where w = min(u, v). The second integral is

∫ min(u,v)

0

[
lim

t→s+

∂Cc(s, t)
∂s

− lim
t→s−

∂Cθ(s, t)
∂s

]
ds =

∫ min(u,v)

0
gθ(t)dt.

This expression may be interpreted by considering

∂Cθ(u, u + ε/2)/∂u − ∂Cθ(u, u − ε/2)/∂u
ε

ε,

with ε > 0 arbitrarily small. Accordingly, the limit as ε → 0 may be informally understood
as a kind of second partial derivative at (u, u), post-multiplied by du.

Let us find an explicit expression for gθ . If u > v, the partial derivative ∂C/∂u is

v + vGθ(1)− vGθ(u)− uvG′
θ(u).

If u < v, the partial derivative ∂C/∂u is

v + vGθ(1)− vGθ(v).

The difference is −vGθ(v) + vGθ(u) + uvG′
θ(u), and the limit as v → u is gθ(u) = u2G′

θ(u).

Proposition 3. The function gθ is the correlation function. Hence,

fθ(t) = t2G′
θ(t).

Proof. Gθ(t) is a primitive of fθ(t)/t2.

Proposition 4. The probability of coincidence is

P[U = V] =
∫ 1

0
fθ(t)dt.

Proof. µ(D) = µ2(D) + µ1(D), and µ2(D) = 0, so we should consider only the mass on
D.

3.2. Examples of M-Singular Copulas

1. Fréchet copula. This copula is the weighted arithmetic mean of M and Π

Fθ = θM + (1 − θ)Π.

We have Gθ(t) = −θ/t. The second partial derivative gives the constant (1 − θ). We also
find u2G′

θ(u) = θ. The probability density is

hθ(u, v) = (1 − θ)δ{u ̸=v} + θδ{u=v},

and
P[U = V] = θ.

2. The Cuadras–Augé copula is the weighted geometric mean of M and Π

CAθ = MθΠ(1−θ).

Obtaining the derivatives we find

hθ(u, v) = max(u, v)−θδ{u ̸=v} + θu1−θδ{u=v}.
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Computing
∫ 1

0 θu1−θdu, we obtain

P[U = V] =
θ

2 − θ
.

3. From the correlation function fθ(t) = θt, we obtain

Cθ = Π[1 + θ ln(Π/M)].

The probability density is

hθ(u, v) = [1 − θ(1 + ln max(u, v))]δ{u ̸=v} + θuδ{u=v}.

Also,
P[U = V] = θ/2.

4. From fθ(t) = θt2 exp[θ(1 − t)], we obtain

Cθ = Π exp[θ(1 − Π/M)].

The probability density is

hθ(u, v) = exp[θ(1 − w)][1 − θw]δ{u ̸=v} + θt2 exp[θ(1 − t)]δ{u=v},

where w = max(u, v). Then,

P[U = V] =
2eθ − (θ + 1)2 − 1

θ2 .

See [4,19] for more examples of copulas with singular parts.

4. Canonical Analysis of a Copula

Let C be a copula with a cdf of the random vector (U, V). Consider the kernels
K = C − Π and L = M − Π. If α and β are functions of bounded variation, the covariance
between α(U) and β(V) is [23]:

cov(α(U), β(V)) =
∫
I2
[C(u, v)− uv]dα(u)dβ(v).

The variance of α(U) is

var(α(U)) =
∫
I2
[min(u, v)− uv]dα(u)dα(v),

and similarly, var(β(V)). In particular, if α = β = ϕ, and C(u, v) is symmetric in u, v, the
correlation coefficient between ϕ(U) and ϕ(V) is

cor(ϕ(U), ϕ(V)) =
cov(ϕ(U), ϕ(V))

var(ϕ(U))
.

The notation is justified below

cov(ϕ(U), ϕ(V)) = (ϕ, Kϕ), var(ϕ(U)) = (ϕ, Lϕ).

Therefore, we can write the correlation as

cor(ϕ(U), ϕ(V)) =
(ϕ, Kϕ)

(ϕ, Lϕ)
.



Axioms 2024, 13, 433 8 of 15

Our aim is to find the pairs (ϕ, λ) of canonical functions and correlations for a copula
C. In particular,

ρ1 = sup
ϕ

(ϕ, Kϕ)

(ϕ, Lϕ)

is the first canonical correlation. This functional analysis approach is related to seeking the
eigenpairs of the symmetric kernel K = C − Π with respect to L = M − Π.

Definition 6. A generalized eigenfunction, eigenvalue, of K with respect to L is a pair (ϕ, λ) that
satisfies Kϕ = λLϕ in the sense that∫

I
K(u, v)dϕ(v) = λ

∫
I

L(u, v)dϕ(v), (5)

for all u ∈ I.

Clearly, if (ϕ, λ) with λ ̸= 0, is an eigenpair of K with respect to L, then

(ϕ, Kϕ)

(ϕ, Lϕ)
= λ. (6)

This leads us to consider the canonical pairs as eigenpairs.

Definition 7. For arbitrarily small 0 ≤ γ ≤ 1 and ε > 0, we define

Hγ,ε(x) =


0 if x < γ,
1 if γ ≤ x < γ + ε,

ε/(γ + ε) if x ≥ γ + ε,

the limit of which is the indicator function ϕγ(x), i.e.,

lim
ε→0

Hγ,ε(x) = ϕγ(x) =
{

1 if x = γ,
0 if x ̸= γ.

Propositions 5–8 contain preliminary results, which are useful to prove Theorem 2.

Proposition 5. We have
∫
I uvdHγ,ε(v) = 0 and

∫
I

min(u, v)dHγ,ε(v) =


u − uγ/(γ + ε) if u < γ < γ + ε,
γ − uγ/(γ + ε) if γ < u ≤ γ + ε,

0 if γ + ε < u.

Proof.
∫
I uvHγ,ε(v) = uγ − u(γ + ε)γ/(γ + ε) = 0. Similarly,∫

I
min(u, v)dHγ,ε(v) = γ − (γ + ε)γ/(γ + ε).

Proposition 6. Suppose that C = Π + Π[G(1)− G(Π/M)] is M-singular. Then,

∫
I

C(u, v)dHγ,ε(v) =


uγG(γ)− u(γ + ε)G(γ + ε)γ/(γ + ε) if u < γ < γ + ε,
uγG(u)− u(γ + ε)G(γ + ε)γ/(γ + ε) if γ < u ≤ γ + ε,

uγG(u)− u(γ + ε)G(u)γ/(γ + ε) if γ + ε < u.

Proof. As
∫
I uvHγ,ε(v) = 0, this reduces to

∫
I uvG(max(u, v))dHγ,ε(v).
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Proposition 7. Suppose that the correlation function fθ generates the copula Cθ . Consider the
symmetric kernels Kθ1 = Cθ1 − Π and Kθ2 = Cθ2 − Π. Then,

lim
ε→0

(Hγ,ε, Kθ1Hγ,ε)

(Hγ,ε, Kθ2Hγ,ε)
=

fθ1(γ)

fθ2(γ)
. (7)

Proof. Clearly, u → γ as ε → 0. Then,

lim
ε→0

uγ[Gθ1(u)− Gθ1(γ + ε)

uγ[Gθ2(u)− Gθ2(γ + ε)
] = lim

ε→0

γ2[Gθ1(γ)− Gθ1(γ + ε)]/ε

γ2[Gθ2(γ)− Gθ2(γ + ε)]/ε

=
γ2G′

θ1
(γ)

γ2G′
θ2
(γ)

,

where γ2G′
θ(γ) = fθ(γ).

Proposition 8. Suppose that C = Π[1 + G(1)− G(Π/M)] is M-singular. Consider the symmet-
ric kernels K = C − Π, L = M − Π. Then,

lim
ε→0

(Hγ,ε, KHγ,ε)

(Hγ,ε, LHγ,ε)
= γ2G′(γ).

Proof. From (7) with G = Gθ1and taking Gθ2(t) = −1/t, the limit reduces to

γ2G′(γ)

γ2(1/γ2)
.

Since u → γ and (γ − uγ/(γ + ε))/ε → 1 as ε → 0, an equivalent proof follows from

lim
ε→0

uγ[G(u)− G(γ + ε)

γ − uγ/(γ + ε)
] = lim

ε→0

γ2[G(γ)− G(γ + ε)]/ε

γ/ε − γ2/[(γ + ε)ε]
.

This limit gives γ2G′(γ).

Theorem 2. The set of canonical functions and correlations for the M-singular family
C = Π[1 + G(1) − G(Π/M)] is (ϕγ, f (γ)), 0 ≤ γ ≤ 1, where ϕγ = limε→0 Hγ,ε is the
indicator of γ and f (γ) = γ2G′(γ) is the correlation function.

Proof.

lim
ε→0

(Hγ,ε, KHγ,ε)

(Hγ,ε, LHγ,ε)
=

(ϕγ, Kϕγ)

(ϕγ, Lϕγ)

= γ2G′(γ).

As C ≤ M, it is clear that K ≤ L, so∫
I

K(u, v)dϕ(v) ≤
∫
I

L(u, v)dϕ(v).

Thus, f (γ) = γ2G′(γ) ≤ 1.

Remark 2. If f : I → I is a continuous function, it is worth noting that the set of canonical
correlations has the power of the continuum.
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Examples of Eigenpairs

1. Fréchet copula. We have fθ(t) = θ. For a fixed parameter θ, the set of canonical func-
tions and correlations is (ϕθ , θ). Note that θ is an eigenvalue of continuous multiplicity.
In fact, any function is eigenfunction. Also note that θ is the correlation coefficient.

2. Cuadras–Augé copula. The correlation function is fθ(t) = θt1−θ . The set of canonical
functions and correlations is (ϕθ , θt1−θ), 0 ≤ t ≤ 1. Each eigenvalue is simple and
we have a continuous set of eigenvalues. Note that θ is the maximum canonical
correlation.

3. For the family Cθ = Π[1 + θ ln(Π/M)], the correlation function is fθ(t) = θt. The set
of canonical functions and correlations is (ϕθ , θt), 0 ≤ t ≤ 1.

4. For the family Cθ = Π exp[θ(1 − Π/M)], the correlation function is
fθ(t) = θt2 exp[θ(1 − t)]. The set of canonical functions and correlations is
(ϕθ , θt2 exp[θ(1 − t)]).

5. Extended Singularity

Let (U, V) be a random vector with cdf of the copula C. To define the singularity on
the second diagonal of I2, we consider the joint distribution of (U, 1 − V)

Cσ(u, v) = u − C(u, 1 − v).

Definition 8. Suppose that the cdf of (U, V) is the copula C. We say that the joint distribution of
(U, 1 − V) is W-singular if the distribution of (U, V) is M-singular.

Proposition 9. The cdf of a W-singular copula is

Cσ(u, v) = uv + u(1 − v)[G(max(u, 1 − v))− G(1)], (8)

where G(t) is the primitive of f (t)/t2 and f is a correlation function.

Proof. If the cdf of (U, V) is C and is M-singular, the cdf of (U, 1 − V) is
Cσ(u, v) = u − C(u, 1 − v), with C(u, v) = uv + uv[G(1)− G(max(u, 1 − v)]. Then,

Cσ(u, v) = u − u(1 − v)− u(1 − v)[G(1)− G(max(u, 1 − v)].

Simplifying this, we obtain (8).

Theorem 3. Let Cσ
θ be a W-singular copula; see (8). The probability density with respect to

µ = µ2 + µ′
1, where µ2 is the Lebesgue measure on I2 and µ′

1 is the Lebesgue measure on the
diagonal u + v = 1, is given by

hσ
θ (u, v) =

[
1 + Gθ(1)− Gθ(w)− wG′

θ(w)
]
δ{u+v ̸=1} + u2G′

θ(u)δ{u+v=1},

where w = max(u, 1 − v).

Proof. Taking into account the step of ∂C/∂u at the diagonal u + v = 1, the proof is quite
similar to the one given in Theorem 1. The cdf (8) can be expressed as

∫ u

0

∫ v

0

[
1 + Gθ(1)− Gθ(z)− zG′

θ(z)
]
dsdtδ{u+v ̸=1} +

∫ b

a
t2G′

θ(t)dtδ{u+v=1},

where z = max(s, 1 − t), a = min(u, 1 − u), and b = max(u, 1 − u).

Examples of W-Singular Copulas

1. Fréchet. If Fθ = (1 − θ)Π + θM, with Gθ(t) = −θ/t, we obtain

Fσ
θ = (1 − θ)Π + θW,
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the weighted average of the lower bound W and Π. The density is

hσ
θ (u, v) = (1 − θ)δ{u+v ̸=1} + θδ{u+v =1}.

2. Cuadras–Augé. If CAθ = Π(1−θ)Mθ with Gθ(t) = −t−θ , then

CAσ
θ (u, v) = u − CAθ(u, 1 − v).

The density is

hσ
θ (u, v) = max(u, 1 − v)−θδ{u+v ̸=1} + θ(1 − u)1−θδ{u+v =1}.

From u − u(1 − v) = uv and u − min(u, 1 − v) = max(u + v − 1, 0), this family CAσ
θ

reduces to Π if θ = 0 and to W if θ = 1.

6. Bivariate Singular Distributions

Let (X, Y) be a random vector with joint cdf H and univariate marginals FX , FY. From
Sklar’s theorem [1,4], there exists a copula CH such that H can be expressed as

H(x, y) = CH(FX(x), FY(y)).

For example, considering the family (2), we have

H(x, y) = FX(x)FY(y)[1 + G(1)− G(Q(FX(x), FY(y))],

where Q(u, v) is a quotient function.
The diagonal u = v of I2 now becomes the curve with implicit equation FX(x) = FY(y).

The singularity is along this curve and the density is

hθ(x, y) =
[
1 + Gθ(1)− Gθ(Z(x, y))− Z(x, y)G′

θ(Z(x, y))
]
δ{FX(x) ̸=FY(y)}

+ FX(x)2G′
θ(FX(x))δ{FX(x)=FY(y)},

where Z(x, y) = max(FX(x), FY(y)) and G′
θ(Fx(x)) = F′

X(x) ∂
∂Fx

Gθ(FX(x)).
Next, we introduce a non-linear singularity on a general curve φ, i.e., along the points

with coordinates (x, φ(x)).

Definition 9. We say that the bivariate cdf Hθ is φ-singular if

gθ(x) = lim
y→φ(x)+

∂Hθ(x, y)
∂x

− lim
y→φ(x)−

∂Hθ(x, y)
∂x

(9)

satisfies gθ(x) ̸= 0.

Thus, if CH is M-singular, then H = CH(Fx, Fy) is φ-singular, where φ = F−1
y ◦ Fx.

There are more constructions of distributions with singular components.

6.1. Regression Family

An alternative construction of φ-singular distributions is as follows [24]. Suppose that
X and Y have the same support S. Let φ : S → S be a real function with positive derivative
φ′(x) > 0. Consider the inverse function ψ = φ−1.

A family of distributions with singular parts is

Hθ(x, y) = θFX(min(x, ψ(y))) + (1 − θ)FX(x)Jθ(y), (10)

where, for 0 ≤ θ < 1,
Jθ(y) = [FY(y)− θFX(ψ(y))]/(1 − θ)
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is a univariate cdf.

Proposition 10. The family (10) is φ-singular for 0 ≤ θ < 1 such that Jθ(y) is a cdf. The density
with respect to the measure µ = µ2 + µφ, where µ2 is the Lebesgue measure on S2 and µφ is the
Lebesgue measure on the curve y = φ(x), is given by

hθ(x, y) = fX(x)
[

fY(y)− θψ′(y) fX(y)
]
δ{y ̸=φ(x)} + θ fX(x)δ{y=φ(x)}.

Proof. The difference (9) is θ fX(x) and the second-order derivative is

fX(x)
[

fY(y)− θψ′(y) fX(y)
]
.

Note the stochastic independence if θ = 0.

This family has an interesting property.

Proposition 11. Suppose that X and Y have absolutely continuous distributions and the expecta-
tions exist. The regression curve Y/X is y = m(x), where

m(x) = mY + θ
[
φ(x)− mφ

]
,

with mY = EY(Y), mφ = EX(φ(X)). Hence, m(x) is linear in φ(x).

Proof. If µX = E(X), µY = E(Y), the regression curve is

E(Y|X = x) =
∫
S

y × [hθ(x, y)/ fX(x)]dy

=
∫
S

y × [ fY(y)− θψ′(y) fX(y)]dy +
∫
S

θyδ{y=φ(x)}dy

= mY − θ
∫
S

φ(x) fX(x)dx + θφ(x),

We use the change y = φ(x) and agree [25] that
∫
S yδ{y=φ(x)}dy = φ(x).

This regression family can be generated by the initial model (2), as a consequence of
the self-generation property. Namely, consider G(t) = −t. Then, G(1) = −1 and Hθ can be
expressed as

Hθ(x, y) = FX(x)FY(y)[1 − 1 + Q(FX(x), FY(y))],

where

Q(FX(x), FY(y)) =
Hθ(x, y)

FX(x)FY(y)
.

6.2. Another Extension

We may generalize the family (3) by replacing max(u, v) with max(φ(u), v), where
φ : I→I is a function such that φ(0) = 0, φ(1) = 1. The extended family is

Cθ,φ(u, v) = uv[1 + Gθ(1)− Gθ(max(φ(u), v))].

Proposition 12. The family Cθ,φ is φ-singular. The probability density with respect to the measure
µ = µ2 + µφ, where µφ is the Lebesgue measure on the curve y = φ(x), is given by[

1 + Gθ(1)− Gθ(max(φ(u), v))− G′
θ(max(φ(u), v))Φ(u, v)

]
δ{v ̸=φ(u)}

+ uφ(u)φ′(u)G′
θ(φ′(u))δ{v=φ(u)},

where

Φ(u, v) =
{

v i f v > φ(u),
uφ′(u) i f v < φ(u).
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Proof. The partial derivative ∂Cθ,φ(u, v)/∂u is{
v[1 + Gθ(1)]− vGθ(v) i f v > φ(u),

v[1 + Gθ(1)]− vGθ(φ′(u))− uvφ′(u)G′
θ(φ′(u)) i f v < φ(u).

The difference in the limits as v → φ(u) is uφ(u)φ′(u)G′
θ(φ′(u)). We similarly obtain the

second-order partial derivative ∂2Cθ,φ/∂u∂v.

7. An Application to Statistical Inference

Consider two independent binomial distributions B(P, n), B(P′, n′) and the null hy-
pothesis H0 : P = P′. If Ω = I2 and ω = D (diagonal of I2), then we accept H0 if
(P, P′) ∈ ω.

The classical approach interprets P, P′ as fixed parameters and uses the chi-squared
test. The Bayesian approach interprets P, P′ as random quantities and postulates a prior
probability distribution. The probability of Ω is 1. The null hypothesis H0 is accepted
if ω has probability 1. Since ω ⊂ Ω is a set such that µ2(ω) = 0, the prior distribution
concentrates mass on ω [26]. Indeed, the prior distribution must be M-singular, in order to
assign positive probability to ω. We accept the null hypothesis if the probability of ω is

Pr[(P, P′) ∈ ω] =
∫ 1

0
fθ(t)dt = 1 for θ = 1.

This implies that f1(t) = 1. Four suitable correlation functions fθ(t) are

a) θ, b) θt1−θ , c) θ exp[(1 − θ)t], d) θ[1 − (1 − θ)t].

Therefore, (P, P′) has the prior density

hθ(p, q) = K(p, q)δ{p ̸=q}+̀ fθ(p)δ{p =q},

with respect to the measure µ = µ2 + µ1, where µ1, µ2 and the right sides of

K(p, q) =
[
1 + Gθ(1)− Gθ(max(p, q))− max(p, q)G′

θ(max(p, q))
]

are given in Theorem 1.
Once fθ has been chosen, we construct Cθ . Then, from statistical data, e.g., the frequen-

cies k, k′ of the events with probabilities P, P′, the decision can be made using the Bayes
factor [27,28]

B =

∫
ω L(k.k′; p, q)dCθ∫

Ω−ω L(k.k′; p, q)dCθ
,

where L is the likelihood function and dCθ reduces to dp in ω (where p = q), and to
K(p, q)dpdq in Ω − ω.

Note the use of averages (Bayesian factor) as opposed to the use of an eigenpair
(likelihood ratio in the frequentist approach).

If the null hypothesis is P = 1 − P′, this proposal suggests working with W-singular
copulas. Of course, all this can be generalized to other comparison tests, with data drawn
from normal, exponential, logistic, etc., distributions.

8. Discussion, Conclusions and Future Work

Starting from a correlation function (dependence generator), we studied several meth-
ods for constructing copulas with singular parts. The singularity is defined by a line with
equation y = φ(x) having a positive probability. If φ is linear, we obtain singularities
related to the Fréchet–Hoeffding bounds M and W.The function φ can be non-linear. We
study a case in which φ is increasing. The decreasing and the general cases can be ap-
proached by using the extensions proposed in [24]. We obtain the probability density related
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to the singular part, a function that defines the continuous set of canonical correlations.
This set is uncountable rather than countable (Mercer’s theorem [25]).

A uniparametric procedure follows from the direct application of the above models.
For instance, if we have dimension d ≥ 2, we may consider

M = min(u1, . . . , ud), Π = u1 × · · · × ud.

Then, Fθ = θM+(1 − θ)Π and CAθ = MθΠ(1−θ) are d−dimensional copulas with singular
parts. See an application in [29].

More generally, we can naturally define the family

Cθ = Π + Π

∫ 1

Q

fθ(t)
t2 dt,

where fθ is a correlation function and Q is a d−dimensional quotient function. For example,
Q = Π/M. See [15,24] for other multivariate families of distributions with singular parts.

An application to the Bayesian inference is commented on, showing that the singularity
of the prior distribution is implicit in some tests. This approach to testing the hypothesis
P = P′ justifies the M-singular copulas. If the null hypothesis is P = 1 − P′, we should
use W-singular copulas.

The properties obtained via integral operators and eigenanalysis on two kernels are
useful for symmetric copulas. It is an open question to find the additional conditions for
the correlation and quotient functions to ensure that these models provide a copula, and to
perform a generalization to non-symmetric copulas [30]. This challenge may be solved by
functional singular value decomposition.
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Appendix A

The following list of references by topics may be helpful.
Definition of copula: [1] p. 10, [2] p.12, [4] p.10.
Families of copulas: [2] chap. 5, [4] chap. 4, [9,15,16].
Absolutely continuous and singular parts: [17] p. 59, [18] p. 247.
Canonical analysis: [3] p. 49, [10] p. 108, [13] p. 582.
Diagonal expansion: [8] p. 41, [9], [10] p. 248, [12] chap. 6.
Sklar’s theorem: [1] p. 42, [2] p.13, [4] p. 17.
Distribution theory: [20] chap. 2.
Radon–Nykodim theorem: [17] p. 63, [18] p. 193, [21], p. 196, [22].
Mercer’s theorem: [25] p. 271.
Dirac delta function: [25] p. 303.
Bayesian inference, Bayes factor: [26], [27] p. 153, [28] p. 30.
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