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Abstract: This paper investigates the long-time behavior of fractional-order complex memristive
neural networks in order to analyze the synchronization of both anatomical and functional brain
networks, for predicting therapy response, and ensuring safe diagnostic and treatments of neurologi-
cal disorder (such as epilepsy, Alzheimer’s disease, or Parkinson’s disease). A new mathematical
brain connectivity model, taking into account the memory characteristics of neurons and their past
history, the heterogeneity of brain tissue, and the local anisotropy of cell diffusion, is proposed. This
developed model, which depends on topology, interactions, and local dynamics, is a set of coupled
nonlinear Caputo fractional reaction—diffusion equations, in the shape of a fractional-order ODE
coupled with a set of time fractional-order PDEs, interacting via an asymmetric complex network. In
order to introduce into the model the connection structure between neurons (or brain regions), the
graph theory, in which the discrete Laplacian matrix of the communication graph plays a fundamental
role, is considered. The existence of an absorbing set in state spaces for system is discussed, and
then the dissipative dynamics result, with absorbing sets, is proved. Finally, some Mittag—Leffler
synchronization results are established for this complex memristive neural network under certain
threshold values of coupling forces, memristive weight coefficients, and diffusion coefficients.

Keywords: fractional-order dynamics; graph Laplacian; asymmetric complex networks; complex
memristive neural networks; connected network on boundary; complete synchronization; pinning
control; dissipativity; absorbing set; local anisotropy; cellular heterogeneity; spatio-temporal patterns
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1. Introduction and Mathematical Setting of the Problem

Complex networks of dynamical systems appear naturally in real-world systems such
as biology, physics (e.g., plasma, laser cooling), intelligent grid technologies (e.g., power
grid networks, communications networks), neuromorphic engineering, social networks, as
well as neuronal networks. Of particular interest are complex memristive neural networks
in the brain network. The macroscopic anatomical brain network, which is composed
of a large number of neurons (~10'!) and their connections (x~10'%), is a complex large-
scale network system that exhibits various subsystems at different spatial scales (micro
and macro) and timescales, yet is capable of integrated real-time performance. These
subsystems are huge networks of neurons, which are connected with each other and are
modified based on the activation of neurons. The communication, via a combination of
electrical and chemical signals between neurons, occurs at small gaps called synapses (see,
e.g., [1]). This brain network structure implements mechanisms of regulation at different
scales (from microscopic to macroscopic scales). On the microscopic level, neural plasticity
regulates the formation and behavior of synaptic connections between individual neurons
in response to new information. The association matrix of pair-wise synaptic weights
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between neurons will be of the order of 10'%. In view of the scale of the network and the
specific difficulties of accurately measuring all synaptic connections, an accurate description
of a complete network diagram of brain connections is an ongoing challenge and a task of
great difficulty (see, e.g., [2]).

However, the rise of functional neuroimaging and related neuroimaging techniques,
such as Electroencephalography (EEG), Magnetoencephalography (MEG), functional Mag-
netic Resonance Imaging (fMRI), diffusion-weighted Magnetic Resonance Imaging (dMRI),
and Transcranial Magnetic Stimulation (TMS), has led to good mapping and deeper under-
standing of the large-scale network organization of the human brain. The fMRI technique
can be used to determine which regions of the brain are in charge of crucial functions,
and assess the consequences of stroke, malignant brain tumors, abscess, other structural
alterations, or direct brain therapy. For this last one, see, e.g., [3] for the used of online
sensor information to automatically adjust, in real time, the brain tumor drugs through MRI-
compatible catheters, via nonlinear model-based control techniques and a mathematical
model describing tumor-normal cell interaction dynamics.

The EEG and MEG signals measure, respectively, electrical activity and magnetic
fields induced by the electrical activity, from various brain regions with a high temporal
resolution (but with limited spatial coverage). However, fMRI measures whole-brain
activity indirectly (by detecting changes associated with blood flow for each network,
over a specified interval of time) with a high spatial resolution (but with limited temporal
resolution). Consequently, in order to improve both spatial and temporal resolution, EEG
and MEG signals are often associated with fMRI (see, e.g., [4]).

This whole-brain connectomics approach, which relies on macroscopic measurements
of structural and functional connectivity, has notably favored a major development in the
identification and analysis of effects of brain injury or neurodegenerative and psychiatric
diseases on brain systems related to cognition and behavior, for better diagnosis and
treatments (see, e.g., [5-7]).

The dynamic interaction between neuronal networks and systems, which takes into ac-
count the dynamic flows of information that pass through different interconnected, widely
distributed, and functionally specialized brain regions, is crucial for normal brain function
(see, e.g., [8,9]). Measuring electrical activity (from, e.g., dMRI connectivity, magnetoen-
cephalography or electroencephalography recordings) has allowed researchers to point out
the existence of oscillations characterized by their frequency, amplitude, and phase (see,
e.g., [8,10-12]). This phenomenon is considered to result from oscillatory neuronal (local)
synchronization and long-range cortical synchronization (which is linked to many cogni-
tive and memory functions). Moreover, several studies have established that the activity
pattern of cortical neurons depends on the history of electrical activities (e.g., caused by the
long-range interaction of ionic conductances), as a result of changes in synaptic strength
or shape of synaptic plasticity (see, e.g., [13-15]). In addition, the diffusion terms play
an important role in dynamics and stability of neural networks when, e.g., electrons are
moving in asymmetric electromagnetic fields (see, e.g., [16-18]). So, diffusion phenomena
cannot be neglected. Understanding mechanisms behind these synchronized oscillations
and their alterations is very important for better diagnosis and treatments of neurological
disorders. In particular, the relationship between stability of synchronization and graph
theory is established. This relationship characterizes the impact of network topology on
the disturbances. Disturbances or alteration of such synchronized networks, taking into
account memory characteristics of neurons and their past history, play an important role in
several brain disorders, such as neuropsychiatric diseases, epileptic seizures, Alzheimer’s
disease, and Parkinson’s disease (see, e.g., [19-23] and references therein).

Moreover, noninvasive brain stimulation is attracting considerable attention due to
its potential for safe and effective modulation of brain network dynamics. In particular, in
the context of human cognition and behavior, the targeting of cortical oscillations by brain
stimulation with electromagnetic waveforms has been widely used, whether it is to ensure
a safe treatment, to improve quality of life, or to understand and explain the contribution
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of different brain regions to various human Cognitive Brain Functions (see, e.g., [24] and
references therein).

It is well known that the dynamic behavior of neurons depends on the architecture of
the network and on external perturbations such as electromagnetic radiation or stimulation
by an electric field. A memristor, with plasticity and bionic characteristics, is a nonvolatile
electrical component (i.e., retains memory without power) that limits or regulates the flow
of electrical current and is capable of describing the impacts of electromagnetic induction
(radiation) in neurons, by coupling membrane potential and magnetic flux. Moreover,
electromagnetic induction currents in the nervous system can be emulated by memristive
autapses (an autapse is a synaptic coupling of a neuron’s axon to its own dendrite and
soma), which play a critical role in regulating physiological functions (see Figure 1).

Electromagnetic
radiation

e

Dendrites
\

Nucleus

Memristive
autapse

Dendrites

or

Nucleus

Figure 1. Schematic design of a biological neuron.

The concept of a memristor, which is a passive and nonlinear circuit element, was first
introduced by Chua [25]. The author estimates that the memristor was to be considered as
basic as the three classical passive electronic elements: the resistor, the capacitor, and the
inductor. In the resistor, there is a relation between the instantaneous value of voltage and
the instantaneous value of current. Unlike the resistor, the memristance depends on the
amount of charge passing through it and consequently, the memristor can remember its
past dynamic history. It is a natural nonvolatile memory.

Memristor-based neural network models can be divided into (see, e.g., [26,27]) (a) mem-
ristive synaptic (autapse or synapse) models, in which a memristor is used as a variable
connection weight for neurons; (b) neural network models affected by electromagnetic
radiation, in which a memristor is used to simulate the electromagnetic induction effects.
The memristive synaptic model uses the bionic properties of the memristor to realistically
mimic biological synaptic functions, while the neural network model under electromagnetic
radiation employs a magnetic flux-controlled memristor to imitate the electromagnetic
induction effect on membrane potential.

Recently, considerable efforts have been made to mimic significant neural behaviors
of the human brain by means of artificial neural networks. Due to the attractive property
of this new type of information storage and processing device, it can be implemented using
synaptic weights in artificial neural networks. It can also be an ideal component for simu-
lating neural synapses in brain networks due to its nano-scale size, fast switching, passive
nature, and remarkable memory characteristics (see, e.g., [28-30] and references therein). In
recent years, the dynamical characteristics of memiristor-based neural networks have been
extensively analyzed and, in this context, several studies have been reported as regards
chaos, passivity, stability, and synchronization (see, e.g., [31-37] and references therein).

Currently, fractional calculus is particularly efficient, when compared to the classical
integer-order models, for describing the long memory and hereditary behaviors of many
complex systems. Fractional-order differential systems have been studied by many re-
searchers in recent years; the genesis of fractional-order derivatives dates back to Leibniz.
Since the beginning of the 19th century, many authors have addressed this problem and
have devoted their attention to developing several fractional operators to represent nonlin-



Axioms 2024, 13, 440

4 0f 47

ear and nonlocal phenomena (such as Riemann, Liouville, Hadmard, Littlewood, Hilfer,
and Caputo among others). Fractional integrals and fractional derivatives have proved to
be useful in many real-world applications; in particular, they appear naturally in a wide
variety of biological and physical models (see, for instance, Refs. [38—43] and references
therein). Both the Riemann-Liouville and Caputo derivative operators are the most com-
mon and widely used way of defining fractional calculus. Unlike this Riemann-Liouville
operator, when solving a fractional differential equation, we use the Caputo fractional oper-
ator [44], for which there is no need to define the fractional-order initial conditions. One of
the most important characteristics of fractional operators is their nonlocal nature, which
accounts for the infinite memory and hereditary properties of underlying phenomena.
Recently, in [39], we proposed and analyzed a mathematical model of the electrical activity
in the heart through the torso, which takes into account cardiac memory phenomena (this
phenomenon, also known as the Chatterjee phenomenon, can cause dynamical instabilities
(as alternans) and give rise to highly complex behavior including oscillations and chaos).
We have shown numerically the interest of modeling memory through fractional-order
derivatives, and that, with this model, we are able to analyze the influence of memory on
some electrical properties, such as the duration of action potentials (APD), action potential
morphology, and spontaneous activity.

On the other hand, synchronization of neural networks plays a significant role in the
activities of different brain regions. In addition, compared with the concept of stability,
the synchronization mechanism (with possible control), for two or more apparently inde-
pendent systems, is being paid increasing attention in neuroscience research and medical
science, because of its practicality. The study of dynamical systems and the synchroniza-
tion of biological neural networks, with different types of coupling, have attracted a large
amount of theoretical research, and consequently, the literature in this field is very extensive,
especially in the context of integer-order differential systems. Since the literature on this
topic has been receiving a significant amount of attention, it is not our intention to comment
in detail here on all the works cited. For a general presentation of the synchronization
phenomenon and its mathematical analysis, we can cite, e.g., [45-48]. Concerning problems
associated with integer-order partial differential equations various methods and technique,
we can refer to, e.g., [49-54]. Finally, for problems associated with fractional-order partial
differential equations, various methods have recently been studied in the literature, such as,
for example, [55], which considers the synchronization control of a neural network’s equa-
tion via Pinning Control, ref. [56], which investigates the dissipativity and synchronization
control of memristive neural networks via feedback controller, and [57], which explores the
stability and pinning synchronization of a memristive neural network’s equation.

Motivated by the above discussions, to take into account noninvasive brain stimulation
and the effect of memory in the propagation of brain waves, together with other critical
brain material parameters, we propose and analyze a new mathematical model of fractional-
order memristor-based neural networks with multidimensional reaction—diffusion terms,
by combining memristor with fractional-order neural networks. The models with time
fractional-order derivatives integrate all the past activities of neurons and are capable of
capturing the long-term history-dependent functional activity in a network. The diffusion
can be seen as a local connection (at a lower scale), like, e.g., in [58], whereas the coupling
topology relates to dynamical properties of network dynamical systems, corresponding to
physical or functional connections at the upper scale.

Thus, the derived brain neural network model is precisely the system (1)-(5) (see
further), which is a nonlinear coupled reaction—diffusion system in the shape of a set
of fractional-order differential equations coupled with a set of fractional-order partial
differential equations (interacting via a complex network).

In the present work, we are interested in the synchronization phenomenon in a whole
network of diffusively nonlinear coupled systems which combines past and present in-
teractions. First, we will impose initial data on a closed and bounded spatial domain,
and analyze some complex dynamical property of the long-time behavior of a derived
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fractional-order large-scale neural network model. After a rigorous investigation of dissi-
pative dynamics, different synchronization problems of the developed complex dynamical
networks are studied.

2. Formulation of Memristive-Based Neural Network Problem

We shall consider a network of m coupled neurons denoted by Ng = {N; : i =
1,2,...,m}, where the network size m > 2 is a positive integer. Our model of a memristor-
autapse-based neural network with external electromagnetic radiation can be depicted as
in Figure 2.

Electromagnetic L /

radiation J/ Electromagnetic

stimulation

Activited neuron

Memristor
autapse

Figure 2. Concept map of the coupled neural network.

In this paper, motivated by the above discussions (see Section 1), we introduce the
following new fractional-order memristive neural network of coupled neurons, modeled
by the following Caputo-fractional system, including the magnetic flux coupling (on each
neuron N; of the network, for i = 1, m):

ca0g+ i — div(Ks(x)Ve;) = F(x, ¢;) + ou; + % Z%aij(x/t)Hj((Pj)
j=

+fex(x,t) —Kgbi‘l’(wi)—i—%Qi(th...,cpm), in O (1)

Cﬁag+ui =a—bu; — Cz(,tli2 +c1¢;, in Qoo

¢y 0+ ;i — div(Ke (x) Vw;) = v1¢; — vow; + ex (X, t) + %gi(wl, e, W), N Qoo

where Q. = (x]0, +o0[ and the spatial domain Q) is a bounded open subset and its
boundary denoted by I' = d(} is locally Lipschitz continuous. Here, dj, denotes the
forward Caputo fractional derivative with « a real value in ]0, 1]. The state variables ¢;, u;,
and w; describe, respectively, the membrane potential, the ionic variable, and the magnetic
flux across the membrane of the i-th neuron N;, for i = 1, m. The term F is the nonlinear
activation operator. The functions f,y and g.. represent the external forcing current and the
external field electromagnetic radiation, respectively. The parameters &, > 0,5 > 0, > 0
are the coupling strength constants with §.{¢ # 0. The values 4 and ¢ can be any nonzero
number constants and all the parameters b, c1, ¢2, k, V1, and v, can be any positive constants.

The fractional parameter ¢, is ¢y, = #;C4 > 0, where C, is the membrane pseudo-
capacitance per unit area and «; is the surface area-to-volume ratio (homogenization
parameter). The membrane is assumed to be passive, so the pseudo-capacitance C, can be
assumed to be constant. Moreover, since the electrical restitution curve (ERC) is affected
by the action potential history through ionic memory, we have represented the memory
via u (respectively, via w) by a time fractional-order dynamic term c¢gdjj, u (respectively,
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by ¢,dj; w), where the positive parameters ¢z and ¢, are assumed to be constants. The
fractional parameters ¢4, g, and ¢, depend on the fractional-order a.

Remark 1. According to the expression of the Caputo derivative, we can obtain that the unit for
the dimension of — is s*~1, with s the unit for the dimension of time and € the capacitance c, for
o = 1 (this result remains valid for cg and c. ).

The functions a;;, for i, j = 1, m, represent the memristor’s synaptic connection weight
coefficient (an example with three neurons is depicted in Figure 3).

[2¥1

Self-connected
synaptic weight

Self-connected

Synapse a, synaptic weight

Self-connected
'synaptic weight

Figure 3. Abridged general view of synaptic connection.

The term 271:1 a;j(x,t)H;(¢;) could be regarded as an emulation of a neurological
disease, e.g., epileptic seizures, in which the nonlinear operators H; are some activation
functions. We assume that (for i,j = 1, m)

ajj € L*([0, +-00) x Q) with a;; < a;; < @jj, a.e., in [0, +-00) x Q )

where (a;j, ;) are in IR?, and we denote

Zij = max(| a;; |, | a;; |) and Zij =|a;—a;|. ®)

The operator ¥ = §;¥; + 92¥> is the memory conductance of the flux-controlled
memristor, where ¥1(w) = 81 + 7110 + n12w?, ¥2(w) = 6, + {5 tanh(w), all the parameters
41, 82, 111, 12, 2 can be any positive constant, and q14, # 0, with g > 0, for k = 1,2. The
magnetic flux coupling x¢¥ (w) could be regarded as an additive induction current on the
membrane and represents the dynamic effect of electromagnetic induction on neurological
diseases (examples with three neurons are depicted in Figure 4). For simplicity, we can
write ¥(w) = 6 + mw + 172102 + { tanh(w), where 6 = q161 + 9262, 11 = q1411, 2 = G1712,
and § = q20.

Q% Electromagnetic

&/ radiation

&S Electromagnetic
radiation

Menmristive
Self-connected self-connected
synaptic weight synaptic weight|

Memristive
self-connected
synaptic weight

Self-connected
synaptic weight

Memristive
self-connected
Memristive
self-connected =
synaptic weight

Figure 4. Two examples of connection topology of the neural network with three neurons (based on
memristor-autapse and under electromagnetic radiation effects).
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The operator G;, which contains the information of network topology, is defined by
(fori =1,m)

Gi(v1,-..,om) = Y, Gilv—vy) 4)
k=T ki

with the coupling (or connectivity) matrix G = (Gjj)1<i,j<m (—G is called the Laplacian
matrix of the graph), in which G;; are the coefficients of connection from the i-th to the j-th
neuron, satisfying the assumption

m

(HG) Gy > 0fori # kand G;; = — Z Gik, i.e., the matrix G has vanishing row and
k=1 ki
column sums and non-negative off-diagonal elements.

m
Then, G;(v1,...,0m) can be written as G;(vy, ..., vm) = ) Givy-
k=1

In graph theory, the Laplacian matrix —G, also called the graph Laplacian or Kirchhoff
matrix, defines the graph topology with m the number of vertices/nodes N; in graph
G(Ng, Eg) (with Ng set of vertices and &g set of edges/links). The diagonal matrix
D = —diag(Gi1,. .., Gum) is called the degree matrix of graph and A := D + G is called
the adjacency matrix of the graph.

The state variable (¢;, u;, w;), for i = 1, m in this network, is coupled with the other
neurons {/; : j # i} in the network through the state equation by G; and/or through the
boundary conditions as follows (fully connected network on boundary):

(K vg) n =L Y (g—g) =0 on,
k=1,m 5
(Ke.Vw;) -n — Pe Y (wx—w;) =0, onT. ®
m k=1,m

where n is the outward normal to I and p; > 0, p. > 0 are the coupling strength constants
on boundary. The tensors K and K, are the effective diffusion tensors that describe the
heterogeneity of brain tissue and local anisotropy of cell diffusion.

The initial conditions of (1) to be specified will be denoted by (for i = 1, m)

(¢:(0),4i(0),wi(0)) = (doi, i, woi), on Q. 6)

The rest of the paper is organized as follows. In the next section, we give some
preliminary results useful in the sequel. In Section 4, we shall prove the existence, stability,
and uniqueness of weak solutions of the derived model, under some hypotheses for data
and some regularity of nonlinear operators. An important feature of the uniqueness of
the solution is the semiflow physical property of the system; starting the system at time £,
letting it run until time s = ty 4 7, and then restarting it and letting it run from time s to
the final time of Ty amounts to running the system directly from time { to final time T;. In
Section 5, the existence of an absorbing set in state spaces for the system is discussed, an
estimate of the solutions is derived when time is large enough, and then the dissipative
dynamics result, with absorbing sets, is proved. In Section 6, synchronization phenomena
are discussed and some Mittag—Leffler synchronization criteria for such complex dynamical
networks are established in different situations. Precisely, some sufficient conditions for the
synchronization are obtained first for the complete (or identical) synchronization (which
refers to the process by which two or more identical dynamical systems adjust their motion
in order to converge to the same dynamical state as time approaches infinity) problem
and then for the master—slave synchronization problem via appropriate pinning feedback
controllers and adaptive controllers. In Section 7, conclusions are discussed. In Appendix A,
the full proof of well-posedness of the derived system is shown, and in Appendix B, a
brief introduction to some definitions and basic results in fractional calculus in the Rieman-
Liouville sense and Caputo sense is given.
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3. Assumptions, Notations, and Some Fundamental Inequalities

Some basic definitions, notations, fundamental inequalities, and preliminary lemmas
are introduced and other results are developed.

Let U C ]Rd, d > 1, be an open and bounded set with a smooth boundary and Ut =
U x (0, T). We use the standard notation for Sobolev spaces (see [59]), denoting the norm
of WIP(U) (g € IN, p € [1,00]) by || . ||war. In the special case p = 2, we use H1(U) instead
of W92(05). The duality pairing of a Banach space X with its dual space X’ is given by
(.,-)x’ x- For a Hilbert space Y, the inner product is denoted by (.,.)y and the inner product
in L2(Q) is denoted by (., .). For any pair of real numbers r,s > 0, we introduce the Sobolev
space H™#(Ur) = L?(0, T; H'(U)) N H*(0, T; L>(U)), which is a Hilbert space normed by
(|| v ||L2 orH(@w) T |v ||%{5(O/T;Lz(6))) 2, where space H*(0, T; L?>(U)) denotes the Sobolev
space of order s of functions defined on (0, T) and taking values in L?(33), and defined by
interpolation as H*(0, T; L2(0)) = [H1(0, T, L?>(U)), L>(U7)]g, for s = (1 — 0)q with 6 € (0,1)
and g € N, and H7(0, T; L2(0)) = {v e 12(Ur)| 22 € 12(Ur),for 1 < j < q}.

We now recall the following Poincaré-Steklov inequalities (see, e.g., [60]):

Lemma 1. (Poincaré-Steklov inequality) Assume that U is a bounded connected open subset of R?
with a sufficiently regular boundary dU (e.g., a Lipschitz boundary). Then,

Chs(2) | 0 12005y < G5 VO 205y +C 1| 0 lI2(005)), Vo € H (V).

where {5 == diam(8) > 0 and C3g > 0 is the smallest eigenvalue of the Laplacian supplemented
with the Robin boundary condition v + n.Vov = 0 on oU (with { > 0 any positive constant).

Lemma 2. (Extended Poincaré—Steklov inequality). Assume that q € [1,00) and that U is a
bounded connected open subset of IR with a sufficiently reqular boundary U (e.g., a Lipschitz
boundary). Let R be a bounded linear form on W4 (35) whose restriction on constant functions is
not zero. Then, there exists a Poincaré-Steklov constant Cps, . > 0 such that Cps; a0 )<

b || Vo lls@) + | R@) |, Yo € WH(B).

Remark 2. Let q be a nonnegative integer and U be a bounded connected open subset of RY with a
sufficiently regular boundary 8. We have the following results (see, e.g., [59]):
(i) HY(U) C LF(U), Vp € [1, 2 zq} with continuous embedding (with the exception that if

2qg =d, then p € [1,+oco[and if 2q > d, then p € [1,+o0] ).
(ii) (Gagliardo—-Nirenberg inequalities) There exists Cs 59 > O such that

10 llr@) < Cogell Vo lIf25)]l ||Lq(U + 10 l) Yo € H'(U) x L1(U),

where 0 <6<1,q>1,andp > 0such that 4 =0(4-1)+(1— 9)% (with the exception that
if1 — 1s a nonnegative integer, 0 < 6 < 1).

Definition 1 (see, e.g., [61]). A real valued function H defined on D x R7, ¢ > 1, is a
Carathéodory function iff H(.;v) is measurable for all v.€ RT and H(y;.) is continuous for
almost ally € D.

Our study involves the following fundamental inequalities, which are repeated here
for review:

(i) Holder’s inequality: / ITi—q i fidx < TI;—

| i D),Where Z - =

1<i<k ql

—q/p
ii) Young’s inequality (Va,b > 0 and € > 0): ab < Ea” + € b1, forp,q €1, +oof and 1 +
g quality p p.q y
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=1.

_ | =

(iil) Minkowski’s integral inequality (for p €]1, 400 and t > 0):

(L o) o] "< [ (o)

Finally, we denote by | U | the Lebesgue measure of U, by sgn(x) the sign of the scalar
x, and by £(A; B) the set of linear and continuous operators from a vector space A into
a vector space B. The operator R* stands for the adjoint to linear operator R between
Banach spaces.

From now on, we assume that the following assumptions hold for nonlinear operators,
matrix coupling, and tensor functions appearing in our model on Q.

First we introduce the following spaces: H = L2(Q) and V = H'(Q) (endowed with
their usual norms). We will denote by V' the dual of V. We have the following continuous

—

1/p

embeddings (p’ is such that ;, + ;17 =1):

VCHCVandVCL\(Q)CcH=H) cLV(Q) cV 7)

and the injection V C H is compact, where p > 2ifd =2and 2 < p <6ifd = 3.
For tensor functions, we assume that the following assumptions hold.

(H1) We assume that the conductivity tensor functions K9 € W'(Q), 8 € {e, f}, are
symmetric, positive definite matrix functions and that they are uniformly elliptic, i.e., there
exist constants 0 < df < rrand 0 < d, < r, such that (Vo € R")

df||v|\2 < vTICfv < rf||vH2 and d,||v]|? < 0T Kev < rel|v]|? in Q. (8)

The operators F and (H;j);—1 »,, which describe behavior of the system, are supposed
to satisfy the following assumptions.

(H2) The operators F and (H;);—1 ,, are Carathéodory functions from Q x R into R. Fur-
thermore, the following requirements hold.

(H2); The nonlinear scalar activation function F € C!(Q x R), which can be taken
as F = F; + F, with F; as a decreasing function on the second variable, satisfies
(V(x,v) € Q x R):

(i) F(x,0)v < —A|o[* +po(x);

) | F(x,0) [<ar [0 +p1(x);

D) | 5 (x,0) < a2 |0 2 +pa(x) and §F(x,0) < —az [0 +5;

(iv) | F2(x,0) [< aq | 0 |* +p3(x);

W) | Er(x,0) |[< as | v |* +pa(x) and Ep(x,0) < —ag | v |* +a7 | v > +as.

A, B, and a;, for i = 1,8, are positive constants, p; € L2(Q), for i = 0,4, are given
functions, and & is the primitive function of F;.

(H2), The nonlinear scalar activation functions H; are bounded with H;(0) = 0 and
satisfy [;-Lipschitz condition, i.e.,

i) | Hi(u) |< M;and | H;(u) — H;(v) |<1; | u—v|,V(u,v) € R?, with[; > 0 and
M; > 0.

For the operators (G;);—1 ,, which are defined from the matrix coupling G, we intro-
duce first the following notations: the matrix S = (e€;j)1<;j<m, Where€;; = €j; = %(Gi]- +Giji)
and the matrix A = (J;j)1<;,j<m, Where 0;; = —d;; = %(G,']' — Gj;), for i # j. Then, the matrix
S is symmetric, the matrix A is antisymmetric, and G can be represented uniquely as
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m
G = S+ A. It is evident that both S and A have zero row sums (i.e., Z €jx = 0 and
. k=1
djx = 0)and 26;; = Z Gyi. Then, we can now derive the following two lemmas.
1 k=1

hgE

k

Lemma 3. For (¢, w, u) in L*(Q) x L>(Q) x L*(Q) and (fex, gex, po) € (L*(Q))3, we have the
following inequalities:

(i) ,K/ [ ¢ 12 (0 +mw + y2(w)? + § tanh(w))dx < 6w || ¢ 20y

(zz)/ xcp(pdx—i-cr/ u<pdx+/fexcpdx<——/ |4>|4dx+ Hu||

1 o? A 2
o I fox gy 192110 iy +57 (o + 20 ©)

" 2
(iii) c1./0¢udxfc2/ | ¢ | udera/Q udx —b || u HLZ(Q)Z
5b 2c 2ac | Q) 2c3
P Y o KL Y Y

where 0y = 2%, Ow = K(ﬂz@% +{ — ) and v > 0 (v is any positive constant, to be chosen
appropriately).

Proof. Since | tanh(w) |< 1, we have (according to assumption (H2))

= [ 19 6+ mw-+yz(w)? + ¢ tanh(w) dx
<x(@=0) [ 19 Pax—rn [ ¢ ((w+00)* - 63)dx
<60 ¢ 22

/()F(x,4>)4>dx+a/()u¢dx+/Qfgx<pdx

IN - IA

| /\

—/\/ |¢|4dx+(7/ uql)dx—l—/fexq)dx—i—/ﬂpodx

A 1
A / o1 dxt ||u|\Lz(m+<ZU I8 Bagy 57 | fox 2y + 1011 oo iy

1,02 A

4 2 2
/|4’| dx+ ”“HLZ(Q ﬁ||f€XHL2(Q)+|Q|(HPOHLz(Q)_'—ﬁ(%"‘E))

and

C1/¢”dx—02/ |<p|2udx+a/ udx —b || u |3,

5b 2a20 2c3
< gy 2 By + 2L 22 g

This completes the proof. [
The estimates of the previous lemma are needed to construct a priori estimates (to
establish the existence result).
Lemma 4. For all (v;)i—1,, € IR™, we have the following relations (with ¢;; = v; — v; for
1<4,j<m).
-1 ¢ 2 N s 2
Y. Gioo; = > Y. Gi(vk—0i)*+ ) dvi,

1<i<m ik=1;k#i k=1
1<k<m
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. 2 2

(ZZ) Z (G]k — Gik)vkl/’,’j = —m Z ijlp]-k +2 Z (5]]1/11]
1<ij<m 1<k;j<m 1<ij<m
1<k<m

Oii + 5]']'
ot

=-m Y €jk4’]2k +moy Vij’#izjf with pij =

1<kj<m 1<ij<m

Proof. Since } ;' ; Gjx = 0, we can deduce that

m m
Yo Gilvx —v;)? 2

i k=Tk#i

m
-2 2 levkvl =2 Z (5kkvk 2 Z Gikvkvi
ik=1 = ik=1

Wi M§

and then the relation (i). For the relation (ii), we have (we proceed in a similar way as
in [62])

Y. (Gik—Giohij = — Y. (eatix + Sihix — €jx¥ix — Sikthje) Yij

1<i,j<m 1<i,j<m

1<k<m 1<k<m
= Y, (e —eai)pij+ Y, (O — dutpu)pij = I+ I1.
1<i,j<m 1<i,j<m
1<k<m 1<k<m

m
Since ¢ = ¢j; + Py and Z ik = 0, we can deduce that
k=1

=Y (6pi— Outhix)pij = ZZZ Sicictii) — Y Y Y (Gutpjxii)

1<i,j<m =1i=1j=1 k=1i=1j=1

1<k<m
m m
2
=2 ) Guypy=2 ) 5jjll’ij+22 Y i)
1<i,j<m 1<i,j<m i=1 jk=1k#j
1<k<m

m
We can deduce that Z Pijop ik = Z l[JZJ( x+ (5k])1/J,k = 0 (since dj + 0¢; = 0), and
jk=Tk#j 1<j<k<m

. bii +90jj .
then I = 2 2 (Sjjlpl-z]- =m Z ;tijlpiz]-, with Hij = - ]], for1 <i,j < m. For the
1<i,j<m 1<ij<m
term I, we have that

I= Y (epi—eni)yy = Y. epbuti— Y. €pduji
1<i,j<m 1<i,j<m 1<i,j<m
1<k<m 1<k<m 1<k<m 10
5 (10)
2 ]k¢]k¢l]
1<i,j<m
1<k<m

and then

I= Y ex(p+vi)— Y en(@hi+y¢h)

1<i,j<m 1<i,j<m

1<k<m 1<k<m ) )
_ 2
= 2 (Y v~ X envi— Y (X ey (11)

1<ik<m 1<j<m 1<i,j<m 1<i,j<m 1<k<m

1<k<m
=—m 2 ijl[J]Zk (since S is symmetric and has zero row sums).
1<j,k<m

This completes the proof. [
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Remark 3. (a) If Y1 Gy; = O then 6;; = 0 (for all i = 1,m) and consequently Y %1/1% =0

1<i,j<m

m
(with ;j = (v; — v;)) and Z 51’1‘012 = 0 (in Lemma 4).
i=1
(b) The matrix (p;;); ; is symmetric and satisfies Y1 <; < pij = 0.

Remark 4. Let A be an arbitrary antisymmetric matrix. Then, for any vector w, we have
t
w'Aw = 0.

To end this section, we give the following lemmas and definitions. From, e.g., [63,64],
we can deduce, respectively, the following Lemmas.

Lemma 5. (A generalized Gronwall’s inequality) Assume v > 0, h is a nonnegative function
locally integrable on (0,T) (some T < +o0) and b is a nonnegative, bounded, nondecreasing
continuous function defined on [0,T). Let f be a nonnegative and locally integrable function
on (0,T) with, for t € (0,T), f(t) < h(t) + b(t)I], [f](t). Then (for t € (0,T)), f(t) <
.} 00 k
h(t) + / Y h(T)(t— T)kﬁr_l(l?((li)y))dt If, in addition, h is a nondecreasing function on (0, T),
. O k:1
then f(t) < h(t)E1(b(t)t7).

The used function Ey, g, is the classical two-parametric Mittag-Leffler function (usually
ad 1
denoted by Ej, if 6, = 1), which is defined by Eg, 4,(z) = I;) k6 1 67)

Eg, 6, is an entire function of the variable z for any 61,6, €C, Re(6;) > 0.

zF. The function

Lemma 6. Let w be a locally integrable nonnegative function on [0, +o00) such that 9, w(t) +
Aw(t) < R. Then, we have w(t) < w(0)Eyq(—At"Y) + Rt“Ey g1(—AtY) = w(0)Ey 1 (—AtY) +
R(1—Ey1(—AtY)).

The invertibility of f(t) = E,g(—t),t > 0 follows from the complete monotonicity
property of E, g. As shown in [65], this function is completely monotone if and only if

0<a<1landp > a. Since E,5(0) = I'(f) ! and , linl Eyp(—t) = 0, then the inverse
—+00
function ¢ = —L, g of f, is the function g : (0,T(B)'] — [0,00) (0 < a <1and B > a).

Definition 2 (see, e.g., [66]). The initial-boundary value problem (1)—(6) is called dissipative in a
Banach space IL(Q) if there is a bounded set, in IL(Q)), Kg = B(0,r) for some positive constants
r > 0 such that for any bounded subsets Ky (of IL.(Q))) and all initial data (Po;, 1o, Woi )iz1,m
belonging to Kj, there exists a time Tk, depending on Ky, such that the corresponding solution
(¢i(t), ui(t), wi(t))i=1,m is contained in Kg for all t > Tx. The set Kg is called an absorbing set
and v is called a radius of dissipativity.

Remark 5. (i) We can also express the previous definition as follows. For any bounded set K, there
exists a finite time Ty such that any solution started with initial condition in K; remains within the
bounded ball K for all time t > Tk.

(ii) The study of dissipative dynamics opens the way to the analysis of the synchronization problem.

Definition 3 (see, e.g., [67]). The initial-boundary value problem (1)—(6) is (locally) complete
synchronized if

i (I ¢ = ¢j lr2i) + I i = uj l120) + [ wi = wj l12(0)) =0, Vi, j=1,m,

t—so0

whenever the initial state belongs to an appropriate bounded open set.
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Definition 4. The initial-boundary value problem (1)—(6) is locally complete Mittag—Leffler syn-
chronized if there exist X* > 0 and A* > 0 such that for any t > t* (Vi,j = 1,m),

(U s = 5 22y + 1 i = 0 22y + 100 = 07 (B () < X*Eg (<A (2 = 1)1,

whenever the initial state belongs to an appropriate bounded open set. The value A* is called
Mittag—Leffler synchronization rate (or degree).

4. Well-Posedness of the System

This section concerns the existence and uniqueness of a weak solution to problem (1),
under Lipschitz and boundedness assumptions on the non-linear operators. We now define

the following bilinear forms: Af(w, v) = /ICwa - Vodx, Ae(w,v) = /ICve - Voudx.
Q Q
Under hypothesis (8), it can easily be shown that the forms Ay (for k = e, f) are symmetric

coercive and continuous on V. We can now write the weak formulation of the initial-
boundary value problem (1)-(6) (forallv, ¢, pin Vand a.e. t € (0,T), with T > 0):

<Cuag+¢irv>V/,V+Af(¢irv) :/Q(F(X,(Pi)JrO'Mi)UdXJr/Qfedex
Ch ) - B v
+m];/§)”z](xrt)H](¢])UdX K/ng,‘f’(wl)vdx
Pf ¢ N N Gy 4
+m]§/r(¢)i —¢; )vdr‘f‘a/ﬂgz((,bh...,cpm)vdx,
<cﬁag+wi/ 19>V’,V+Ae(wi’l9) = / (1/1471'—1/2&)1‘ l9dX—|—/ ggxl%lx
mZ/ Mw@/gwhwwwm

(CWangui/p)LZ(Q) = /Q(a —bu; — C24)i +C14)i)pdx'

(12)

The first main theorem of this paper is then the following result.

Theorem 1. Let assumptions (H1) and (H2) be fulfilled and T > 0. Assume that there exists
v > 0 such that
. Ge
<vy— = ;. 13
7z vy — o max g (13)
Then, for any (¢o;, Wi, tio;) € V2 x L3(Q) (for i = 1,m) and fex, gex € L= (0,00; L2(Q)), there
exists a unique weak solution (¢p;, w;, U;)i—1 p to problem (1) verifying (fori =1, m)

¢; € L*(0,T; V), 093.¢; € L*(0, T; L*(Q))),
w; € L°(0,T; V), %MEBWTB(D (14)
u; € L*(0,T; L*(Q)), 9%.u; € L*(0, T; L*(QY)),

Moreover, if & > 1/2, then (¢;, w;, u;) € C([0, T); L?(Q)) and (¢;, w;, u;) (0F) = (do;, wo;, to; )-

Proof. To establish the existence of a result of a weak solution to system (1), we proceed as
in [39] by applying the Faedo—Galerkin method, deriving a priori estimates, and then pass-
ing to the limit in the approximate solutions using compactness arguments. The uniqueness
result can be evaluated in the classical way. The full proof is given in Appendix A. [

5. Dissipative Dynamics of the Solution

In this section, first we prove that all the weak solutions of initial value problem (1)
exist for time t € [0,00). Then, we show that there exists an absorbing set in space
H,, = (L?(Q) x L2(Q) x L2(Q))™ for the solution semiflow, which is dissipative in space
H,;, in the sense of Definition 2.
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Theorem 2. Under the assumptions of Theorem 1, there exists a unique global weak solution
(¢i(t), wi(t), ui(t))iz1,m in the space H,,, for time t € [0, 00), of problem (1)—~(6). Moreover, for any
given g > 0, there exists an absorbing set for the semiflow for problem (1)—(6) in space H,, which is
2

m 04
evalue Gy = Go+ | Q) | IZ;( +Sgn(91))2)mr

a bounded ball B(0, D), where D = ¢y + &1

Cmin‘
er  2c3 o

with A\g = — — —=, 0; = (e(bp —l———i—gf ChZa lza ) + V%—I——) O =
2 b’ 2A ij L ji 1% b’

i
K +§-8), Go = elar | fox Bommniay + | @1 (1 f0 2y +55 (5 + 500 +

41’]2

4
17— | Gex H%W(o o 12(0)" The value € > 0 is chosen appropriately so that Ay > 0i.e., e > —=
Proof. Taking the scalar product of the equations of system (1) by ¢;, u;, and w;, respec-

tively, and adding these equations for i = 1,m, we obtain, according to Lemma 4 and
assumption (H1):

m m m
*ﬁazn@m+@2uww5m P05 [ gpPar+ 3 [ Fox g
i=1 11 1 i=1
[ Gylgi— 977 i+ LY 51 4|2
1] 4’]) X+UZ ”14)1 X+ Z i |l ¢ HLZ(Q)
1] 1]961
—KZ/ | i |* ¥ (w;) dx+ 2 / aij(x, t) Hj(¢;) dpidx + 2/ fexpidx,
1] 1
c
Zap. ZHMHQﬁmZHWMI 2/’ wﬂﬂfWZHmMm

1] 1 =1 (15)
/GU —w 2dx+ Z/ QexW;dx
1] 1;j#i

+11 Z/ 7“‘71471(’1)‘+ Z‘Su | w; HLZ(Q
Z||ul|| <C1Z/cpludx—c22/|cpl| udx+a2/udx

—bZ H Ui HLZ(Q) .
i=1
By using similar arguments to derive (A9), we can deduce
ec c m m
0 (Y 91 oy +2 3 i 1Py —lz|mn
2 i=1 2 i=1 " 2 i=1
€c ¢
+Mvﬂ2n@wz )7 Ll +12Hmnz
—|—6de I Vi 1172y +ele Z I Ve (172 Z / —)MT (g
e
Cf / Gij(gi — ¢y)Px + 1< 2 / — w;)2dT
1] 1 B 1] 1
+2§—f / Gij(w; — w;)2dx < Gy,
m i,j=1;j#i
u 02 2|6 -
where G; = Go+ | Q| 2 1+ sgn(6; j, A1 = min( €|c |,Z—2,@) d|o|= m11n(|
i=1 0 ® ¥ 1=1,m
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m 2 _ f R vi 2 _
; || Gex ||Loo(0[oo,.L2(Q)) 0 ( (9 + ﬁ + 511 + 2 (11] =+ ll ]1)) g + 7)/ O =

2
(4’7171 +7—-0),A % - 2% and vy = % — % The values € > 0 and v > 0 are chosen
2
4c 2
appropriately so that Ag > 0and vy > 0, ie. € > ﬁ and v < 4b In particular, we have
€y & ¢ &
B (50 L 19 2y ﬁznmn )t Ll wilfa))
2 (@) 2 @)

i=1 i=1 (17)

€y & o &

(G L N + ﬁznmn )t 2 i 2y ) < G

i=1

We can solve this Caputo fractional differential inequality (17) to obtain the following
estimate in maximal existence time interval (from Lemma 6):

[\13

Conin Y- (11 01 122y + 1 1 22y + 1 4 [y 18)

S Gl + (CmuxXO - Gl) zx,l(_)\lta)/

1

€Cy

2 2 o ‘g ¢y
where Xy = Z(H Poi H )l oi 2y + Il woi ||Lz(g))/ Crin = mm(7, 5/5) and

i=1

Cimax = max(e ‘o Czﬁ, c7)

Since the solution will never blow up at any finite time, then the maximal existence time
interval is [0, 00). Consequently, the solution of initial-boundary value problem (1)—(6) exists in
space Hl,,, for any time t € [0, o0). Then we have the existence of solution semiflow for (1)-(6),
that is, a mapping s : [t; (¢oi, toi, woi)i=1,m € Hin] —> (¢i(t), ui(t), wi(t))iz1;m € Hyn, t >0
enjoying the semigroup property Xs[s + £ (i, toi)i=1,m] = Zs[s; Zs[t; (¢oi, oi )i=1,m] for any
s,t > 0. Moreover, from (18), we can deduce that for any ¢y > 0 (in view of the asymptotic
property of the Mittag-Leffer function):

hmsupz 1 9i 17200y + Il ti T2y + Il i I 720)) < D = €0 + Do,

t—o0 =

where Dy = CGl (since limsup E, 1(—A1t*) = 0) and then (¢;(t), w;(t), u;i(t))iz1,m €

min t—00
B(0,D).
Afterwards, for any bounded set 3(0, o) (of H;), with p > 0, we have, if (¢o;, 1oi, Woi )i=1,m
B(0,p):

me
zmgngn+ww V40 ) <D0+ p S (—Aat) (19)

i= Crnin

1 Cui
and then there exists a finite T}, givenby T, = (— N Lgp(min(1, ;()Cﬁ)))l/ *, such that the
solution trajectories that started at initial time + = 0 from the set 5(0, p) will permanently

enter the set B(0, D), for all t > Tj.
So, B(0, D) is an absorbing set in H,, for the semiflow Xg and this semiflow is dissipa-
tive. This completes the proof. [J

6. Synchronization Phenomena

Before analyzing the synchronization problems, we will examine the uniform bound-
edness of the solution in K,, = (L*(Q) x L?(Q) x L*(Q))™.
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6.1. Uniform Boundedness in Ky,
In this section, we prove a result on the ultimately uniform boundedness of solution
(@i, 1i, W;)i=1,m in Kip

Lemma 7. Forall (v)i—1,, € IR"™, we have the following results.

1 & 2,2 2
(i) 21 €ijviv) =~ "21 €(0i — 0})* (07 + vjo; +07) < O;
i,j L=
3 m m 4
(ii) Z oo <Y ()1 6ij | +6ii)v;
iji=1 i=1 j£i
Proof. Since (v; — v]-)z(v]z- +vjv; + vlz) = v;-l + v? — '0;')’01 — Ul vj, then (since €;; = €j;)

m m m m m
Z €ij(0i = v))? (0} + oo +07) = Y 0t (Y ey) + Y vi() ey) =2 ) €juivs.
i=1 =1 j=1

ij=1 j=1 i=1j=1
Because Z €jj = 2 €ij =0, we derive Z Z €ij0;; v3 E el] v v +ovi +7v; )
i=1 i=1j=1 ij=1

For (ii), we have Z (51]v]v = Z Z 6; jv]v + Z(S,,v Since (from Young's inequality and
ij=1 i j#i
the fact that 6;; = —d;j, for i # j)

22 CH 122 l]||U]| ZZ|51]||01|
i j#i i=1j#i 11]751
3711
SZZ vl|42i511i+ ZZ| l||U]|4<Z|vl|4Z|5l]|

I\
—

J# 4= 1j# J#i

we obtain that

m
Z 51]7’]7) < Z | 0j |4 Z | 51] | +25117j = Z(Z | 51’]’ | +‘5ii)U?' (20)

i,j=1 j#i i=1 j#i

This completes the proof. [

Theorem 3. Assume now that & > 1/2, gex € L®(0, 00, L*(Q)) and the assumptions of Theorem 2
hold. If there exists a constant 71 > 0 such that

Ge
<y — 28
T2 S vy =2 max (Ai), (21)
where Aj = Y | & | +6i; = Y (| 6ij | —08ij) (since 6;; = — ) _ &;;), then (1)~(6) is dissipative
j#i j#i j#i

in K.

Proof. As g1 : y — y3 is an increasing function, then the primitive g1 is convex and
we can have, from [68] (since g; is independent on time) Yl o || / 038”0‘+vdx.

Consequently, by taking the scalar product of the first and third equations of system (1) by
¢? and w?, respectively, and adding these equations for i = 1, m, we can deduce (according
to Lemma 7)
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05 Ll 34, L1090 Iy + 21 @i = 0297 + 91y + 97)dr
i= i= 1]
o v b 2
ST | (0= 92(87 + 0u9; + ¢P)x
<) [ Fxg 4>?dx+02 A z4>?dx+ 2 -, ot o L8 |91
i=1
—KZ/ | i |* ¥ () dx+ Z / aij(x, t)H;(¢;) 7 dx, (22)
1] 1
cya“ ZH w; || 4+3d32|| w; Vw; HL2( 2/ i —wj) (w? + wiw; +w)dF
i 1] 1
2%; 1}%#/061]( w])z(wi +wiwj+w]2)dx

m m
< ma ) it +u Y [ adpudx+ ) [ gl
i=1 i=1/Q i=1/Q

where A; = Z | 0ij | +6iiand 715 < vy — % mlax( i) (by hypothesis).
7
Since Vo € R, we have | tanh(v) |< 1 and v* < 1+ 9% then (by using Young’s
inequality),

[ 1 [ ¥ (wdx = —x [ ] gi[* (6+nwi+1wf + tanh(w)dx

< k(2= 0) | i llts =z [ 191 * ((wi +00)* — 63)x
<0y | ¢; ||L4 (as in Lemma 3),

th/al]Xt (¢j)¢?dx<§h2/a,]\¢]|l|4)1|3dx

i,j=1 i,j=1
Ch 4 14
< @;(];(3‘11] I ]l)) | ¢i ||L4r
[ Fog0gi 191 P dxo [ uglax+ [ fugldx (23)

< _/\/Q 9 I° dx+‘7/0”z4’i3dx+/0 (fexi +po) | ¢i |* dx
A A
_/\/Q|¢i |6dx+g/ ‘(Pl |4dx+§/ |(P1 |6dx
+T(0’2 | i H + | fex ||L°°(OooL2 Q) -+l 00 ||L2 Q))
—12 || w; ||L4 +V17 w3¢7idx+/ ggxw‘dx
4

1/12 2v 2
< - H wi ”%4 +3 ! H 4)1 ||%4 +=- 73 ” Sex ||4oo (0,00;,L4(02)) *
Vi Vi

From (20), (22) and (23), we can deduce



Axioms 2024, 13, 440 18 of 47

aaaz 194 sy 3 32 1 6690 ey +22 3 9= 9267 + gy + g)ar
i=1 1] 1
o v 2 bt o2)d
+%.;¢. Qem )2 (07 + ¢igpj + 97 )l
i,j=1;j#i
20 & 3m
S 7? Zl/ | ¢l |6 dx+ H uj ||22 (H ffX Hzoo 000L2 )) + || pO ||%2(Q))
i=
nooA 1
+2(6 +QW+4 Zgh 3“!J+l “]z)+4§fA)) | ¢i ||L4(Q (24)
i=1
Coc C
20 1w ey + o 3 / ;)2 (w? + w0 + )T
ij=1
m C B m
+3d€COi | w; Vw; ||Lz(0) + 2075 ’ %7&1/061]( i — ) (W + wiw; + w?)dx
V12 ZC v} 2C m
_7 722” wi H%‘l 012||¢1 || 0 ”gex ||4°°OOOL4Q)’
4 i=1 Wio i= 12 (@)

with Cp > 0 to be chosen appropriately. In particular, we can deduce

Coc i o, 24 ‘
2 il + =50 Y i W< Y [ (=5 i #0194 )| g1 P dx
i=1 i=1

25)
30’2 LG 1/12 (
Tox Z% I i 11720 —Co— Z% | w; (|74 +Cy,
1= i
2mC0 3m
where C; = 41/12 | gex ||L°°(OooL4(Q)) ﬁ(” fex ||200(0/00;L2(Q)) + || po ”%Z(Q)) and
: o 20yt
9&1) = (%+9w+ﬁ(2 5h(32ij+l?2ji) +4§fAi)+ V;ﬂ/ ), wi th(-) # 0 for an appropriate
j=1 1,2
Cp > 0.
Using a similar argument to derive (A8), we can deduce that
¢ i C()C LG V12
2000 1 i [17aey +—1 0% Z Il i Iy + Z 165 11l 1 1l +Co—5~ 1 Z Il wi [I71 )
i=1 =
(26)

3|9>\

AngE

S (1+ sgn(02 )

[ i 1172 Z i 1172 +Cr-

1

If (¢poi, Uoi, Woi )i=1,m is in a ball B(0, p) of Ky, then (¢o;, toi, Woi)i=1,m is in a ball B(0, 5) of
H,, and then, from (19), (¢;(t), u;(t), w;(t))i=1, is bounded by some constant D > 0 in H,,.

Consequently,
Co C0c7 1 4
8 (5 L 191l +=7 K i sy )
Cx Cocry &
+ﬁo(l Lo + 5 Ll el ) 27)
i=1
<Gt gy (202 + 168 (1 +sgn(6)"))) D,
where By = min(t&, Vcl—z), with 6, = iIIllil;In | géi) .
w v =1,

Then, as in the proof of Theorem 2, we can deduce that if (¢, 1o, Wo;)i=1,m is in a ball
B(0,p) of K, then there exists t, > to, such that for t > t., (¢i(t), u;(t), wi(t))i=1, is in
aball B(0,D,) in K. Therefore, B(0, D,) is an absorbing set in K, for (1)~(6) (and then
(1)-(6) is a dissipative dynamical system in Kj;). The proof is complete. [
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In the sequel, we assume that (¢o;, t49;, Wo; )i=1,m is in a bounded set B(0, p) of K;,, and
then, from Theorem 3, there exists t. > to, such that for t > t., (¢;(t), u;(t), wi(t))i=1,m is in
aball B(0, Dp) of K, where D, > 0 depend on some given parameters of the problem.

6.2. Local Complete Synchronization

In this section, we assume that ¢; = 0 and we consider the local synchronization
solutions of (1), whether the synchronous state is robust to perturbations, whenever the
initial conditions belong to some appropriate open and bounded set. Set ®;; = ¢; — ¢},
Ujj = u; — ujand Wj; = w; — w; on [t*, +-00). Then, (®;;, U;;, Wj;) is a solution of

C,Xa?i_@i]’ — dZU(ICf(X)VCDl]) = (F(x, CP,) —F(x, (/J])) + O’Ui]‘

s Y. (Gidr — Girpr) — k(¥ (wi) — ;¥ (w))),

1<k<m (28)
epdys Uij = c1®ij — bUj; — o + 97) Py,

C7ai} Wij — diU(ICg(X)VWij) = qu)ij - 1/2Wi]‘ + % Z (Gyewy — ijwk),

with the boundary conditions

(ICf.Vquj) -n+ prDi]' =0, onT, 29)

(ICE.VWij) -n+ ngi]- =0, onT.
Theorem 4. Under the assumptions of Theorem 3, if there exist appropriate constants ¥;; > 0 and
31-]- >0,1,j =1,mwith i # j, such that

4pe
K4 3 dEC%S(T) 2
(Ko + 35+ 65 — (1= o2 =~ %) | Wy 12,
¢ 4d§ “37(277% ' 46%) l<1];1117é] v
~Ce 3. (e —mi) | Wij 2 Yo N IW,
1<i,j<m;i#j 1<i,j<m;i#j
and (30)
deC3 ( Ly
171 (c1 + €0)? v3 caftps\a,
(e(x(C—d+7 )+ﬁ) ) L @il
b 4’)/0 1/1/2 EZ 1<1]<m 175]
—(:f,f Z ez] .141] H q)l] H ) Z :ZJ H CDZJ HL2
1<i,j<m;i#j 1<1]<m17é]
D
where Ky = %bCQ(:2K;7P ), e = 8"2 and 0 < 7o, < 1 (which can be appropriately and
3K12

arbitrarily selected), then the response system (1) is local complete (Mittag—Leffler) synchronized in
H,, at a uniform Mittag—Leffler rate.

Proof. Multiply (28) by the function (®;;, U;;, W;;) and integrate the resulting system over

all of () to obtain (according to (29) and Lemma 4)

¢ ¢
Ea (tx+ || q)1] HLZ(Q +df H vq)l] HLZ +pf/ | CI>z] |2 dl' < f/ ikgbk* ij¢k)q>ijdx
1<k<m

+/ (x,¢) — x,gb]))d>1]dx+(7/ ;;; dx—K/ (¢ (0;) — ;¥ () Db,
C
ﬁaa Iy 2 <c1/ U0y jdx — cz/ Ui (s + j)dx — b || Uy |12, 31)
C
200 1 Wi ) +de | Wy I+ [ Wi P ar < —un | W ||L2(Q) 1 [ Wyyx

+m o Z (lewk G]kwk)ledx.

1<k<m
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2,2
Since we have (because, for any (y,z) € R%, —m Y2 —pla™ < 2,72 + Ry +2)? -
| tanh(y) | < 1 and sech?(y) < 1), according to assumption (H1):

2 Z
" ; - 2’72
Pi + ¢
—x (¥ (wi) — ¢ (w)))Pij = —x (11 + 172 (w; + w; ))T]Wijq)ij
Ll

w; + w; ws + w
—k(0+m 12 Lt 12 L+ Ctanh(w;)) | @ [*

1
_K(/O sech ( +SW ) ) 1]4)1 | CDZ] |

i +4’
k(g — 5+ ) | D ’2 +x | Wi [ ¢i ] Dj; | —x (111 + 172 (w; +wj)) : ]W iPij,
(P(Xr¢i) - x/¢] ij = (/ x/ 47] +Sq)1])ds) | ch] |2 (32)
< <_?(¢i +‘Pj +¢ipj) + B) | D ?
«
<@ oD +p) | @yl
$it i 3 2,6 2
s o) Ny < o [ Pt )
24(@ +¢7) | @i 2.
Then (from Young's inequality),
al:+ H qu; ” +df ” vq)z; ” +Pf/ |(I)1] |2 dl’
§
< <K<a—5+2’7—1>+ﬁ> @ 220y +2 [ X (Gud— Gy @ygx+ [ Uy
2 O 1<k<m
3 6 5
+my | Wi W/ﬂ(w + ) de/ ¥+ 97) | @y [ dx, -
3
Lo 11Uy o< 1 / Uyyax+ 2 [ (67 +92) | @ [ dx— 3 Uy I
&
73% I Wi 1720 +e | VWi 172 +pe | I W [ ar
Ce V% 2
1- v 2 / wi — Gjrwy ) Wiidx + D;;
—( You)v2 | W, Ql<k<m Gikwy 7k k) ij 40,12 [ ij ”LZQ

where 0 < g, < 11is any positive parameter (to be chosen appropriately)
Consequently (by summing the first and the second inequalities of (33)),

oy ey || Yy I ) +eps [ @ P ar

4
< €(K(§—5+ 2’%) +B) || @i 1172 +e f/ Z Gik®r — Gjrgr) Pijdx
1<k<m

€C
o | @i 172 'f+ I Ui 1172

3 6
®;d W s 24
et en) [ Uyydx-+ezs | Wi oy +es | (0F + ) | Wy P dx

2
o c 3b
+(—e2+ D) [ (@ +4>%> [ @y P dx— 5 1 Uy o

¢
T8 | Wy 122y +ee || TWy I32y) +pe [ | Wi [2ar
1— ge _ d L o ||?
—( You) | W Z Gikwy ]kwk) ijax + 470,12 | ij ||L2(Q) .
1<k<m v

2
We take € such that —e’g + %2 =0,ie,e= h . From Gagliardo—-Nirenberg inequalities,
we have that there exists C > 0 such that (Vv c H'(Q)) || v || < Cal(l| Vo H3/2 ||

v ||l/2 + v || ) Then,



Axioms 2024, 13, 440 21 of 47

6 6
eiﬂés’(z’?% /Q(w +w?) | W [2dx < er;{zng(ﬂ wi sy + 1l 07 10y) | Wi 340
< Ko [| VW ||i§?0)|\ ||¥?Q +Ko | Wi 1720 (34)
3d
= VWi T2 ) +(Ke 4d4) | Wij 113200y

12
where Ky = Coe—— P D, 2 (since for all k = 1,m, || wy [r4() < Dp)- Thus, the previous
X3K

relations with (34) yleld the following inequalities:

€C
R N Dy gy + 2 | Ui [y +edy | v B2y +eps [ | @y 2ar
< e(k(Z - s+’“>+ﬁ> |0y 22y +eL [ T (G — Gy
j j j
212 Qq<i<m
1+ €0
MR RPN
3d K%,
eIIV i T2y + (Ko + 4d4+ )|| i 120y — IIUz;ll
C
T8 | Wy 122y e || TWy [y +pe [ | W \Zdr
(190 Wy Py + [ 5 (G — G Wy - | 0y
1<k<m 4012
By summing (for all 1 < i,j < m), we can deduce that (according to Lemma 4)
€Cx o 2 B 2
D M L NS D [T YSEc. I i M
1<i,j<m 1<i,j<m 1<i,j<m
n? 1 +eo)?
ver L1193 < (G =0+ 50 +.) + %) ETE
1<i,j<m 1<i,j<m
b
f 2 el] #l] ) I @ ij || ) Z | Ujj Hég
1<z]<m 1<i,j<m
3d, K4 3
+= I VWi 1720 +(Kwo + 1% +€7) | Wij 117200
¢
T X Wil e X VW By e [ X I Wy Par
1<i,j<m 1<i,j<m 1<i,j<m
g
<—(1—7you)2 Y, Wy ||%2(Q) —mi Yo (e — i) | Wy H%Z(Q)
1<i,j<m 1<i,j<m

2

1%
! Yo @y ||%2(Q) :

470,1/1/2 1<i,j<m
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By adding the above two inequalities, we can deduce that

€cy ¢ c
G D K 78 71 +§ﬁ Y. Ui 172 +% Y wy 12200 )

t+
1<i,j<m 1<i,j<m 1<i,j<m

p
tedr Y (1Y e+ 1 @ I )
1<i,j<m dy
d 4
5 L (YW ey + 5 1 W Iy
1<z,]<m
’71 (c1 +€‘7) vt 2
< (e(K(g =0+ 5 )+ B) + +4mm>1§§§m | @i 1220
*egf Z 61] Vl] H ch] ”LZ Ce Z (eijfﬂij) H Wij H%Z(Q)
1<i,j<m 1<i,j<m
T Uy By Kt R e Do) T Wy e
1<i,j<m Ad; 3K 1<ij<m

From the Poincaré-Steklov inequality, we can deduce that

ec ¢
‘;‘j’( Z ( : H ch] HLZ(Q) + || ul] H % H Wij ||%2(Q) ))
1<i,j<m
Clzvs(fo) d, C (%)
PS\ d,
tedi—g DI L[ tr e L Wy 120
Q 1<i, ]<m Q 1<i,j<m
771 (c1+€0)? v
S+5)+ + D
<@ —d+ g+ P+ ST ) B 19yl
_e‘:f 2 61] ﬂz] H q)z] HLZ _ge Z (eij _Vi]'> H Wij HLZ(Q)
1<i,j<m 1<i,j<m
K2, 3
+(Kp + =2 + e—— — (1 — 10.,)12) | Wij 172
4d4 " w22 v 1§§§m ij 120
b
- Y Ui g
2 1<i,j<m ©)
and then,
€ ¢
ST (S 19y Bag) o 1 Ui 1oy + 5 1 Wi ey )
1<i,j<m -
2 2 2 edCse(5-)
Uh (c1+e€0) 1% f~ps\d;
< (e(®k(C—0+7—")+pB)+ + — D
(elxE=d+ )+ B+ S i =) B 19
—er Y. (e — i) || @y H%Z(Q)
1<i,j<m
4 doC2s(F)
3
(Ko + 8% e — (1= 0, )va — —o0 fe ) | Wi 117
v 4d4 azK2n? ! 402 1<§:<m Y IL(0)
b
*ge Z (eij - Vij) H Wij ||%2(Q) 75 Z ” uz; ||L2(Q
1<i,j<m

1<i,j<m

Since, from (30), there exist appropriate constants ®;; > 0 and J;; > 0 such that

4p.
K4 3 d.Cog(F)
(Ko + 2 +e——— — (L= yu)v2 — — ) | Wi 172
Cadt T agry? ! 4€2 l<§<m VIO

—Ce Y (e —pij) I W, = X R I Wy T2

1<i,j<m 1<i,j<m
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(e(r(g ~ 5+’“>+ﬁ> ;

and

(c1 +€0)? v ed;Chs(§ P L)

(e(x(C 5+’“>+ﬁ> -

) L @i lI72 )

4’>/OUV2 62 1<ij<m
_eécf 2 el] #l] H ch] HLZ 2 :l] H CDZ] HLZ
1<i,j<m 1<i,j<m
it holds that (for t > t*)
€cC [«
(X (SN By +E 1 Ui By +5 1 Wy 1220 ))
1<i,j<m . ] (35)
Ca ﬁ 2 v 2
+A31<i2< (5 110y )+ [ Ui ”LZ(Q) +5 Wi lIf2(q) ) <0
SLjsm

2 2
where X = — min (X;;),J = — min (J;) and A3 = min(Z,R,J).
Cy 1<i j<m €Cy 1<i,j<m B

Consequently (from Lemma 6),

€ 2 ‘B ] 2
;i +L | W (¢
1§§-gm< | @5(8) I+ 11 U (1) ey +2 1l Wii®) 2y 6
< X*Egq(=As(t — £)9).

where A3 is the Mittag-Leffler synchronization rate and X* is given by

% €c [ *
X =2( 1 @) oy +2 1 Us(E) oy +2 I W) 22y )

ij=1
- 2 2

Finally, ) (Il @41(t) a0y + Il Uig(t) [y + | Wi(8) [3a(qy) — 0 ast — oo,
ij=1

Corollary 1. We assume that there exists appropriate positive constants N;; and J;, for i,j = 1,m
with i # j, such that

d.C3s(F)

74% ) — Geleij — pif) < —Nij,
2 (Pf

(c1 +e0)? v edfCPs(@)

4y0,v2 2

— (1= 0.V
“37{277% ( 70,1/) 2 — (37)

) —eCsles — pip) < —Jyj,

96Cq
T ( X3KH>2
appropriately). Then, the response system (1) is local complete (Mittag—Leffler) synchronized in H,,
at a uniform Mittag—Leffler rate.

CzD
where Ky, = 4

) e = S;Z and 0 < 7o, < 1is any positive parameter (to be chosen

6.3. Master=Slave Synchronization via Pinning Control

The goal of pinning control is to synchronize the whole of the memristor-based
neural network by controlling a select part of neurons of the network. Without losing
any generality, we may assume that the first 4 (1 < g < m) neurons would be pinning.
Controlled synchronization refers to a case when the synchronization phenomenon is
artificially induced by using a suitably designed control law. In order to explore the
synchronization behavior via pinning control, we introduce the corresponding slave system
to the master system (1) by (for i = 1,m)
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a0+ ¢ — div(Ks(x)V;) = F(x, ¢;) + ol + Zal] x, t)H

w1 G -
+f€x_K¢iT(wi) +Efgi(¢ll'--/¢M)+‘:‘i m QOO (38)
c/586‘+ﬁi =a— bil; — C24~)12 + Cl(f)i in Qe

%g,‘(ﬁ)l,. . .,ZTJm) in Qoo

¢y 0+ Wi — div(ICe(x)VW;) = v1; — 10W; + ex +
where, fori,j = 1,m, &; are reasonable controllers and ajj satisfies the assumption (2). The
initial and boundary conditions of (38) are

(Kf.V;) -n— % Y (p—¢i)=0, on T,
k=1,m
(KE.VZTJZ') ‘n — & Z (ZTJk - ZTJi) = 0, on 1—', (39)
_ m~k=1,m
(i, 113, @;)(0) = (oi, flgi, Wig), on Q.

Introduce now the symmetrlc matrix P = (pjj)1<ij<m such that p;; = 1ifi # jand

m m
pi=— 3, pi Then Z pir(vx — v;) Z Pik k-
k=Lki k=1 =1

Remark 6. We can prove easily that (for V = (v;)1<i<m)

m m m m
Y Y puvgo; = VPV 2 2 oo = VIGV (40)
i=1k=1 i=1k=1
and
m 2 1 m m 2 m 2
Zvi=%(22(vi—vk) +2|Zvi‘ )- (41)
i=1 i=1k=1 i=1

Set ¢, = ¢ — i, wi = 6 — u;, w; = W; — Wi, Po; = Poi — Poi, i = to; — o; and
wo; = Wo; — Wo;-
Thus, from (38), (39), (1), (5), and (6), we can deduce that (for i = 1,m)

Clxang ¢i — dzv(ICf(x)V¢l) = (F(X, (ﬁl) — X (Pl 2 ) al-]-(x, t)H]((P]))
(BT — ¥ (w) + LG = i
+ou; —x(¢¥ (@;) — ¥ (wi)) + p Gi(¢y,- /¢m) + & in Qeo, (42)
g0y i = —bu; — 2, (Pi + ;) + c1¢; in Qe
¢y 0 wi — div(ICe(x) Vw;) = vi¢p; — vow; + %gi(wl, e, W) N Qo
with the initial and boundary conditions of (38) (fori = 1, m)
(K¢ Vo)) f Z — =0, on T,
k 1,m
(Ke.Vw;) -n — % Z (wy —w;) =0, on T, (43)
k=1,m
(¢,(0),4i(0),w;(0)) = (¢, toi, wig), on .

6.3.1. Feedback Control

In this section, we assume that the control is a feedback law.
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Theorem 5. Assume that assumptions of Theorem 3 hold. Suppose that the pinning feedback
control functions Z; (for i = 1, m) satisfy

; /Q‘Pi‘EidX <— Y @l el - ; /0(921' | ¢; | dx, (44)
=1lm 1=1,m

i=1,m

where @y (for j = 1,...,q) and @y; (for i = 1,...,m) are positive constants, and w1 > 0, for
j=q+1,...,m. Then, if there exist appropriate constants es; > 0 and e,,; > 0, fori =1,m,
such that (with ® = (¢;)i=1,m, W = (W;)i=1,m)

Chgemin(dy,
/Qcpt(—egfc— P PY) by L by

m 2ml%,
C3¢ min(d,, 2
+/ wt( - Seg - Shsminlde 2pe) H;m(gj Pe)p_ Dyy) Wilx
m " (45)
> Z (efz H P, ” 2(Q) +ew,i H wi ||L2(Q )
Wl m
and/ 2 0 — 2 al] ])) | ¢i ’ dx =0,
where 0 < o, < 1is any positive parameter (to be chosen appropriately) and
. Ch s s
Pp = diag(®@11, .., @1m), Ly = e diag( Zaljl], .., Zamjlj),
j=1 j=1
2 2 2
Uh (c2 +e0) vy
D= ((e(x({ =0+ —)+B)+ + Ly,
f (( ( (g , 2’72) IB) b 4,)/0,1/1/2)) m (46)
 (Ry+ Ky 3¢ g
Dy = ((Kw + 4d§ 0631{27]:1)' (1 '70,1/)1/2))1771/
L — diag(l ... 1 8c3 0and B — C 96D3ci
m = 1ag( ey ),6—@— an w = Qm

the master—slave systems (1) and (42) can achieve, in H,,,, Mittag—Leffler synchronization via the
pinning feedback control functions (Z;);—1 m.

Proof. Multiply (42) by the function (¢;, u;, w;) and integrate the resulting system over all
of () to obtain (according to (43) and Lemma 4)

2t+2|\¢,|\ +dfz||wl||m)_ LY [ ¢]2df+2/ul¢dx

1<1]<m
# 1 [ (FOx ) — o)t o 1<§<m/ Gty Lo [ wedx
- L [ @) - ¥ ) g % [ L (@l D@~ H(0) i
/Q 1) = aii(x, 1)) Hy (§y) i, @)
1<z]<m

fa;aznuz 12 <c22/u¢,dx—c1):/u¢ Fi+ o dx—bZHuz 122

C
i=1 1<z]<m
m
1) | wi Hiz( =y / Gijw;w;dx + 11 Z/ w;p,dx.
i=1 1<1]<m

By using a similar argument as in (32), we can deduce that
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2
—k($;¥ (@;) — ¢;F (w ))¢1§K(€—(5+2%)|¢i|2+K\wil|¢i||¢i\
¢ + i
2

=11+ m2(wi + @;)) wig;,
(FO i) = FOo @) s < (=5 (@7 + B2 +0d) +B) | ¢, 2< (=2 (@2 +3D) +8) | ¢, (48)

- + 3 ~
—x (171 + 12 (w; +wi))¢l 4)1 wip; < PR | w; >+ ﬂ(@ +¢7) | ¢; |2
1

2
7’60 —|—w w
327]2( )| l|

Then (according to (48), (3), (2), and assumptions (H1)):

2 t+z||¢l 12 Q>+dfzuwl ooy 2= ¥ [ (@ @prdr

1<i,j<m

C

2y /cqw]dxwz/wmz (¢ - (s+”1>+ﬁ>||¢l||
1<11<m

+i i2‘|wi||L2(Q)+i%/( +w)|wl|2dx
i=1 43Ky i—1 X3K<1;

72@/ (@2 + ) | @, |2 dx+% ) leijlj | & H%Z(Q)

=1 1<i,j<m

ooy d~Mj¢z-dx+ﬁ [ Eix,

(49)

1<i,j<m
e [ o ot 2 2 3b
Lo, Z i By < Y2 /Qui¢idx+2—/ @) | Pax—3 2 i ey
=1 i=1 i=1
C m
% I:Jr Z || wl ||L2(Q +de Z || VWi ||%2(Q) Z / w] 2dr
/ 1<1]<m
ge | Giwiwdx— (1 g 2
2 ijWW;ax — ( _701/ %) Z H wi HLZ(Q 4 Z || ([Ji ||L2 aQ
1<1]<m YouV2 i=1

where 0 < g, < 1is any positive parameter (to be chosen appropriately).
Combining the first and second inequalities of (49), we obtain

€c P
S z | ¢ 1220 + fa;ﬂz I i 122000 +edf2 1991 iz 3 2 [ (@i —9)%r
i,j<m
t
(e +2) Z/u¢dx+ Ly /Gl,¢¢,dx+e( (C-o+5 ’71 )+B) ZII 9 I
1<1]<m
2 : d
Z || u; ”LZ Q) Kzﬂ% 1:21 ” wi ||L2(Q) ’721 1/ | wi ‘ X
Ew ~ C
+<—?3+— 2/ (03 +67) | @ 12 dx+ e 2 ity | 9 1200
M q<ii<m
+e—/ ) al]Mqldx—i—Z/uqudx
1<i,j<m
¢
;a‘;az 0t 220 e 3o 1 Vevr [y + 25 & [ (awi = wop2ar
i=1 l<1]<m
2
= 5 [ Gywiwdx— 1—%sz2|| i a0 500, Zu 9 |12

1<1]<m
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By taking € such that
deduce that

6 2 ~2
€E——— w; + W
aﬂ%%4<l :

12
with Kw =Che———

PR
€g + 73

27 of 47

2
9 = 0 and by using similar arguments to derive (34), we can

3d - K

i iy, (G0

DZ

2,270
K3k
Substitute (50) into the previous inequalities

€Cy

- 0 Z ¢ 117

+edy Z | Vo, ||L2(Q

egf Y /Gl/¢ P dx+ Z/ Eigpdx —

1<z]<m

+

.Mﬁ

—_

W T
[
<

AngE

+

I
—

= »p‘

+

1

=

Ch
1

sl

C’Y aa

<& ”1 3
Z / Gijwwjdx — (1 — yo,)12 Z | w; ||

l<z]<m

2
M'Hﬁwwwan)+zwj@
i=1

| Vw; ”LZ Q) +Z Ko +

Emmngﬁwszmm+

LB
3 2%

ZH”i 1220
Pf Y /

1<z]<m

— ¢;)%dr

2
l; (| u; HLZ(Q)
| & 11720

Ki 3 w2
44 ag2ny? HIz(Q)

an%nmw@/zz% )i,

i=1 j=1

Pezf

1<z]<m

—w zdl"

M)

i=1

Adding the above inequality, we can write

ayzf%ww

i=1

+3 Z || Ui HLZ(Q +€dfz | Vo, ”

< €§f Z / Gijp; ¢]dx—|— Ce / Gijw;w;dx

’71
k(L =0+ 2 )+ B)+

A0 1 9 122

c C
2 i B2, +Hmﬁmm

Z || Vw; HLZ(Q
Pe

o Z /wl—w])zdl"

1<i,j<m

2 2dr+

l<1]<m
(c2 +€0)?
b

(51)

P | il

— (=002 [l wi [Page

m m d m ~
+€Ch/QZ(Zaiij)¢idx+1;/Qdi¢idx.

3e
“3K2W2

From (41), we can deduce that
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X (e ECy ¢ ¢
%HZ< | i 2+ i 22y +2 1l w01 [y ))

i=1
d m
2 2
— || Vg‘l’i ||L2(Q) +72;1 l ngi ||L2(Q)

b & ed
S g tor X 1= ) Ry +or L [ (9= ¢pr
i=1 1<i,j<m l<1]<m
d, Pe 2
S | V(wi=w) By +2s [ (w0 —wp?ar
4m 1<§<m Z 17RO T om 1<§<m ]
€
< (:f )3 / Gij¢; ¢]dx—|— ) / Gijwwjdx
]<1]<m 1<1]<m
’71 (c2 + €0)? vi
+Z KE—dt5 ) HB) + +4%VV2>H #: II72(
36
+2 Ky + 4d4 7277% (1=00)12) | 1||
(:-fh m m
+Zi ZE ail;) || ¢; |17 +€* Z;Z ¢dx+2/ul¢dx
1 ] = =1
According to Poincaré-Steklov, we obtain (using the expression of pl-]-)
L ec,x ca, »
%(Z I ;11720 + oy [ o lwi 2 ))

i=1

d m
+;ZHM@Q+JWVZ@% +a |V Ll
=1

1=
C3.emin(dy, py) min(d,, 2
< Ps fPf Y /Pz]¢¢]d 4 Chs e Pe y /pzjwlw]dx

2m£2 1<i,j<m 4dm 52 1<ij<m
‘:f )3 / Gij¢; ¢]dx—|- Y. / Gijw; w]dx
1<l]<m 1<z]<m
FE (el —o+ 1) 4 2T 1o 12
i=1 ﬁ b 4’)/0 1% ¢Z
UNPN K2 3e
L g g~ O el
e Chs o g meo
+Z Z l]] H ¢1 ” +€*/ Z EaijM]')¢idX+ Z/ c,iq)l.dx_
l:1 =1 i=1 ]:1 i=1 Q
Let us put
2 2 2
m (ca+e€0) i
D= ((e(x({ —06+=—")+B) + + I
f (( ( (g s 2’72) IB) b 470,1/1/2)) m
= K3, 3¢
Dy = ((Kw + — 4d4 + m ( - ’70,1/)1/2))17,1,

Lf = 6% diag Z 111]'1]‘, ey Z llm]l])
j=1 j=1

(52)

(53)

(54)
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Then (with ® = (¢;)i—1,;, W = (w;)i=1,m)

« (V- LB 2 7 b ¢ 2
%(Zi( 19 1220y + Il 21 172 | wi 120 )+§Z%|| ui 172
1= 1=
C3.emin(dy,
fé—/¢%—egc— ”ammfpﬂp—q~¢ﬁ¢w
Ja m 2ml?, (55)
c CPS min(d,, 2pe)
-i/wf—ic———qa?——P—D@wm
+e—/ Z Zaz] idx + Z/ Eip,dx.
i=1 j=1
From (44), we can deduce (with P, = diag(@11,. ..., @1))
oec
% (L (G ol oyl gy +5 i gy ) + Z I 1z o
i=1
Q‘f C emin(dy, py)
t PS frPf
S—L¢(—GZG— 22, P —Ds — Ly + Pp) ®dx
¢ CI%S mm(de,Zpe) " " Epd
_ /th( oG- P D) Wk~ /Qi_zl@zi —];(eaal] ) | ¢ | dx.
According to assumption (45), we can deduce that
% ( - “zx ‘ﬁ 2 Cy 2
£ 2 [ P; || - |l ui ||L2(Q) "‘3 | w; HLZ(Q) ))
T ec ,s ¢ (56)
+@2 — || ¢; || 5 | u; H%Z(Q) +% | w; ||%2(Q) ) <0,

i=1

where @ = min(min (ey,; )i, E, min (e, ;) — 2 ). Then, by Lemma 6, we can deduce that

i=1,m €ECy Cﬁ i=1,m Cy
Y (S 1y oy + 2 s gy + 50 101 By ) < XEu(~0(1 — £)%)
= l Ty M) T TWillizg) ) = & Ea )
N €c
where X Z( =l ¢i(ts) HLZ(Q H u;(t) HLZ(Q 7 | wi(ts) ||L2(Q) Hence,

=1
the error system (42) is globally asymptotlcally stable and the system (1) and response
system (38) are globally (Mittag-Leffler) synchronized in H,,; under the feedback controllers
(Ei)i=1,m (at a uniform Mittag-Leffler rate). This completes the proof of Theorem. [
Corollary 2. Assume that the assumptions of Theorem 3 hold. Suppose that the pinning feedback

m
d
control functions E; (for i = 1, m) satisfy assumption (44). Then, if @,; — Z(e%ai]-Mj) > 0, for

j=1
i = 1,m, and if there exist diagonal matrices Ny and N, with strictly positive diagonal terms such
that
G . Chsemin(dy, py) & C2omin(de, 2pe)
—elGg - P—Df—Li+Pp) =Ny, (=26 25— p_
(—e m 2m/l?, f =Lyt Fa) g 4ml?,
Dw) — Ny are positive-defined matrices, where
2 2 2
; C + €0 v
Pw:dlag((oll,....,wlm>, Df: ((6(K(€—§+ ;771)_’_;%)4_ ( 2 ) 1 ))Imr
2112 b 4’)’0,1/1/2
gh s s = I/<\4 3e (57)
Lf :e— diag( ga ”,...,];am]l]) Dy = ((Kw 4d4 +W (1—70,1,)1/2))1,”,
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win € ’ an < < 1l any positive parameter (to ve chosen appropriately),
asb bacZKZ’?% o / g

the master—slave systems (1) and (42) can achieve Mittag—Leffler synchronization via the pinning
feedback control functions (Z;)i—1 m-

Example 1. The pinning feedback control functions (E;);—1 ,, can have, for example, the follow-
- First form: )
i(9;) = —xip;—raisgn(ep;), i=12,....9,

ing forms.
{ i(¢;) —Kpisgn(¢;), i=q+1,2,...,m

where xyj (for j =1,...,q) and ky; (for i = 1,...,m) are arbitrary positive constants, and
k1j = 0, for j = q+1,...,m. We prove easily that E; satisfies the condition (44) (for
i=1,m).

[ [1]

- Second form:

{ Ei(p;) = —rxup; — (k3idg (L0 | @; [)* +x2i)sgn(ep;), i=1,2,...,9,
Ei(¢;) —Kpisgn(ep,), i=q+1,2,...,m

where dg = Zq_ Y if Y1, | ¢; |# 0and dy = 0 otherwise, K1j, k3j (for j = 1,...,q)

and 1p; (for i = 1,...,m) are arbitrary positive constants, and x1; = x3; = 0, for j =

g+1,.
For this example we have if Y1, | ¢; |#0
m (| ;12 q
sgn(9) (L | 5 Py = = 1 9, 121 9, | L | 9
=1 Yl j=1
and then
1 TN £ | 9 1)2
EKangn(‘/’i)(Z | P |)°d Z 31 7 | ¢; |
i=1 =1 Yl ol
q q q
>Y Y il @il @i 1= Y wai | @
j=1i=1 i=1

Consequently, we obtain that

Y [ emix<— ¥ titw) 92— L [ ol ldx
i=1,m i=1,4q i=1,m Q
6.3.2. Adaptive Control
Now, we will consider the case when the pinning controllers are defined as

{ Ei(p;) = —(Rupu(xt)+Gu)p; — Foipai(x, 1) sgn(ep;), i=1,2,...,9, (58)
Ei(¢;) = —Roipai(x, 1) sgn(¢;), i=q+1,2,...,m

where ¢q; and ¢; are solutions of (fori =1, and j = 1,m)

I ¢1i(x, 1) = C:liku L P (x 1), (59)

O aj(x,t) = Lojaj | | (x,1)
and @qk(x,t) = 0 and %y = O, for k = g+ 1,m, with &; > 0, &; > 0, loiand 0 > 0
positive constants (for i = 1,m and j = 1, q). Finally, we consider the following functions
(fori =1, m):
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. _ 5 )2 . = )2
Si(x,t) = (¢1Z(X’2t2 ' P11) + ((PZI(X;Z ‘ ®2;) )
gll @21 (60)

>

= Si(x,t)dx,

i—17/0

where ¢, =0, fork =g +1,m, ¢, >0, fork=1,g9,and ¢, >0, fork =1, m.

Theorem 6. When the assumptions of Theorem 3 are satisfied, the master—slave system can achieve
Mittag—Leffler synchronization via pinning feedback controllers (58) if there are always appropriate
positive constants ey ; and ey, ; (for i = 1,m) such that (with ® = (¢;)i=1,m, W = (w;)i=1,m)

Cpsemin(dy,
/Qq)f(—eif;(;— PN PY) by L Ry

2ml?,
2 .
ty_ Ge Cpg min(de, 2p.)
[ wi(- G- P Da)Wix
(61)
> z epi | @i 1220y +ews | i 122y )
g d
o [ 3R~ L5 M)) 02 0
]'_
where 0 < 7o, < 1is any positive parameter (to be chosen appropriately), € = h, Ky =

2 2
Co :ff 23 the matrices Dy, L and D, which depend on the parameter 7y, are given by (46) and
the matrzx Ry = diag(®1; @y, - - Kim Py )-

Proof. According to (58) and (59), we can have that 8’;}8 (t) < I (from the expression of

S) with
1= 3 [ (D P gy (DT 1)
lql/o (il =) | 91 (1) dx+2/ R2i(@2i(%, 1) = G2:) | @; | (x, D)
:1 LR ) =) | ¢ > (xt dx+z/ Roi (@i (X, t) — Po;) sgn(p; (x, £) ) (x, t)dx

ril/(.)Kllgolz | ;1> (1) dX*Z/ Roiy | @i | (x,1) dx—Z/ Zi(@,) . (x, t)dx
Consequently, we derive (according to (55))
o (3 (5 14y +2 1 i+ 1501 Wy )+ 8+ 5 3 1
= /th( g Chs IT;(%’ZPE)P — D) Wex

m o m Ch d q - )
=, e~ LS Mi) 9 [ ax— Y [ sy |

and then
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« (v eca cﬁ 2 Cy 2 b ¢ 2
(L (5004 P+ ey +5 10 ey ) +8) 5 2w g
1= 1=
(jf Cpsemm(df,pf)
<— [ @(-elc- it P~ Dy = Ly + Ry) bix
62
/Wt gfg Cpsmm(de,Zpe)P_Dw)de (62)
4m/l?,

- /Qi_zlmzmozl- €S Mh)) | g, 1 ax

with R, = diag(&1;¢y;, - - - - K1m Py,,)- According to assumption (61), we can deduce that

x [ en ECy ¢ ¢
(L (G oy + i By +5 w0y 220 ) +S)

i=1

€c Y ¢
+03 (514l +5 I P + 5 1l ) <0

where @ = min(min (ey,; )i, E, min (ey,;) — 2 )-

i=1,m C,B i=1,m Cy
Then, by Lemma 4.3 of [33], there exists a T > t, such that (for t > Tg)
u eca ;3 Cy
I ;1172 i 1720y +5 [l 701 172
< (x +S(t) +h) E (—O(t — t*)"‘),
. _ €Cy 2 ‘g 2 'r .
where X* = 37 (5% | gy(t) [Bagey +2 1l (t) By +5 | wi(t) [Bay) and s any
i=1
positive constant. Consequently, lim Z( | ¢; H )+l ||2 )+ I wi ||2 ) =0.

Hence, the error system (42) is globally asymptotlcally stable and the system (1) and
the response system (38) are Mittag-Leffler synchronized under the feedback controllers
(Zi)i=1,m- This completes the proof of the theorem. [

We end this analysis by the following corollary (of Theorem 6).

Corollary 3. When the assumptions of Theorem 3 are satisfied, the master—slave system can achieve
m

Mittag-Leffler synchronization via pinning feedback controllers (58) if Ko @p; — Y (G%Ziij) >0
j=1

(for all i = 1,m) and if there exist diagonal matrices Ny and Ny, with strictly positive diagonal

(;'e CI%S min(de, 2p.) ng B C3gemin(dy, pf)

4m/l?, 2mlZ
Df—Lf+Rp— ./\/ ¢ are positive-defined matrices.

terms such that — P—Dy — Ny and —e

7. Conclusions

Recent studies in neuroscience have shown the need to develop and implement re-
liable mathematical models in order to understand and effectively analyze the various
neurological activities and disorders in the human brain. In this article, we mainly investi-
gate the long-time behavior of the proposed fractional-order complex memristive neural
network model in asymmetrically coupled networks, and the Mittag-Leffler synchroniza-
tion problems for such coupled dynamical systems when different types of interactions
are simultaneously present. A new mathematical brain connectivity model, taking into
account the memory characteristics of neurons and their past history, the heterogeneity of
brain tissue, and the local anisotropy of cell diffusion, is developed. This developed model
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is a set of coupled nonlinear Caputo fractional reaction—diffusion equations, in the shape of
a fractional-order differential equation coupled with a set of time fractional-order partial
differential equations, interacting via an asymmetric complex network. The existence
and uniqueness of the weak solution as well as regularity result are established under
assumptions on nonlinear terms. The existence of some absorbing sets for this model is es-
tablished, and then the dissipative dynamics of the model (with absorbing sets) are shown.
Finally, some synchronization problems are investigated. A few synchronization criteria
are derived to obtain some Mittag—Leffler synchronizations for such complex dynamical
networks. Precisely, some sufficient conditions are obtained first for the complete synchro-
nization problem and then for the master-slave synchronization problem via appropriate
pinning feedback controllers and adaptive controllers.

The developed analysis in this work can be further applied to extended impulsive
models by using the approach developed in [16]. Moreover, it would be interesting to
extend this study to synchronization problems for fractional-order coupled dynamical
networks in the presence of disturbances and multiple time-varying delays. For predicting
and acting on phenomena and undesirable behavior (as opposed to a synchronous state)
occurring in brain network dynamics, the established synchronization results can be applied
in the study of robustness behavior of uncertain fractional-order neural network models by
considering the approach developed in [61].

The future objective is to simulate and validate numerically the developed theoret-
ical results. These studies will be the subject of a forthcoming paper. According to the
stochastic nature of synapses (and then the presence of noise), it would also be interesting
to investigate the stochastic processes in the brain’s neural network and their impact on the
synchronization of network dynamics.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A

Proof of Theorem 1. To establish the existence result of a weak solution to system (1), we
proceed as in [39] by applying the Faedo—Galerkin method.

Let (@ )x>1 be a Hilbert basis and orthogonal in L2 of V. For all N € IN*, we denote
by Wy = span(w@,,- -+ ,@y) the space generated by (@k)n>k>1, and we introduce the
orthogonal projector Ly on the spaces Wy. For each N, we would like to define the
approximate solution (¢, wN, uN);_; ,, of problem (1). Setting

N N N
o (1) = Lo (Dap, w () = Yo (O@w ul (1) = 3w (e,
k=1

k=1 k=1

where (¢ZN K wlNk wlN k )i—1mk—1 N are unknown functions, and replacing (¢;, w;, U;)i=1m

by ((])lN, wlN, ule)i:l,m in (1), we obtain VI = 1, N and a.e. t € (0, T), the system of Galerkin
equations (Vi = 1,m):
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/Qcaa"o‘+¢f\’co,dx: —Af(<plN,col +/ (F( .,4>f\’)+auN)coldx+/Qfgxcoldx
ge Z/ Lll] (P] (DldX*K/ 4)1 C’Oldx
pf Z / 471 _4)] )(Dldl—'—l- f/ gl 4)1 I ¢m)wldx

z] 1
/ ¢, uNoydx = /Q(a—bu,N — (N2 + 19N )ydx,
QCyagJFZUNCDldX: —Ae(wlN,CDl -|—/ V]QDZN—Vsz)CDldX—f—/QggXCDldX
pe Z/ *w a)ldl“+ /gl w1, - ..,wm)wldx,

1]1

with the initial condition (¢, wN,ulN)(t = 0) = (Ln¢oi, Lnwoi, Lntoi),

(A1)

where (Ln¢o;, LNwo;, Lnuo;) satisfies (by construction)

(Lngio, Lnwio, Lnttio) "—" (i, woi, ttg;) strongly in V2 x L3(0). (A2)
Step 1. We show first that, for every N, the system (A1) admits a local solution. The
system (Al) is equivalent to an initial value for a system of nonlinear fractional differen-
tial equations for functions (4>lN 1 wlN 1 wf\[ 'l)z‘:l,m;lzl,N/ in which the nonlinear term is a
Carathéodory function. The existence of a local absolutely continuous solution on interval
[0, T], with T €]0, T] is insured by the standard FODE theory (see, e.g., [69,70]). Thus, we
have a local solution of (A1) on [0, T].
Step 2. We next derive a priori estimates for functions (¢, wlN ,wN);_1 ;n, which entail that
T = T, by applying iteratively step 1. For simplicity, in the next step, we omit the “~” on T.
Now, we set

N
=Y Oni(Hor vn(- ECNk )@k, en(: ZﬂNk )@k,

where dy i, 7Ty k and { x are absolutely continuous coefficients.
Then, from (A1), the approximation solution satisfies the following weak formulation:

/Q C,XangqblNhNdXI —Af(gblN,hN —l—/‘ F .,4)14]\])+0'uN)hNdX+/. fethdX
gh Z/ az/ 4)] )hNdx—K/ ¢;Y hNdX

pf Z / (Pz _4)] )hNdr+§f/ gl (Plr : (Pm)hNdx

1]1

/chgagﬁ,ufvel\;dx:/n(a—bu —c2(pMN)? + 19N )endx, (A3)

/()c783+wf\]dex: —A(w IN,VN +/ v1¢N—v2wN)dex+/ QexVNAX
pe Z/ —w del"+§e/ Gi wl,...,wm)dex,

z] 1
with the initial condition (¢N,wN,ulN)(t = 0) = (Ln¢io, Lnwio, Lntio)-

Take (hy, vy, en) = (¢N, wN,uN) and add these equations for i = 1, m.
We obtain, accordlng to Lemma 4 and assumption (H1),
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59 2 10 Wiy +r L1 V97 I +45 3 [0 oPar
- m 2
;/ (x9N )pNax + L Z/cmcpz |2dx+2/fex¢Ndx—7nH2 | Gilg} — N

ij=Lj#i

+ag/ u ¢gvdx_;<2/ [N P+ S 3 [ a0 g,

1] 1
c m
Eﬁaagnuﬁn <a2/ Ndx—bznuNn +clz/¢zu dx—czz/ [ [ widx,
1=
e iu 0] 22 +4 ZH Voo (2 +1% f (wN — wN)2dr
2 0" ¢ 2m = Jro '
i=1 i=1 i,j=1

<—v22|\wN|| +§62/5,,|w |2dx+2/gexw dx
/Gz; —w; de—l—VlZ/w ‘PNdx
z] 1;j#i
From Lemma 3 and assumption (H2), we can deduce that

/|4>ZN 2 (04 ol +ma(w))? + g tanh (w})dx < 8 || 9 22,
G 3 [ st o) >4>1dx<§h 3 [l lof 111 e | dx

1] 1 1] 1
- 2m 2 2 al]_'_lz ]1>> H (PZN ||%2(Q)
i=1 j=1
v
JoFosalielaxro [ el d"*/ fugNax < =5 [ 19N [Fax+ 5 ) 22 (A%)

0 1% A,
+ﬁ || fex ||L2(Q) + | | (H ©o ||L2(Q) —1—5(%4_ E) ),

cl/ﬂfpiNulNdx—cz/ |¢1N 2 uNdx+a/ uNdx —b || ul ||L2 Q)

202 242 | Q 2c3
< By 2N gy + b 2 g 2,

where 6y = ﬁ, Ow = K(7726(2) + { —6) and v > 0 to be chosen appropriately.
Consequently (from the assumption (13)),

€Cu ~n N N €A ¢ N |4
amzwl 12 +edfz||v¢z I —2/ ¢ 1 dx
a
Ty / oY — gNyar+ =L / Gij(# — )P
ij 1
¢
< ez (B + 5 + fm—z aﬁzzaﬂ)) || @N 20
1,02 5 v & N 12 (A9)
rem(go (24 2) |m+ﬁ||fex||z 10110 ) + €5 1 1 iz
c 5b 2¢2
2 z|| u ey < =5 L 14 o) 1z\|¢ 20

2ma Q
22/|¢N|4d+ b| |

and
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¢ 1]
73 EHWNH +d2||VwNH +22HwN|| 12(00)
=1
m
Z / 2dF+ Y / Gij( —w}-\])zdx (A6)
/] 1 1] 1;j#i Q

11 N m 2
< 7 l; | ¢; ”LZ(Q) +172 | Sex ||L2(Q)

with the constants € > 0 chosen appropriately and 7, such that 7, < vy — % max Jj;

i=1,m
(by hypothesis).
Choosing € and v such that Ag = < — 22 > 0and vy = % — £ > 0, we can deduce,
by summing the previous three mequahtles
€c il Oy &
e “zw 122 3’32 1Y Iz +5 Lo 0l (o)
1 i=1
m
v2
+vo Z i 1172 > 2 o 72y +edy Z IV 172y +de Z I Ve 17
i:1 i=1
Ly €¢
Z 2, |¢N Fax+ Lty [ (¢?f—¢?>2dr+2—f / Gij(g) — 9l (A7)
= Jr
ij=1 i,j=1;j#i
Ny2 Ge \- N 2
2 ar+ 2= Y /G(w — wN)2dx
m iz 1/ 2m ;G o R I
m
<y /Q(—?\o 9N 1+ 401 9 Px+Go,
i=1
1 1 .0% A m
where Gy = G(ﬁ | fex ||2°°(O,oo;L2( + 1l eo [z +ﬁ(£ +§)2))+172 |
2 d6; = e(by + — gf 5’1 2 Vl % g
Qex ||L°°(0,oo;L2(Q)) an = €(0y + 2)\ + Z ajj + a],)) + = b ecause

Vo € IR, we have

0; 62 62
Ao lv[*46; | v [P= —Ag(lv P +75)2 = 6; | v >+ < —6; | o[>+ if 6; > 0 and
Ao Ao Ao

Ao [o|* +6; | v P<6; |0 > if6; <0,

we can deduce that

2

Y
“Ao ol +6i [0 P<— |6 |0 > +(1 +Sgn(9z'))271\0 (A8)

and then we have (from (A7))

5 ecvc N Lﬁm N |2 Cy N
EII o Iz +5 L Il Iz an [
i=1
€c ¢ G &
+M<J2||¢£V||22 +—ﬁz|\u£“uz +§z| o) |17

z l

+edfz|| wff . +dez|| v |12 Z / @Y [fax  (ao)
Z / o —9)) 2dr+2§f / Gij(97 — ¢}')%dx

z; 1 ij= 1,];&1

Z / N)24r + / Gij(w) — wNdx < Gy,

M= M i=Tj#i
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2

where G; = Go+ | Q | 121 (14 sgn(6 ))29/\ S A= m1n(2L9|, l’z, lc’g) and | 8 |= min;_1 (]
0; 1)
In particular, we have

v €0 & N 112 6 o N 12 T v
% (S 119N By + 2 L I By + 52 0l o)
i=1 . i=1 . i=1
A €cy N 2 ﬁ uN Sy <G
+A1( > Y. o HLZ( 2 Yo lu | ZHw HLZQ)) 1-
i—1 i—1

From Lemma 6 and the uniform boundedness of (¢, uN, wN);_ ,,(t = 0) (from (A2)), we
can deduce that (forall t € (0, T))

(A10)

No:(;nwwam+zyu?mmn+;nwﬁ@mﬁmsc (A1)

and then ¥N (t) is uniformly bounded with respect to N. This ensures that, fori = 1,m,
the sequences (¢N, ulN, wN) are bounded sets of L®(0, T; L2(Q2)). (A12)

Moreover, from the inequality of (A9), relations (A32) and (A2), we have that for t € (0,T)

t 1 1
(since/ (t—1)* ldr = ft"‘ < ;T"‘)
0

e)\
T(a)¥N(t) —i—Z/ (t—1)* eds || VoI |72 () T | VwN ||%2( / | pN |* dx)dT

(A13)
< C1
We can deduce that
¢ VN2 t_l tt a—1 vNZ dt<C
510N ) 0 = 1 f, 6= 0TI VN [ dr< G
1 £ _
15 [ Vool iz | (0 = g = I Vol g dr <G a1y
1yt
o N |14 _ x—1 N
15 [0 M) |0 = gy [ =0 10N i) < Co
Hence (sincea — 1 < 0and (t — ) € (0,T),V7 € (0,¢) then (t — 7)1 > T*1)
the sequence (w) is in a bounded set of L?(0, T; H(Q})) and (A15)
the sequence (¢;") is in a bounded set of L*(0, T, L*(Q)) N L2(0, T; H(QY)).
Now we estimate the fractional derivative 95, (¢; N wZN , uN ).
Taking hy = 0+4>i , VN = 80+w and ey = a§+u in (A3) and using uniform

coercivity of forms A ¥ and A,, we can deduce
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m d m
@ 2119507 lizgo) +i285‘+ V97 720y 2 [0 = oM)as (@ — g} yar
1] 1
<2/ x, N 86‘+q>lNdx—|—UZ/ ulNap. pNax + gf Y. [ Gyolan. gl
1] 1
+Z/ fexd%,pNdx — KZ/ oNY ag+¢f\’dx+ Sy’ ) / a;j(x, t) Hj(¢; Nyog. ¢Ndx,
z] 1

cﬁE 3 1B, +b2/ Moz, uN dx
= =
<c i/ N "0‘+uNdx—c22/ | pN |2 88‘+uNdx+aZ/ o8, ulNdx,
CWZ | 08w s+ Za o VN 2, + ]Zl/ &, (] — wN)dr
+1/22/ wNog, wNdx

m
/Gl]wNa"‘+wf\]dx+vlz/Q¢i 0+dex+Z/ Sex0+ W; Ndx.
i=1

(A16)

ij=1
According to assumptions (H1)-(H2) and the boundedness of function tanh, we obtain
from (A16) that
de & p
SN iz 9. 190 ooy +2 Y 05, 1 (9N —9) Iy
i=1 i=1 n; J=1

*Z/Fl x, ¢N) a‘(’)‘+¢Ndx
SCL [ ol Lox L+ 1+ 1Y 1) 1250 |

PO L [ 10 Pt 1o o) P Il )90 | dx
sz/ Gy Il o 1] 3.9 | d,

i,j=1
Cﬁ2|‘ao+uN|| 2/ag+||uNH dx<C52/ 1+‘¢1 ‘2+|¢ZN|)‘80+14N|dX
cyz || a0+wN 2. +Ezao+ | Vo oy +25 3 05 | (@ ) 2y,
i=1 z] 1

V2

C‘f 2/ |GZJ||wN||a+wN|dx+c62/ (18 1+ ger )| 310 |

1]1

Then, from (A12)-(A15), the regularity of (03, fex, gex), and the continuous embedding of
H' in L%, we can derive (according to Young and Holder inequalities)

¢ m d m
5 L1950 I +5 Lo 1 Vo o + DLy o 1 0N — o)) e
1= 1=

1] 1
- Z/()Fl(x/¢f\])ag+4’f\]dx
i=1
< Cr(+ 11N Iaiey + 19N a0 124y + 10N oyl @ o)),
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g m pm

Eﬁ Z H aO+MN ” +§ 2/ ag+ ” ”N HLZ(Q C8(1+ ” leN ”iﬁg))r
lr:nl }t’l Q

C

> 21 18- 172 +& Zlam I Vo |17, 218 or Il () — ') [IZ2
i= i= 11

V3
+3 Za + | wN ||L2(Q < Co.
i=1

Moreover, since —Fj is an increasing function, then the primitive —&f of —F; is convex.
Hence, from [68], we can deduce (since —Fj is independent on time)

=0 ([ €rlooMax) < — [ B( @M plax. (417)

Now, we estimate the following term

e [ag+ e dx} = [ &l e ax— [ (oM (0)ax

From (H2) we have &¢(,¢) < C(| ¢} [> +1) and —&¢(,¢'(0)) < C(| ps | + |
¢N(0) [*) and then (according to the regularity of ps and (A12))

B [38 [ £rCoax] () < Ciot1+ 1 9710) I o) (A1)

Consequently,

L dy "
5 LI 113500 Iaey) (0 +5 1 1 ol (0)
i=1 i=1

scnfm 1 9N (0) () + I 9V ©0) lin ) + Coalie [I1 68 126l @ ()] (8

- +Cra (13 Il ¢ ||L4(Q]<>+Ig+[n¢3“ eyl o 1240)] )), (A19)
?ﬁf&[namuw ]<t>sc14<1+\|ui<>|| +13+[||¢1N IO
N g [0l a0+ % znw ) 220y < Crs (14 | 0N (0) 3 )

i=1

According to (A12)—(A15), the continuous embedding of H! in L, and the uniform bound-
edness of quantities ¢ (0), wN (0), and w¥ (0) in H!, we obtain from the third equation of
(A19) that the sequence (w!) is uniformly bounded in L* (0, T; H!(Q))) and we can derive
the following estimate (for all t € (0, T)):
- N 12

o X216 112691 iz} () + 2 | VoM ) 1172
¢ ZI | 9% uNH ol <C A20
p 2. to+ |l 9o+ = (A20)

¢y 215; (1195w 22| () + e Z | Vol |20, < C.

Prove now that uY is uniformly bounded in L*(0, T, L3(Q)).

cﬂr1<vc> [0 - b (o +

Since ul satisfies ulN(x,t) = ulN(x,0) —

€1 ‘Pi )(x, T)dT, then, we have
[ (1) 1< Cag (1 (,0) |+/ “1d7+/ O uN (1) | dr)
+c17(/0 (F—1) 1[N 2 (x,7) dr+/0 (1= 9N (x7) | d).
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t
This implies (since / (t— 1) tdr < T%/w)
0

(/. |u¥<nt>|3dx)1/3

< C18<1+ | uN(x,0) ||L3(Q)> +C19{/Q (/ot(t_ 7)1 uN(x,7) |dr)3dx}
+C20[./Q (/Ot(f —T) oM (x,7T) | dT)de}

1/3

1/3 1/3

+Cn [/Q (/Ot(f—T)“_l | N (x,5) |7 ds)adx}

and then (using Minkowski inequality and the continuous embedding of H! in L°)

t
0 o< Coa (1 100 sy + [ ¢ =20 (@) s o
L= iy dr [ (=0 6N By ).

Using (A12), (A14) and uniform boundedness of quantities ufv (0) in L3 (from (A2)), we
obtain || ulN(t) 1300 < Cas (1 + I§. [|| N I3 }(t)) and then (from Lemma 5)

[ (8) |13 < C- (A21)
This estimate enables us to say that
ul is uniformly bounded in the space L*(0, T, L3(Q2)). (A22)

In order to prove that the local solution can be extended to the whole interval (0; T),
we use the following process. We suppose that a solution of (A1) on [0, Ty] has already
been defined and we shall derive the local solution on [Ty, Ty, 1] (Where 0 < Ti 1 — Ty

is small enough) by making use of the a priori estimates and fractional derivative 7.,
k
with beginning point T. So, by this iterative process, we can deduce that Faedo—Galerkin

solutions are well defined on the interval (0, T). So, we omit details.

Step 3. We can now show the existence of weak solutions to (1). From results (A12),
(A15), (A21) and (A20), Theorem A1l and compactness argument, it follows that there exist
(¢i, w;; u;) and (s, @;, ;) such that there exists a subsequence of (¢N, wN; ul) also denoted

by (¢N,wN; ulN), such that

i I

(pN, lN,uN) — (¢;, w;, u;) weakly in L®(0, T; V x V x L3(Q))),
(‘Pz ,wN, uN)y — (¢, w;, u;) strongly in (L?(Q))3, (A23)
0+ ( N wIN, ulN) — (§;, @;, i1;) weakly in (L?(Q))3.

First, we show that ( +¢l L0+ wV, 80+u ) exists in the weak sense and that
(0f+ Pi, 05+ wi, O ;) = (¢l,wl,u ). Indeed, we take w € C{°(0,T) and v € V (then
wv € D=L*Q)NL%*0,T;V)).

Then, by the weak convergence and Lebesgue’s dominated convergence arguments,
we have

(Pi, wo)y p = hm / / 1ok N (x, t)v(x)dxdt

= lim / (/ 1)os. N (x, t)dt)v(x)dx

N—o0

= _Alzlglo D"‘_ (/ N (x, t)v(x) dx)dt—Ig+"‘w(0+)/ﬂ¢f\](x,0)v(x)dx (A24)

- _/TD"‘_ (/ ¢i(x, t dx)dt—11 (0+)/()¢i(x,0)v(x)dx

- / / (128, i(x, H)o(x)dxdt.
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Consequently, ¢; = 97}, ¢; in the weak sense. In the same way, we prove, in the weak sense,
that (86‘+wi,86‘+ui) = (wl’, ﬁi)-
Consider ® € D(]0, T[) and (hy, vy, en) € Wy, According to (A1), we can deduce that
T N T N T
o [ @0 By it = = [ NOAF B+ [80) [ (oY) +oulhyaxat
m T T
Cn Z/o N(t) /Oal']‘(., t)H]‘((P]N)hNdXdi'—I—/O N(t) /Qfethdth - K/ / ¢;Y hNdXdl'
3 /TN(t) /(¢N — pN)hydr + /TN(t)/ Gi(oN, ..., oN hndxdt
] 0 r 1 ] m Jo a 1 17 r¥Y'm 7

m

Py

m

/()N(t)/()ag‘+uf\7eNdxdt:/()TN(t) '/Q(a—bu — 1 (N)2 + N endxdt,

c7/0 R(E) (3 w0, v )y it = - /O'TN(t)A (@M, v dt+/ / (1N — vowN )vdxdt
/ / QexVNAXdL + Pe Z/ / )deT+ / / Gi(wy, ..., wn)vNdxdt.

According to (A14), (A23) and to density properties of the space spanned by (@),
and using similar arguments as used to obtain relation (A24), passing to the limit when N
goes to infinity is easy for the linear terms. For passing to the limit (N — o0) in nonlinear
terms, which requires hypothesis (H2), we can use the standard technique, which consists
of taking the difference between the sequence and its limit in the form of the sum of two
quantities such that the first uses the strong convergence property and the second uses the
weak convergence property. So we omit details.

Thus, the limiting function (¢;, w;, u;) satisfies the system (for any elements h, e and v
of V)

{0+ Pi, h)y v = —Af(¢i,h +/ o §i) +oui)hdx + = Z/ aij(, t) Hj () hedx

+/fexth—K/(Pl (w;) hdx+pf Z/ — ¢ hdl“+f/ Gi(p1,...,¢m)hdx,

s /Qamuiedx = /Q(a — bu; — co(¢;)? + c10;) edx,
C7<36‘+wi, V>V’,V = —Ae(wi,v) + /Q(Vl(,bi — vzwi)vdx + /Qgexvdx

m
—l—;;j]g/r(wi—wj)vdl"—l—i;/()g,-(wl,...,wm)vdx‘

(A25)

In the case of & > 1/2, the continuity of solution at t = 0 and the equalities ¢;(07) = ¢;o,
w;(07) = wjp and u;(0") = ujg is a consequence of Lemma A2. This completes the
proof of the existence result. For the uniqueness result, let (¢jo, Wio, Uo;, fex, Sex) be given
such that (g0, wio, ug;) € V2 x L3(Q) and (fex, gex) € L®(0, T; L2(Q)), for i = 1,m. Let
(¢§k), wl(k), ui(k) )i=1,m be the weak solutions to (1) (for k = 1,2), which corresponds to data
(¢i0, Wio, Uj)i=1,m, fex and gex. According to Lemma 4 and assumption (H1), we can deduce

(fori =1,m) for (¢;, w;, u;) = ( l.(l) - gz),wgl) - wgz),um — ufz)) the following relation:

1 1 1 1
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%’"% 1 9i 172100y +eg | Vi lI72(0)< / (F(,¢") — F(, ¢ ))4’idx+(7/0 uipidx
iﬁjz [ a0 0") — Hy(of) i

— [ @V¥ (") = 0¥ () gidx

N :
fZ/ — 00t + L [ Gl -
¢
20 | s 220y +0 1w I / (g — a0 + 9 i,
¢
%ag+ | wi || q) Tde || Vw; H ) Tv2 [l wi HLz )
<v1/ piwidx + — Z/ w;)w;dl + == /gl w, ..., Wy)WidX,

(¢i,wi, u;)(t=0)=(0,0,0).
Because for any y € R, | tanh(y) |< 1 and sech?(y) < 1, we can deduce according to
assumption (H1)-(H2) (since wi(k) and (Pi(k), fork = 1,2, are in L®(0, T, H'(Q))))

L oF
[ Fg™) = Fox, ) ux = /Q (] 55000 +spds) | ¢ [ x
<

AS 33((4)1 P+ @7+ 00 +B) 1 P x < B 91 [

1 (1) 2)
—x [ @ @) - o ¥ (@) gidx
Q 1, N i (A27)

— 2_ 1 2

= /((5+172(w +2}7) o + Ztanh(w! M) | ¢ 2 dx
1

—K/Q(/O sechz(w( )+sw,‘)ds)w4>. <p1~dx—1</0(171 +172(w(1) +w ))4) w,gbldx

<G | ¢i ||Lz +Co || 9i 2yl wi ll1agq) +Ca [l @i sl wi ll s
Then, by summing for all 1 < i < m in (A26), we can deduce that (using the Minkowski
inequality, continuous embedding of H' in L*, and boundedness of wl( ) and ¢;
L(0, T, H'(Q2))

fZH Vi II72 Z/ — ;) 2dr+ /Gl] — ¢;)%dx

1]1 1] 1j#i

ag+z||¢z|| ot
u 2
z||4>i||z 1 i gy + Il i (g >+c52||Vwi\|Lz<Q),

C
fa 2””1” Q)+ Z””z” <C62H‘Pz” Q)+C7Z||V¢IHL2

¢ 1/2
'ya 2” wi ” +d€2” Vw; ” + 2” wi HLZQ
m
P v [ wppar+ £ 56 Y [ Gylwi—wpax < G Y Il s 2
mii= M it/ i=1
Consequently,

m
5 (5 2 | i 1220y +e1 - 2 I s 120y +e22 Y Il i 12 )
i=1

€14
+4 zn Vi ) +5 ezn v, |4 (A28)

m

¢ m
<C(3 Y il +elgz|wlup +ezﬁ2|\uln )
i=1 i=1
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d
where €] = % and €, = ﬁ. So

71(” ¢i H%Z(Q) + H wi HiZ(Q) + || Ui ||%2(Q))

<CY I8 11 12y + Il 220y + 1w Iy |-
i=1

m

By Lemma 5, we can deduce Z%(H ¢i H%Z(Q) + || w; Hiz(n) + || u ||i2(0)) = 0 (since
1=

(¢, wi, u;)(t =0) = (0,0,0), for i = 1,m). This completes the proof. [J

Appendix B

The purpose of what follows is to recall some basic definitions and results of fractional
integrals and derivatives in the Riemann-Liouville sense and Caputo sense. We start from
a formal level and, for a given Banach space X, we consider a sufficiently smooth function
with valuesin X, f : t € [a,+00) — f(t) (with —oc0 < a < b < 400). Each fractional-order
parameter 7 is assumed to be in ]0, 1].

Definition A1l. For each fractional-order parameter vy, the forward and backward -yth-order
Riemann—Liouville fractional integrals are defined, respectively, by (t € [a,+o00) and b > a)

1

LU0 = ey [ =0 @ A0 = g [0 fdr, (429)
at _r( ) p s tp- T ) ] ’

) - (7).

o
where T (z) = / e"t?~dt is the Euler T-function.
0

For each fractional-order parameters 71 and 7, the following equality for the frac-
tional integral
LHIEA) = (] (A30)

holds for an Li-function f (1 < g < o0).

Definition A2. For each fractional-order parameter -y, the «yth-order Riemann—Liouville and
yth-order Caputo fractional derivatives on [a, +00) are defined, respectively, by (t € [a, +c0))

d,1- 1 a, [t _
DI = U A0) = gy gy ([ -0

00 =07 | D0 = pits [e-n G e

From (A30), we can derive the following relation

1

F6) = @)+ 11 B S) 0 = @)+ oy [ =07 W fode. (a%)

Definition A3. For each fractional-order parameter y, the backward ~yth-order Riemann—Liouville
and backward yth-order Caputo fractional derivatives, on [a, +oo) are defined, respectively, by
(t € [a,+00) and b > a)

D} £(6) = ~ S (710 = — s e[ (1= 07 f (),

t (A33)
o 1f](t) = — 1 {‘%ﬂ _ —M/t (r— t)’”%(r)dr.
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Remark Al. 1.  Fory — 1, the forward (respectively, backward) yth-order Riemann—Liouville
and Caputo fractional derivatives of f converge to the classical derivative % (respectively, to

- % ). Moreover, the yth-order Riemann—Liouville fractional derivative of constant function

t — C(t) = k (with k a constant) is not 0, since D, C(t) = ﬁ%([;(t —5)7ds) =
k(t—a)~"
T(1—) °

2. We can show that the difference between Riemann—Liouville and Caputo fractional derivatives
depends only on the values of f on endpoint. More precisely, for f € C!([a, +o0), X), we
have (t € [a, +00) and b > a)

DL f(t) =Y f() + LY =02, DY f(y =) f()+ LG =0= A3y

From [71], we have the following Lemma.

Lemma A1 (Continuity properties of fractional integral in L? spaces on (a, b)). The fractional
integral Iaﬁ is a continuous operator from:

(@) LP(a,b)into LP(a,b), forany p > 1;

(i) LP(a,b)into L"(a,b), foranyp € (1,1/y)andr € [1,p/(1 —p)];
(iii) LP(a,b) into COY=1P([a,b)), for any p €]1/7, +oo[;

(iii) L7 (a,b) into LP(a,b), for any p € [1,+o0);

(iv) L™(a,b) into C%7([a,b]).

From Lemma A1 and (A32), we can deduce the following corollary.

Lemma A2. Let X be a Banach space and vy €]0,1]. Suppose the Caputo derivative a;ﬁ f e
LP(a,b; X) and p > %, then f € CO7~1/P([a, b]; X).

We also recall the fractional integration by parts in the formulas (see, e.g., [64,72]):

Lemma A3. Let0 <y <landp,q> 1withl/p+1/9 <1+ . Then

@) if f is an LP-function on (a,b) with values in X and g is an L1-function on (a,b) with values
in X, then

b b
| G gl @)= [ (g0, 1 A1),

i) if f € IV (LP) and g € I, (L9), then / ! f(x), DY g(x))xdt = / b(g(r),Dg, £(1)) xdr.

a

Lemma A4. Let 0 < v <1, g be an LP-function on (a,b) with values in X (for p > 1) and f be
an absolutely continuous function on [a, b] with values in X. Then,

; by g 1= b
@ [ @ f(x),g(r)xdt =~ [ (DL g(x), f(0))xdr + (5" [g)(x), F())xll
6 [ (DL, f2), 50wt = — [ (DY g(), F0)xee + (1 Tg](07), £0)x,
i [(0] f(2),8(0)xdv =~ [ (D7, g(x), f(x) e - (U1 7[gl(a"), fla)x

We end this appendix by giving a compactness theorem in Hilbert spaces. Assume
that ), V1, and Y are Hilbert spaces with

Yo — Y — Y being continuous and )y — ) is compact. (A35)
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We define the Hilbert space W7 (IR; Yy, V1), for a given v > 0, by
W'Y(IR, yO/ yl) == {U S LZ(IR/ yO) | aioof € LZ(IRl yl)}/
. ~ 1/2
endowed with the norm || v |lywr= (|| v ||L2(]R,y0) +T|"o HLZ(]R,yl)) .
For any subset K of IR, we define the subspace W}, of W7 by
WY(R; Yo, 1) = {v € WY(IR; W, V1) | support of v C K}
As, e.g., in [39], we have the following compactness result.

Theorem A1l. Let )y, V1, and Y be Hilbert spaces with the injection (A35). Then, for any bounded
set K and any «y > 0, the injection of W} (IR; Vo, V1) into L2(IR; Y) is compact.
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