
Citation: Aljohani, S.S.; Sögütcü, E.K.;

Rehman, N.u. Center-like Subsets in

Semiprime Rings with Multiplicative

Derivations. Axioms 2024, 13, 448.

https://doi.org/10.3390/

axioms13070448

Academic Editor: Fabio Caldarola

Received: 6 April 2024

Revised: 14 June 2024

Accepted: 24 June 2024

Published: 2 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Center-like Subsets in Semiprime Rings with
Multiplicative Derivations
Sarah Samah Aljohani 1,† Emine Koç Sögütcü 2,† and Nadeem ur Rehman 3,*,†

1 Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;
sjohani@psu.edu.sa

2 Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey;
eminekoc@cumhuriyet.edu.tr

3 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
* Correspondence: nu.rehman.mm@amu.ac.in
† The authors contributed equally to this work.

Abstract: We introduce center-like subsets Z∗
◦ (A, d),Z∗∗

◦ (A, d), where A is the ring and d is the
multiplicative derivation. In the following, we take a new derivation for the center-like subsets
existing in the literature and establish the relations between these sets. In addition to these new
sets, the theorems are generalized as multiplicative derivations instead of the derivations found in
previous studies. Additionally, different proofs are provided for different center-like sets. Finally, we
enrich this article with examples demonstrating that the hypotheses we use are necessary.
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1. Introduction and Basic Results

Consider an associative ring A with its center located at Z . In this ring, given any ele-
ments ℓ and η, we define [ℓ, η] as the commutator ℓη − ηℓ and ℓ ◦ η as the anti-commutator
ℓη + ηℓ. It is worth noting that a ring A is classified as prime if ℓAη = (0) implies that
either ℓ or η is zero. Similarly, A is termed semiprime if, for any ℓ ∈ A, ℓAℓ = (0) implies
that ℓ itself is zero. These definitions and concepts are significant in understanding the
properties and behavior of elements within the ring A. An additive mapping d : A → A is
called a derivation if d(ℓη) = d(ℓ)η + ℓd(η) holds for all ℓ, η ∈ A. In the paper by Daif [1],
a concept known as a multiplicative derivation was introduced. A mapping d : A → A is
classified as a multiplicative derivation if the condition d(ℓη) = d(ℓ)η + ℓd(η) is satisfied
for all elements ℓ, η in the ring A. Note that these maps are not additive. Considering a ring
A = C[0, 1] which consists of all continuous functions mapping the interval [0, 1] to either
real or complex numbers, we define a map d : A → A as follows:

d( f )(ℓ) =

{
f (ℓ) log| f (ℓ)| if f (ℓ) ̸= 0,
0 otherwise.

Although d is a multiplicative derivation, it fails to be additive, meaning that it does
not satisfy the complete definition of a derivation, that is, the multiplicative derivation is
more general than the concept of derivation.

Numerous findings in the literature have affirmed that certain subsets of a ring A,
determined by certain conditions of commutativity, are required to align with the center
Z . These subsets are termed center-like subsets. One example of such a set is denoted as
H(A, d), defined as the set of elements η ∈ A such that ηd(ℓ) = d(ℓ)η for all ℓ ∈ A, where d

represents a derivation. This set was introduced by Herstein, who demonstrated in [2] that
if A is a prime ring free of 2-torsion, then H(A, d) coincides with the center Z of the ring.
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In [3], Herstein stated that the hypercenter

S(A) = {η ∈ A | ηℓn = ℓnη for all ℓ ∈ A for some n = n(η, ℓ) ≥ 1}

coincides with the center Z(A) of A. In [4], Chacron stated that the cohypercenter

T(A) =
{

η ∈ A | [η, ℓ− ℓ2 p(ℓ)] = 0 for all ℓ ∈ A and p(ℓ) ∈ [ℓ] depends on (η, ℓ)
}

Several generalizations of the center of a ring have been introduced by Giambruno [5],
who defined the enlarged hypercenter of A to be the set

{a ∈ A|aℓn = ℓma for all ℓ ∈ A for some n = n(a, ℓ) ≥ 1 and m = m(a, ℓ) ≥ 1}

and showed that it is equal to Z when A has no nonzero nil ideals. Moreover, he defined
the generalized center of a ring A as

g.c.(A) = {a ∈ A|(aℓ)n = (ℓa)m for all ℓ ∈ A for some n = n(a, ℓ) ≥ 1 and m = m(a, ℓ) ≥ 1}

and proved that g.c.(A) = Z if A has no non-zero nil right ideals.
In [6], the authors proved that a semiprime ring must be commutative if there exits a

derivation d on A such that [ℓ, η] = [d(ℓ), d(η)] for all ℓ, η ∈ A. Motivated by these results,
ref. [7] defined the following subsets of a ring A equipped with a derivation d : A → A:

Z∗(A, d) = {η ∈ A | [ℓ, η] = [d(η), d(ℓ)] for all ℓ ∈ A}
Z∗∗(A, d) = {η ∈ A | [ℓ, η] = [d(ℓ), d(η)] for all ℓ ∈ A}
Z1(A, d) = {η ∈ A | [d(ℓ), d(η)] = [d(η), ℓ] + [η, d(ℓ)] for all ℓ ∈ A}.

Hence, it has been proved that if A is a semiprime ring, then Z∗(A, d) = Z∗∗(A, d) =
Z(A). Moreover, if A is a prime ring, then Z1(A, d) = Z(A). Based on these studies,
Idrissi et al. [8] defined the following center-like subsets:

Z+(A, d) = {η ∈ A | [ℓ, η] + [d(η), d(ℓ)] ∈ Z(A) for all ℓ ∈ A}
Z−(A, d) = {η ∈ A | −[ℓ, η] + [d(ℓ), d(η)] ∈ Z(A) for all ℓ ∈ A}
Z∗−(A, d) = {η ∈ A | [d(ℓ), d(η)]− [d(η), ℓ]− [η, d(ℓ)] ∈ Z(A) for all ℓ ∈ A}

where d is a derivation of A. Hence, they proved that if A is a 2-torsion-free prime ring,
then Z+(A, d) = Z−(A, d) = Z(A). Moreover, if d ̸= 0, then Z∗−(A, d) = Z(A).

Nabiel [9] defined the following center-like subsets:

Z∗∗(A, T) = {η ∈ A|[ℓ, η] = [T(ℓ), T(η)] for all ℓ ∈ A}
Z∗∗∗(A, F, d) = {η ∈ A|[ℓ, η] = [d(η), F(ℓ)] for all ℓ ∈ A}
Z1(A, F, d) = {η ∈ A|[F(ℓ), d(η)] = [d(η), ℓ] + [η, F(ℓ)] for all ℓ ∈ A}

where T a is homomorphism of A and (F, d) is a generalized derivation of A. He also
proved the relations between these subsets and the central subset.

Recently, in [10], Zemzami, Oukhtite, and Bell introduced and studied the following
new centerlike subsets:

Z∗(A, d1, d2) = {η ∈ A | [ℓ, η] = [d1(η), d2(ℓ)] for all ℓ ∈ A}
Z∗∗(A, d1, d2) = {η ∈ A | [ℓ, η] = [d1(ℓ), d2(η)] for all ℓ ∈ A}
Z1(A, d1, d2) = {η ∈ A | [d1(ℓ), d2(η)] = [d2(η), ℓ] + [η, d1(ℓ)] for all ℓ ∈ A}.

They proved that if A is a 2-torsion-free prime ring, ℑ is a non-zero right ideal, there
are d1, d2 derivations on A, and Al(ℑ) = {0} or d2(ℑ)ℑ ̸= {0}, then Z∗(A, d1, d2) =
Z∗∗(A, d1, d2) = Z1(A, d1, d2) = Z(A).
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In this paper, we first discuss the definition of the Jordan product based on the above
center-like subsets. We change the commutator product in these sets and define the new
center-like subsets as follows:

Z∗
◦ (A, d) = {η ∈ A | ℓ ◦ η = d(η) ◦ d(ℓ) for all ℓ ∈ A}

Z∗∗
◦ (A, d) = {η ∈ A | ℓ ◦ η = d(ℓ) ◦ d(η) for all ℓ ∈ A}

where d is the derivation on A. We examine the relationship between the central set of these
sets for both derivation and multiplicative derivation.

Various results in the literature indicate how the global structure of a ring A is often
tightly connected to the behavior of derivations defined on A. Many results in the literature
have proved that some subsets of a ring A defined by certain sort of commutativity con-
dition coincide with its center Z(A). Based on these studies, researchers have discussed
the center set and sets of commutativity conditions, managing to compare each one of
the above subsets with the center of A for the class of prime (semiprime) rings with some
additional assumptions.

Here, we establish relations that have not previously been established between the
center-like subsets mentioned above. In addition, the existing relations are proven for
multiplicative derivations of the semiprime ring.

There is a relationship between these sets, as follows:

Z∗(A, d) ⊆ Z∗(A, d) ⊆ Z∗(A, d1, d2)
Z∗∗(A, d) ⊆ Z−(A, d) ⊆ Z∗∗(A, d1, d2)
Z1(A, d) ⊆ Z∗−(A, d) ⊆ Z1(A, d1, d2)

and
Z∗(A, d) ⊆ Z∗∗∗(A, F, d)
Z1(A, d) ⊆ Z1(A, F, d)

.

Fact: Assuming that A is a semiprime ring, then:
(i) No non-zero nilpotent elements are found in the center of A
(ii) If P is a nonzero prime ideal of A and a, b ∈ A such that aAb ⊆ P, then either a ∈ P or

b ∈ P
(iii) The center of A contains the center of a non-zero one-sided ideal; specifically, the

center contains any commutative one-sided ideal of A.
Without elaboration, the following fundamental identities are employed throughout

this paper:

(i) [ℓ, ηh̄] = η[ℓ, h̄] + [ℓ, η]h̄
(ii) [ℓη, h̄] = [ℓ, h̄]η + ℓ[η, h̄]
(iii) ℓη ◦ h̄ = (ℓ ◦ h̄)η + ℓ[η, h̄] = ℓ(η ◦ h̄)− [ℓ, h̄]η
(iv) ℓ ◦ ηh̄ = η(ℓ ◦ h̄) + [ℓ, η]h̄ = (ℓ ◦ η)h̄ + η[h̄, ℓ].

2. Center-like Subsets in Semiprime and Prime Rings

Lemma 1 ([11],Lemma 2 (b)). If A is a semiprime ring, then the center of a nonzero ideal of A is
contained in the center of A.

Lemma 2 ([12], Lemma 3.1). Let A be a 2-torsion-free semiprime ring and ℑ a left ideal of A. If
a, b ∈ A, then the relation aℓb + bℓa = 0 for all ℓ ∈ ℑ implies that aℓb = bℓa = 0 for all ℓ ∈ ℑ.

In all previous studies, Z∗∗(ℑ, d) has been proven based on Z∗(ℑ, d). In this paper,
it is instead proved by considering the set itself. In addition, the following theorem is a
generalization of Theorem 1 from ([9]) and Theorem 2.1 from ([6]).

Theorem 1. Let A be a semiprime ring, ℑ a nonzero ideal of A and d a multiplicative derivation of
A. Then, Z∗∗(ℑ, d) = Z .
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Proof. We can easily show thatZ ⊆Z∗∗(ℑ,d). Hence, we need only prove thatZ∗∗(ℑ,d)⊆Z.
Let η ∈ Z∗∗(ℑ, d). Per the hypothesis, we obtain

[d(ℓ), d(η)] = [ℓ, η] for all ℓ ∈ ℑ.

Replacing ℓ in this equation with ℓη, we obtain

[d(ℓ)η + ℓd(η), d(η)] = [ℓη, η], (1)

thus,
[d(ℓ), d(η)]η + d(ℓ)[η, d(η)] + ℓ[d(η), d(η)] + [ℓ, d(η)]d(η) = [ℓ, η]η.

Using Equation (1), we have

d(ℓ)[η, d(η)] + [ℓ, d(η)]d(η) = 0.

Writing ℓ for Aℓ, A ∈ A in the last equation and above equation, respectively, we have

d(A)ℓ[η, d(η)] + [A, d(η)]ℓd(η) = 0 for all ℓ ∈ ℑ,A ∈ A. (2)

Taking A for d(η) in (2), we can see that

d2(η)ℓ[η, d(η)] = 0 for all ℓ ∈ ℑ,

thus,
d2(η)ℑ[η, d(η)] = (0),

That is,
d2(η)Aℑ[η, d(η)] = (0).

Because A is semiprime, we must have a family ℘ = {Pα | α ∈ Λ} of prime ideals
such that ∩Pα = {0}. If P is a typical member of ℘, then we have

d2(η) ∈ P or ℑ[η, d(η)] ⊆ P

from Fact (ii). Assuming that d2(η) ∈ P and using Equation (1), for all ℓ ∈ ℑ we obtain

[ℓd(η), η] = [d(ℓd(η)), d(η)]

[ℓ, η]d(η) + ℓ[d(η), η] = [d(ℓ)d(η) + ℓd2(η), d(η)]

[ℓ, η]d(η) + ℓ[d(η), η] = [d(ℓ), d(η)]d(η) + [ℓd2(η), d(η)].

Using Equation (1), we find that

ℓ[d(η), η] = [ℓd2(η), d(η)] for all ℓ ∈ ℑ.

Using the fact that d2(η) ∈ P and that P is the ideal of R, we have ℓ[d(η), η] ∈ P for all
ℓ ∈ ℑ, that is, ℑ[d(η), η] ⊆ P. Either of these conditions implies that ℑ[d(η), η] ∈ P for any
P ∈ ℘. Thus, we can conclude that

[d(η), η]ℑ ⊆ ∩Pα = (0),

and consequently that
[d(η), η]ℑ = (0),

That is,
[d(η), η]Aℓ = 0, for all ℓ ∈ ℑ, A ∈ A.
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Replacing ℓ in this equation with [d(η), η], we have

[d(η), η]A[d(η), η] = 0 for all A ∈ A,

thus,
[d(η), η]A[d(η), η] = (0).

Because A is semiprime ring, we obtain [d(η), η] = 0. Using this equation in (2), we
arrive at

[r, d(η)]ℓd(η) = 0 for all ℓ ∈ ℑ, r ∈ A.

Replacing ℓ in this equation with ℓr, we find that

[r, d(η)]ℓrd(η) = (0), for all ℓ ∈ ℑ, r ∈ A.

Multiplying the left-hand side of the previous equation by r, we have

[r, d(η)]ℓd(η)r = 0 = 0 for all ℓ ∈ ℑ, r ∈ A.

Subtracting the last two equalities, we arrive at

[r, d(η)]ℓ[r, d(η)] = 0 for all ℓ ∈ ℑ, r ∈ A,

hence,
[r, d(η)]ℑA[r, d(η)]ℑ = (0) for all r ∈ A.

Because A is semiprime ring, we have

[r, d(η)]ℑ = (0) for all r ∈ A,

thus,
[r, d(η)]Aℑ = (0) for all A ∈ A.

which implies that
[ℓ, d(η)]A[ℓ, d(η)] = 0 for all ℓ ∈ ℑ.

The semiprime of A indicates that [ℓ, d(η)] = 0 for all ℓ ∈ ℑ; thus, d(η) ∈ Z(ℑ). From
Lemma 1, we have d(η) ∈ Z , while using Equation (1) we have η ∈ Z(ℑ). Again from
Lemma 1, we have η ∈ Z . Thus, we can conclude that Z∗∗(A, d) = Z .

Theorem 2. Let A be a semiprime ring, ℑ a nonzero ideal of A and d a multiplicative derivation of
A; then, Z∗(ℑ, d) = Z .

Proof. We have

Z∗(ℑ, d) = {η ∈ ℑ | [ℓ, η] = [d(η), d(ℓ)] for all ℓ ∈ ℑ}
= {η ∈ ℑ | [ℓ, η] = −[d(ℓ), d(η)] for all ℓ ∈ ℑ}
= {η ∈ ℑ | [ℓ, η] = [(−d)(η), (−d)(ℓ)] for all ℓ ∈ ℑ}
= Z∗∗(ℑ,−d).

Because d is multiplicative derivation of A, (−d) is a multiplicative derivation of A.
From Theorem 1, we can conclude that Z∗(ℑ, d) = Z .

Corollary 1. Let A be a semiprime ring, ℑ a nonzero ideal of A, and d a nonzero derivation; then:
(i) Z∗∗(ℑ, d) = Z
(ii) Z∗(ℑ, d) = Z .

Proof. Every derivation is a multiplicative derivation. Therefore, from Theorems 1 and 2
we can prove that Z∗∗(ℑ, d) = Z∗(ℑ, d) = Z .



Axioms 2024, 13, 448 6 of 13

Theorem 3. Let A be a semiprime ring, ℑ a nonzero ideal of A and d a multiplicative derivation of
A; then, Z∗∗

◦ (ℑ, d) = Z .

Proof. We can easily show thatZ ⊆Z∗∗
◦ (ℑ,d). Hence, we need only prove thatZ∗∗

◦ (ℑ,d)⊆Z.
Let η ∈ Z∗∗

◦ (ℑ, d). Per the hypothesis, we have

d(ℓ) ◦ d(η) = ℓ ◦ η for all ℓ, η ∈ ℑ. (3)

Replacing ℓ in the last equation with ℓη, we obtain

(d(ℓ)η + ℓd(η)) ◦ d(η) = (ℓ ◦ η)η,

thus,

(d(ℓ) ◦ d(η))η + d(ℓ)[η, d(η)] + (ℓ ◦ d(η))d(η) + ℓ[d(η), d(η)] = (ℓ ◦ η)η.

Using the hypothesis, we can see that

d(ℓ)[η, d(η)] + (ℓ ◦ d(η))d(η) = 0.

Taking ℓ for rℓ, r ∈ A in the last equation and this equation, respectively, we find that

d(r)ℓ[η, d(η)] + rd(ℓ)[η, d(η)] + r(ℓ ◦ d(η))d(η)− [r, d(η)]ℓd(η) = 0, (4)

thus,
d(r)ℓ[η, d(η)]− [r, d(η)]ℓd(η) = 0.

Replacing r with d(η) in (4), we have

d2(η)ℓ[η, d(η)] = 0 for all ℓ ∈ ℑ,

d2(η)ℑ[η, d(η)] = (0).

Hence,
d2(η)Aℑ[η, d(η)] = (0).

Because A is semiprime, it must contain a family ℘ = {Pα | α ∈ Λ} of prime ideals
such that ∩Pα = {0}. If P is a typical member of ℘, from Fact (ii) we have

d2(η) ∈ P or ℑ[η, d(η)] ⊆ P.

Assuming that d2(η) ∈ P, we can use Equation (3) to find that for all ℓ ∈ ℑ we have

ℓd(η) ◦ η = d(ℓd(η)) ◦ d(η)
(ℓ ◦ η)d(η) + ℓ[d(η), η] = (d(ℓ)d(η) + ℓd2(η)) ◦ d(η)
(ℓ ◦ η)d(η) + ℓ[d(η), η] = (d(ℓ) ◦ d(η))d(η) + (ℓd2(η)) ◦ d(η).

Using Equation (3), we have

ℓ[d(η), η] = (ℓd2(η)) ◦ d(η) for all ℓ ∈ ℑ.

If we use the fact that d2(η) ∈ P and that P is the ideal of A, we have ℓ[d(η), η] ∈ P for
all ℓ ∈ ℑ, that is, ℑ[d(η), η] ⊆ P. Either of these conditions implies that ℑ[d(η), η] ∈ P for
any P ∈ ℘. Thus, we can conclude that

[d(η), η]ℑ ⊆ ∩Pα = (0).

The rest of the proof is the same as Theorem 1.
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Theorem 4. Let A be a semiprime ring, ℑ a nonzero ideal of A and d a multiplicative derivation of
A; then, Z∗

◦ (ℑ, d) = Z .

Proof. Using the fact that Z∗
◦ (ℑ, d) = Z∗∗

◦ (ℑ,−d) and applying Theorem 3, we obtain
Z∗
◦ (ℑ, d) = Z .

Example 1. Let A = A1 ⊕A2, where A1 is a ring with a non-zero multiplicative derivation δ such
that d2(r1, r2) = (0, r2) and A2 is a noncommutative ring. Then, it is easy to verify that A is not
semiprime. For r = (0, r2), we have r ∈ Z∗

◦ (A, d); however, r /∈ Z , that is, Z∗
◦ (A, d) ̸= Z .

Corollary 2. Let A be a semiprime ring, ℑ a nonzero ideal of A, and d a nonzero derivation. Then:
(i) Z∗

◦ (ℑ, d) = Z
(ii) Z∗∗

◦ (ℑ, d) = Z .

Corollary 3. Let A be a prime ring, ℑ a nonzero ideal of A, and d a nonzero multiplicative
derivation. Then:
(i) Z∗∗(ℑ, d) = Z
(ii) Z∗(ℑ, d) = Z
(iii) Z∗

◦ (ℑ, d) = Z
(iv) Z∗∗

◦ (ℑ, d) = Z .

By removing the conditions Al(ℑ) = (0) or d2(ℑ)ℑ ̸= (0) in ([10], Theorem 1), the
study is generalized to the semiprime ring. Moreover, the following theorem generalizes
Theorem 2.

Theorem 5. Let A be a semiprime ring, ℑ a nonzero ideal of A and d1, d2 two multiplicative
derivations of A. Then, Z∗(ℑ, d1, d2) = Z .

Proof. We can easily show that Z ⊆ Z∗(ℑ, d1, d2). We want to prove that Z∗(ℑ, d1, d2) ⊆ Z .
Letting η ∈ Z∗(ℑ, d1d2), we can obtain that

[ℓ, η] = [d1(η), d2(ℓ)] for all ℓ ∈ ℑ. (5)

Replacing ℓ in this equation with ℓw, w ∈ ℑ, we obtain

[ℓ, η]w + ℓ[w, η] = [d1(η), d2(ℓ)]w + d2(ℓ)[d1(η), w] + [d1(η), ℓ]d2(w) + ℓ[d1(η), d2(w)].

Using Equation (5), it can be seen that

d2(ℓ)[d1(η), w] + [d1(η), ℓ]d2(w) = 0. (6)

Taking ℓ for ℓt, t ∈ ℑ in the last equation, we have

d2(ℓ)t[d1(η), w] + ℓd2(t)[d1(η), w] + ℓ[d1(η), t]d2(w) + [d1(η), ℓ]td2(w) = 0.

Using Equation (6), we can see that

d2(ℓ)t[d1(η), w] + [d1(η), ℓ]td2(w) = 0.

Replacing w in the above equation with ℓ, we obtain

d2(ℓ)t[d1(η), ℓ] + [d1(η), ℓ]td2(ℓ) = 0 for all ℓ, t ∈ ℑ.

From Lemma 2, we have

d2(ℓ)t[d1(η), ℓ] = 0 for all ℓ ∈ ℑ,
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That is,
d2(ℓ)Aℑ[ℓ, d1(η)] = (0).

Because A is semiprime, it must contain a family ℘ = {Pα | α ∈ Λ} of prime ideals
such that ∩Pα = {0}. If P is a typical member of ℘ and ℓ ∈ ℑ, then we have

ℑ[ℓ, d1(η)] ⊆ P or d2(ℓ) ∈ P

from Fact (ii). Assuming that there exists ℓ ∈ ℑ such that ℑ[ℓ, d1(η)] ⊈ P, d2(ℓ) ∈ P. Using
Equation (5), we have

[ℓ, d1(η)] = [d1(d1(η)), d2(ℓ)].

Multiplying the left-hand side of the last equation by Z ∈ ℑ, we can see that

Z [ℓ, d1(η)] = Z [d1(d1(η)), d2(ℓ)].

Using d2(ℓ) ∈ P, we arrive at Z [ℓ, d1(η)] ∈ P for all Z ∈ ℑ, that is, ℑ[ℓ, d1(η)] ⊆ P.
Either of these conditions implies that ℑ[ℓ, d1(η)] ⊆ P, which is a contradiction; thus,
ℑ[ℓ, d1(η)] ⊆ P for any P ∈ ℘. Therefore,

ℑ[ℓ, d1(η)] ⊆ ∩Pα = (0),

hence,
ℑ[ℓ, d1(η)] = (0).

meaning that
ℑA[ℓ, d1(η)] = (0)

and consequently that

[ℓ, d1(η)]A[ℓ, d1(η)] = (0) for all ℓ ∈ ℑ

Because A is semiprime ring, we can see that [ℓ, d1(η)] = 0 for all ℓ ∈ ℑ. Then,
d1(η) ∈ Z(ℑ). From Lemma 1, we have d1(η) ∈ Z . Using Equation (5), we obtain η ∈ Z(ℑ).
Again from Lemma 1, we have η ∈ Z . Thus, we can conclude that Z∗(ℑ, d1, d2) = Z .

Example 2. Let A = A1 ⊕ A2, where A1 and A2 are rings. It is easy to verify that A is not a
semiprime ring with multiplicative derivations d1 provided by d1(r1, r2) = (r1, 0) and d2(r1, r2) =
(0, r2). For r = (0, r2), we have r ∈ Z∗(A, d1, d2); however, r /∈ Z , that is, Z∗(A, d1, d2) ̸= Z .

Theorem 6. Let A be a semiprime ring, ℑ a nonzero ideal of A and d1, d2 two multiplicative
derivations of A. Then, Z∗∗(ℑ, d1, d2) = Z .

Proof. We have

Z∗∗(ℑ, d1, d2) = {η ∈ A | [ℓ, η] = [d1(ℓ), d2(η)] for all ℓ ∈ A}
= {η ∈ ℑ | [ℓ, η] = −[d2(η), d1(ℓ)], for all ℓ ∈ ℑ}
= {η ∈ ℑ | [ℓ, η] = [(−d2)(η), d1(ℓ)], for all ℓ ∈ ℑ}
= Z∗(ℑ,−d2, d1).

From Theorem 6, we have Z∗∗(ℑ, d1, d2) = Z .

Example 3. Let A = A1 ⊕ A2, where A1 and A2 are rings. Then, it is easy to verify that A
is not a semiprime ring with multiplicative derivations d1 provided by d1(r1, r2) = (r1, 0) and
d2(r1, r2) = (0, r2). For r = (0, r2), we have r ∈ Z∗∗(A, d1, d2); however, r /∈ Z , that is,
Z∗∗(A, d1, d2) ̸= Z .
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Corollary 4. Let A be a prime ring, ℑ a nonzero ideal of A and d1, d2 two derivations of A. Then:
(i) Z∗(ℑ, d1, d2) = Z
(ii) Z∗∗(ℑ, d1, d2) = Z .

The following theorems are not true for a semiprime ring. An example of this has
already has been cleared. Thus, the last two theorems are proved for a prime ring.

Theorem 7. Let A be a prime ring, ℑ a nonzero ideal of A and d a nonzero multiplicative derivation
of A. Then, Z1(ℑ, d) = Z .

Proof. It is clear to see that Z ⊆ Z1(ℑ, d); hence, we only need to show that Z1(ℑ, d) ⊆ Z .
Let η ∈ Z1(ℑ, d). Then, we have

[d(ℓ), d(η)] = [d(η), ℓ] + [η, d(ℓ)] for all ℓ ∈ ℑ. (7)

Replacing ℓ in the above equation with ℓη, we obtain

d(ℓ)[η, d(η)] + [d(ℓ), d(η)]η + ℓ[d(η), d(η)] + [ℓ, d(η)]d(η)

= [d(η), ℓ]η + ℓ[d(η), η] + [η, d(ℓ)]η + ℓ[η, d(η)] + [η, ℓ]d(η).

Using Equation (7), we can see that

d(ℓ)[η, d(η)] + [ℓ, d(η)]d(η) = [η, ℓ]d(η). (8)

Writing ℓ for rℓ, r ∈ A, we obtain

d(r)ℓ[η, d(η)] + rd(ℓ)[η, d(η)] + [r, d(η)]ℓd(η) + r[ℓ, d(η)]d(η) = r[η, ℓ]d(η) + [η, r]ℓd(η).

Using Equation (8), we can see that

d(r)ℓ[η, d(η)] + [r, d(η)]ℓd(η) = [η, r]ℓd(η). (9)

Replacing r with η in (9), we obtain

d(η)ℓ[η, d(η)] + [η, d(η)]ℓd(η) = 0.

From Lemma 2, we have

d(η)ℓ[η, d(η)] = 0 for all ℓ, η ∈ ℑ. (10)

Replacing ℓ with ηℓ in (10), we find that

d(η)ηℓ[η, d(η)] = (0) for all ℓ, η ∈ ℑ. (11)

Multiplying the left-hand side of (10) by η, we obtain

ηd(η)ℓ[η, d(η)] = 0 for all ℓ, η ∈ ℑ. (12)

Subtracting (11) from (12), we arrive at

[η, d(η)]ℓ[η, d(η)] = 0 for all ℓ ∈ ℑ.

Because A is a prime ring, we obtain

[η, d(η)] = 0.
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Using Equation (9), we have

[r, d(η)]ℓd(η) = [η, r]ℓd(η),

thus,
[r, d(η)]ℓd(η) + [r, η]ℓd(η) = 0.

that is,
[r, d(η) + η]ℓd(η) = 0.

This implies that

[r, d(η) + η]Aℑd(η) = (0) for all r ∈ A.

Because A is prime ring, we have d(η) + η ∈ Z or ℑd(η) = 0. Because ℑ is a non-zero
ideal of A, we obtain d(η) + η ∈ Z or d(η) = 0. Assuming that d(η) + η ∈ Z , using
Equation (7) we have [d(ℓ), d(η)] + [d(ℓ), η] = [d(η), ℓ], that is, [d(η), ℓ] = 0 for all ℓ ∈ ℑ.
We can conclude that d(η) ∈ Z(ℑ). From Lemma 1, we have d(η) ∈ Z . Using Equation (9),
we obtain

[η, r]ℓd(η) = 0 for all ℓ ∈ ℑ, r ∈ A,

that is,
[η, r]Aℑd(η) = (0).

Because A is a prime ring, we have η ∈ Z or ℑd(η) = 0. Because ℑ is a non-zero ideal
of A, we have η ∈ Z or d(η) = 0. Either of these conditions implies that d(η) = 0. Using
Equation (7), we obtain

[η, d(ℓ)] = 0 for all ℓ ∈ ℑ.

Replacing ℓ by ℓh̄, h̄ ∈ ℑ, we can see that

[η, d(ℓ)h̄ + ℓd(h̄)] = 0,

thus,
d(ℓ)[η, h̄] + [η, ℓ]d(h̄) = 0.

Taking ℓ for ℓw, w ∈ ℑ when using this equation, we obtain

d(ℓ)w[η, h̄] + [η, ℓ]wd(Z h̄) = 0.

Replacing h̄ in the above equation with ℓ, we have

d(ℓ)w[η, ℓ] + [η, ℓ]wd(ℓ) = 0.

From Lemma 2, we have
[η, ℓ]Aℑd(ℓ) = 0.

Because A is a prime ring and ℑ is a non-zero ideal of A, we can see that [η, ℓ] = 0 or
d(ℓ) = 0. We can now define the following two additive subgroups:

A = {ℓ ∈ ℑ | [η, ℓ] = 0} and B = {ℓ ∈ ℑ | d(ℓ) = 0}.

It is clear that ℑ = A ∪ B. Because a group cannot be a union of two of its subgroups,
it must be the case that either A = ℑ or B = ℑ. If B = ℑ, then d(ℓ) = 0 for all ℓ ∈ ℑ.
Replacing ℓ in this equation with ℓr, r ∈ A, we arrive at ℓd(r) = 0, that is, ℑAd(r) = (0) for
all r ∈ A. Because ℑ is a non-zero ideal of A, we obtain d = 0, which is a contradiction;
thus, A = ℑ and we can conclude that η ∈ Z(ℑ). From Lemma 1, we have η ∈ Z .

Corollary 5 ([3], Theorem 2.5). “Let A be a prime ring and d a nonzero derivation of A. Then,
Z1(A, d) = Z .”
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In semiprime ring, we cannot prove that Z1(A, d) ⊈ Z , as the following example shows.

Example 4. Let A = M2(Z) × Z[ℓ] be a semiprime ring and let d : A → A, d(A, p(ℓ)) =
(0, p′(ℓ)) be a multiplicative derivation, where p′(ℓ) is the derivation of p(ℓ). Then, it is easy to

verify that r =
((

2 0
0 3

)
, 0
)

/∈ Z but r ∈ Z1(A, d), that is, Z1(A, d) ⊈ Z .

The following theorem generalizes Theorem 6.

Theorem 8. Let A be a prime ring, ℑ a nonzero ideal of A, and d1, d2 two multiplicative derivations
of A. Then, Z1(ℑ, d1, d2) = Z .

Proof. We can easily show that Z ⊆ Z1(ℑ, d1, d2). Hence, we need only prove that
Z1(ℑ, d1, d2) ⊆ Z . Let η ∈ Z1(ℑ, d1, d2). We can find that

[d1(ℓ), d2(η)] = [d2(η), ℓ] + [η, d1(ℓ)] for all ℓ ∈ ℑ. (13)

Replacing ℓ in the above equation with ℓr, r ∈ ℑ, we obtain

[d1(ℓ), d2(η)]r+ d1(ℓ)[r, d2(η)] + ℓ[d1(r), d2(η)] + [ℓ, d2(η)]d1(r)

= [d2(η), ℓ]r+ ℓ[d2(η), r] + [η, d1(ℓ)]r+ d1(ℓ)[η, r] + [η, ℓ]d1(r) + ℓ[η, d1(r)].

Using Equation (13), we obtain

d1(ℓ)[r, d2(η)] + [ℓ, d2(η)]d1(r) = d1(ℓ)[η, r] + [η, ℓ]d1(r),

that is,
d1(ℓ)([r, d2(η)] + [r, η]) = ([η, ℓ] + [d2(η), ℓ])d1(r),

thus,
d1(ℓ)[r, d2(η) + η] = [η + d2(η), ℓ]d1(r). (14)

Replacing r by rh̄, h̄ ∈ ℑ in (14), it can be seen that

d1(ℓ)[r, d2(η) + η]h̄ + d1(ℓ)r[h̄, d2(η) + η] = [η + d2(η), ℓ]d1(r)h̄ + [η + d2(η), ℓ]rd1(h̄).

Using Equation (14), we have

d1(ℓ)r[h̄, d2(η) + η] = [η + d2(η), ℓ]rd1(h̄).

Taking h̄ for ℓ in the last equation, we have

d1(ℓ)r[ℓ, d2(η) + η] + [ℓ, d2(η) + η]rd1(ℓ) = 0.

From Lemma 2, we have

d1(ℓ)r[ℓ, d2(η) + η] = 0 for all ℓ, r ∈ ℑ,

thus,
d1(ℓ)rℑ[ℓ, d2(η) + η] = (0) for all ℓ, r ∈ ℑ.

Because A is prime ring and ℑ is a non-zero ideal of A, we arrive at

d1(ℓ) = 0 or [ℓ, d2(η) + η] = 0.

Assuming that d1(ℓ) = 0, using Equation (14) we have

[η + d2(η), ℓ]d1(r) = 0 for all r ∈ ℑ.
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Replacing r in this equation with rt, t ∈ A, it can be seen that

[η + d2(η), ℓ]rd1(t) = 0 for all t ∈ A, r ∈ ℑ.

Because A is prime ring, we have [η + d2(η), ℓ] = 0 or d1(t) = 0. Because d1 is non-zero,
we have [η + d2(η), ℓ] = 0. Either of these conditions implies that [η + d2(η), ℓ] = 0 for all
ℓ ∈ ℑ, that is.

[η, ℓ] + [d2(η), ℓ] = 0,

thus,
−[d2(η), ℓ] = [η, ℓ]

Using Equation (13), we have

[η, d1(ℓ)] = −[η, ℓ] + [η, d1(ℓ)]

Therefore, we obtain [η, ℓ] = 0 for all ℓ ∈ ℑ, proving that η ∈ Z(ℑ). From Lemma 1,
we have η ∈ Z .

Example 5. Let A = A1 ⊕ A2, where A1 and A2 are prime rings. Then, it is easy to verify
that A is a prime ring with multiplicative derivation d1 provided by d1(r1, r2) = (r1, 0) and
d2(r1, r2) = (0, r2). We can conclude that Z1(A, d1, d2) = Z .

Corollary 6 ([11], Theorem 2). Let A be a prime ring and let d1, d2 be two derivations of A. Then,
Z1(A, d1, d2) = Z .

In a semiprime ring, we cannot prove that Z1(A, d1, d2) ⊈ Z , as the following example
shows.

Example 6. Let A = A1 ⊕A2, where A1 is a commutative domain with nonzero derivation δ and
A2 is a noncommutative prime ring. Then, it is easy to verify that A is semiprime with multiplicative
derivation d1 provided by d1(r1, r2) = (δ(r1), 0) and d2(r1, r2) = (0, δ(r2)). For r = (0, r2), we
have r ∈ Z1(ℑ, d1, d2); however„ r /∈ Z , that is, Z1(A, d1, d2) ⊈ Z .

Open Problem: Our hypotheses are addressed to center-like sets on prime and semiprime
rings. More general results can be provided when all hypotheses regarding semiprime rings
are taken into account. In this study, the new center-like set was produced using commutativity
conditions. In future studies, the results can be generalized based on the change conditions
in the literature by taking new center-like sets as derivations, generalized derivations, semi-
derivations, and homoderivations in semiprime and prime rings and by taking the center-like
sets provided here as Lie ideals instead of ideals. Center-like sets can be defined as well.
In addition, in previous studies the relations of center-like sets with each other have been
examined under the conditions of the derivatives and new structures we have provided
above. In addition to these studies, if articles [13–15] on rings and semi-rings are taken into
consideration, center-like sets can be studied in these rings as well.

3. Conclusions

In this study, the relationship between center-like sets and the centering set of a
differentiated and multiplicatively differentiated semiprime ring is established. New sets
have been defined and previous sets have been discussed with a different derivative
structures. Additionally, taking into account the existing studies in the literature, results
have been examined for the multiplicative derivatives of semiprime and prime rings.
Examples are provided in the context of each theorem to show that the given conditions are
necessary. In our future work, we plan to generalize the clusters discussed here by taking
new derivatives and Lie ideals.
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Notations

A ring Z center
ℑ ideal [, ] commutator product
S(A) hypercenter ℓ, η, h̄ elements in the ring
T(A) cohypercenter Al(A) left annihilator of A
d, d1, d2 derivation and multiplicative derivation ◦ Jordan product
C[0, 1] all continuous functions in the interval [0, 1]
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