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1. Introduction

Consider two distinct orthonormal bases on the Cartesian plane, denoted by {−−→OA1,
−−→
OB1}

and {−−→OA2,
−−→
OB2}, where O represents the origin. The composition of the basis transformations

{−−→OA1,
−−→
OB1} −→ {−−→OA2,

−−→
OB2} and {−→OA = (1, 0),

−→
OB = (0, 1)} −→ {−−→OA1,

−−→
OB1} can be

expressed as the multiplication of two 2× 2-orthogonal matrices. This leads to the addition
theorem for cosine and sine, as the matrix representing this composition concerning the basis
{−→OA,

−→
OB} is itself an orthogonal matrix. The kernels of the basis transformation integral

operators in infinite-dimensional functional linear spaces involve intricate functions known as
special functions in mathematical physics. Since these special functions are eigenfunctions
of differential operators which are invariant under the associated Lie groups, we have a
direct connection between these special functions, which constitute the kernels, and the
representation of the corresponding Lie group.

In this manuscript, we establish several bases within a functional linear space in
Section 3, analyze the kernels of basis transformation operators in Section 4, and derive
integral relationships pertaining to specific instances of confluent hypergeometric functions

1F1 in Section 5. These functions include Bessel Jν(x), Hankel H(1)
µ (x), and H(2)

µ (x), Whit-
taker Wµ,ν(x), Macdonald Kν(x), and Coulomb Fµ(ρ; x) functions. In [1,2], we used another
approach investigating the kernels of the restriction of representation integral operators to
certain one-parameter groups expressed in various ‘direct’ or ‘mixed’ bases, thereby unveil-
ing additional integral relationships. Let us remember that a group-theoretical approach
to classical Bessel functions (in a wide sense) had been considered in monographs [3,4]
and to some their multi-variable or multi-index analogues and generalizations have been
presented, for example, in [5–7].
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2. The Group G0, Algebra g, and Space L

Let a be an arbitrary square matrix. Let us call a matrix b of the same size an a-matrix
if bTab = a, where T represents the transpose of the matrix. For the case det a ̸= 0, we
immediately obtain |det b | = 1. By selecting different matrices denoted as a, we can derive
diverse sets of well-known matrix classes: orthogonal (a = diag(1, . . . , 1)), symplectic, etc.
The equalities

(bb̂)Ta(bb̂) = b̂T(bTab)b̂ = b̂Tab̂ = a,

(b−1)Tab−1 = (b−1)T(bTab)b−1 = (bb−1)Ta(bb−1) = a

indicate that the set of a-matrices form a subgroup O(1, 2) within the general linear group of
order n, where n × n represents the dimensions of matrix a. Let the symbol G represent the
intersection of O(1, 2) and the special linear subgroup SL(3,R). From the given definition,
it can be deduced that for any b ∈ G, the following equations hold:

b1ib1j − b2ib2j − b3ib3j = sign
(

3
2
− j

)
δij, (1)

bi1bj1 − bi2bj2 − bi3bj3 = sign
(

3
2
− j

)
δij. (2)

Here, δij is Kronecker delta: 0 if i ̸= j; 1 if i = j.
It is demonstrable [8] that the expression for matrix b is given by:

b =

(
b11 A
B C

)
, (3)

where A = C1C2, matrix C1 is orthogonal and C2 ia a positive–definite matrix. The matrix
b relies on b11 and independent parameters of C1 and A (or B), therefore being defined
by three parameters. From Equation (3) (see [8]), it is deduced that the determinant of C
equals b11. This implies that the mapping ι : G −→ U2 = {1,−1} defined by the formula

ι(b) =

{
1 if b11 > 0,
−1 if b11 < 0,

is a group epimorphism. Both cosets of the normal divisor G0 = Ker ι represent connected
components in G.

Let h1(φ) be the matrix of the circle rotation in the plane Ox2x3 through angle φ:

h1(φ) =

 1 0 0
0 cos φ − sin φ
0 sin φ cos φ

.

Let h2(φ) and h3(φ) denote matrices of hyperbolic rotations in the planes Ox1x2 and
Ox1x3, respectively, that is

h2(φ) =

cosh φ sinh φ 0
sinh φ cosh φ 0

0 0 1

, h3(φ) =

cosh φ 0 sinh φ
0 1 0

sinh φ 0 cosh φ

.

Obviously, h1, h2, h3 ∈ G0. The vectors e2,3 = dh1
dφ |φ=0, e2 = dh2

dφ |φ=0, and e3 = dh3
dφ |φ=0

constitute a basis E for the tangent space of the group G0, evaluated at the point id.
The commuting relations of the corresponding Lie algebra g can be expressed as follows:

[e2,3, e2] = e3, [e2,3, e3] = −e2, [e2, e3] = −e2,3. (4)
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The matrices hi (for each i) constitute a subgroup Hi within G0. It is evident that the
group G acts transitively on both the cone X0 : x2

1 − x2
2 − x2

3 = 0 and the hyperboloid
X1 : x2

1 − x2
2 − x2

3 = 1.

Lemma 1. G0 = H1H2H1 = H1H3H1.

Proof. Let St ỹ ≺ G be the stabilizer of the point ỹ = (1, 0, 0) ∈ X1. Given that for any
g ∈ St ỹ, the equality g11 = 1 holds, based on (1) and (2), we can express g as:

g =

1 0 0
0 g22 g23
0 g32 g33

,

where
(

g22 g23
g32 g33

)
is an orthogonal matrix. Thus, St ỹ = H1. Let τ be the bijective map-

ping G/H1 −→ X1, such that τ(g̃H1) = y, where y is the image of ỹ for any trans-
formation belonging to the coset g̃ St ỹ. If g ∈ G0, g ∈ g̃ St ỹ and τ(g̃ St ỹ) = y, then
g = g̃h1. Because g relies on three parameters and H1 is a one-parameter subgroup,
the generator g̃ of the coset g̃ St ỹ ought to be contingent upon two parameters. Let
y = (cosh ξ, sinh ξ cos µ, sinh ξ sin µ). Let us show that g̃ can be written in the form
g̃ = h1(µ)h2(ξ):

h2(ξ)ỹ = (cosh ξ, sinh ξ, 0),

h1(µ)(cosh ξ, sinh ξ, 0) = y.

Therefore, g = g̃h1 = h1(µ)h2(ξ)h1(ν). The second equality of the present lemma can
be demonstrated using the same method.

We denote by X+
0 the subset of the cone X0 that comprises points x, where x1 > 0.

Lemma 2. The semicone X+
0 is invariant under the transformations of the group G0.

Proof. Based on Lemma 1, it is enough to confirm for h1 and h2. For x ∈ X+
0 we have

x1 > 0 and x2
1 = x2

2 + x2
3, therefore, x1 > |x2|. Since

h1(φ)x = (x1, x2 cos φ − x3 sin φ, x2 sin φ + x3 cos φ),

we find that h1(φ)x ∈ X+
0 . Given that

h1(φ)x = (x1 cosh φ + x2 sinh φ, x1 sinh φ + x2 cosh φ, x3),

where cosh φ > | sinh φ|, we can derive that x1 cosh φ + x2 sinh φ > 0. This implies that
g2(φ)x ∈ X+

0 .

Lemma 3. The group G0 acts transitively on the semicone X+
0 .

Proof. We denote by γ1 the circle x1 = 1 belonging to X+
0 . Introducing polar coordinates

on γ1, we write any point x ∈ X∗
0 in the form

x = (r, r cos α, r sin α), (5)

where r > 0. Since

h1

(
3π

2
+ α

)
h3(ln r) (1, 0, 1) = h1

(
3π

2
+ α

)
(r, 0, r) = x, (6)

and
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h1

(
3π

2
+ α

)
h3(ln r) =

cosh ln r . . . . . .
. . . . . . . . .
. . . . . . . . .

,

in view of cosh ln r > 0 the transformation g = h1
( 3π

2 + α
)

h3(ln r) belongs to G0.
Let x̃ ∈ X+

0 . It has been demonstrated that there exists a transformation denoted as
g̃ ∈ G0, such that when applied, it satisfies the condition g̃ (1, 0, 0) = x̃. We thus have
the equality

(1, 0, 0) = g̃−1 x̃. (7)

By substituting (7) into (6), the resultant equation becomes gg̃−1 x̃ = x.

Let f be a function defined on the semicone X+
0 . Let us call this function infinitely

differentiable, if the derivative ∂k1+k2+k3 f

∂x
k1
1 ∂xk2

2 ∂x
k3
3

exists at any point of X+
0 and for any nonnegative

integers k1, k2, k3 such that (k1, k2, k3) ̸= (0, 0, 0). Let σ ∈ C. We call a function f σ-
homogeneous if f (λx) = λσ f (x). Given x1 > 0, this implies that λ > 0.

Let L represent the linear space comprising σ-homogeneous infinitely differentiable
functions on X+

0 . It can be readily verified that the mapping T(g) : L −→ L , defined as
f 7−→ f (gx), constitutes an automorphism of L . Moreover, the function G0 −→ Aut L ,
where g 7−→ T(g), forms a representation of G0.

3. Construction of Bases

For each vector belonging to the above basis E of tangent algebra g, we define the
corresponding infinitesimal operator:

d2,3 = i lim
t→0

T
(

exp(te2,3)
)

f (x)− f (x)
t

, di = i lim
t→0

T
(

exp(tei)
)

f (x)− f (x)
t

.

In this context and throughout, the symbol i denotes the purely imaginary number,
which is the square root of −1. It is easy to find that

d2,3 = i
(

x2
∂

∂x3
− x3

∂

∂x2

)
, di = i

(
x1

∂

∂xi
+ xi

∂

∂x1

)
. (8)

In polar coordinates on γ1 we have d2,3 = i d
dα . Let f↓(α) be an eigenfunction of the

operator d2,3 with respect to the eigenfunction λ and, in addition, a restriction of f ∈ L

to γ1. From the equation i d f↓
dα = λ f↓ we have f↓ ∈ Span

(
e−iλα

)
. From the condition that

f↓(π) = f↓(−π), we can deduce e−2iλα = 1, implying that λ ∈ Z. By introducing n = −λ,
we derive the basis within the space of function restrictions from L to γ1, comprising a set
of functions einα. Considering the σ-homogeneity property for any x ∈ X+

0 :

f (x) = xσ
1 f↓

(
1,

x2

x1
,

x3

x1

)
,

therefore, the functions

f (1)n (x) = xσ
1 einα = xσ

1

(
x2

x1
+ i

x3

x1

)n
= xσ−n

1 (x2 + ix3)
n,

form the basis B1 in the space L .
We denote the hyperbola x3 = ±1 on X+

0 by symbol γ2,±. Let γ2 = γ2,+ ∪ γ2,−. In
hyperbolic coordinates

x1 = cosh α, x2 = sinh α, x3 = ±1 (9)
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on γ2, where α ∈ R, we have d2 = i d
dα . Let f↓ be an eigenfunction of d2 with respect

to value λ and a restriction of f ∈ L to γ2. From the equality i d f↓
dα = λ f↓ we have

f↓ ∈ Span
(
e−iλα

)
, therefore, eiλα, λ ∈ R, form a basis in the space of function restrictions

from L to γ2.
Let us consider the value of f at the point x ∈ X+

0 such that x3 ̸= 0. In case of x3 > 0
we have

f (x) = xσ
3 f↓,+

(
x1

x3
,

x2

x3
, 1
)

,

where f↓,+ is the restriction to γ2,+. In case of x3 < 0 we can write

f (x) = |x3|σ f↓,−

(
x1

|x3|
,

x2

|x3|
,−1

)
.

It implies that

f (x) = |x3|σ δ1,sign x3 · f↓,+

(
x1

|x2|
,

x2

|x3|
, 1
)
+ |x3|σ δ−1,sign x3 f↓,−

(
x1

|x3|
,

x2

|x3|
,−1

)
.

Using the generalized functions [9],

(s)ν
± =

{
|s|ν if ± s ⩾ 0,
0 if ± s < 0,

we obtain

f (x) = (x3)
σ
± f↓,±

(
x1

|x3|
,

x2

|x3|
,±1

)
(double signs ± are consistently employed in same order here and in other instances). This
implies that functions

f (2)λ,±(x) = (x3)
σ
± eiλα = (x3)

σ
± (cosh α + sinh α)iλ

= (x3)
σ
±

(
x1

|x3|
+

x2

|x3|

)iλ
= (x3)

σ−iλ
± (x1 + x2)

iλ

form a basis B2 in the space L .
By analogy, defining hyperbolas γ3,± : x2 = ±1, we obtain a basis B3 in L , consisting

of functions
f (3)λ,±(x) = (x2)

σ−iλ
± (x1 + x3)

iλ, λ ∈ R,

related to the contour γ3 = γ3,+ ∪ γ3,− on the semicone X+
0 .

Let us define the linear subspaces k = Span(e2,3) and p = Span(e2, e3) in g. As per (8),
it follows that so(1, 2) = k⊕ p, where

[k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p.

In view of relations (8), the dimension of maximal commutative subalgebra a in g is
equal to 1. Letting a = Span(e2), we get the following matrix of the adjoint operator ad e2
in the above basis E:  0 1 0

1 0 0
0 0 0

.

Finding the eigenvalues of the characteristic polynomial of this matrix, we obtain

so(1, 2) = Ker ad e2 + V1 + V−1,
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where the root linear subspace Vj consists of a zero vector and all eigenvectors of the
operator ad e2 related to the value j. This implies that the maximal nilpotent subalgebra n

in g can be defined by the equality n = V1, that is, n = Span(e2,3 + e3).
Let us define the subgroup H4 = exp n = {exp

(
t(e2,3 + e3)

)
} = {h4(t)} in G0. It

consists of matrices

h4(t) =diag(1, 1, 1) + t

 0 0 1
0 0 −1
1 1 0


+

t2

2!

 1 1 0
−1 −1 0

0 0 0

+
t3

3!
diag(0, 0, 0) =

1
2

 2 + t2 t2 2t
−t2 2 − t2 −2t

2t 2t 2


and acts transitively on the intersection of the semicone X+

0 and the plane x1 + x2 = 1. We
denote this parabola by γ4.

Letting a = Span(e3), by analogy, we obtain n = Span(e2,3 + e2) and find its exponen-
tial image H5 consisting of matrices

h5(t) =diag(1, 1, 1) + t

 0 1 0
1 0 −1
0 1 0


+

t2

2!

 1 0 −1
0 0 0
1 0 −1

+
t3

3!
diag(0, 0, 0) =

1
2

 2 + t2 2t −t2

2t 2 −2t
t2 2t 2 − t2

.

We denote by γ5 the intersection of the semicone X+
0 and plane x1 + x3 = 1. This

parabola is a homogeneous space of the subgroup H5.
The infinitesimal operator c = d2,3 + d3 associated with the generator e2,3 + e3 within

a one-dimensional subalgebra n exhibits commutativity with infinitesimal operators as-
sociated with all vectors within n. Thus, it qualifies as a Casimir operator linked to the
reduction H4 ⊂ G0.

In horospherical coordinates

x1 =
1 + α2

2
, x2 =

1 − α2

2
, x3 = α (10)

on the parabola γ4, where α ∈ R, we have c = i d
dα .

Let us denote by f↓ an eigenfunction of the operator c with the eigenvalue λ. Suppose

that f↓ is the restriction of function f ∈ L to parabola γ4. From the equation i d f↓
dα = λ f↓

we obtain f↓ ∈ Span
(
e−iλα

)
, where λ ∈ R. It gives the basis in the space of function

restrictions from L to γ4, which consists of functions eiλα.
For any point x ∈ X+

0 where x1 ̸= −x2, considering σ-homogeneity and utilizing
formula (5), we derive x1 + x2 = r(1 + cos α) ⩾ 0. Consequently,

f (x) = (x1 + x2)
σ f↓

(
x1

x1 + x2
,

x2

x1 + x2
,

x3

x1 + x2

)
.

Therefore, the functions

f (4)λ (x) = (x1 + x2)
σ eiλα = (x1 + x2)

σ exp
iλx3

x1 + x2
,

where λ ∈ R, form a basis B4 in L .
By analogy, finding eigenfunctions of the operator d2,3 + d2, which corresponds to the

reduction H5 ⊂ G0, we obtain a basis B5 in L , consisting of functions
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f (5)λ (x) = (x1 + x3)
σ eiλα = (x1 + x3)

σ exp
iλx2

x1 + x3
,

where λ ∈ R.
Upon substituting σ with −σ − 1, the resultant is the linear space denoted as L ∗. Each

f ∈ L has its counterpart in L ∗ as f ∗. The bases B1–B5 are assumed to represent the
equivalents of the bases B∗

1–B∗
5 .

4. Composition of the Transformations B2 −→ B5 and B5 −→ B4

Considering the composition of the integral operators

f (4)µ =

+∞∫
−∞

ε5→4
µ,ρ (σ) f (5)ρ dρ

and

f (5)ρ =

+∞∫
−∞

(ε2→5
ρ,λ,+(σ) f (2)λ,+ + ε2→5

ρ,λ,−(σ) f (2)λ,−)dλ,

we get

f (4)µ =

+∞∫
−∞

 +∞∫
−∞

ε5→4
µ,ρ (σ) ε2→5

ρ,λ,+(σ)dρ

 f (2)λ,+

+

 +∞∫
−∞

ε5→4
µ,ρ (σ) ε2→5

ρ,λ,−(σ)dρ

 f (2)λ,−

dλ.

(11)

Comparing

f (4)µ =

+∞∫
−∞

(ε2→4
µ,λ,+(σ) f (2)λ,+ + ε2→4

µ,λ,− f (2)λ,−)dλ (12)

and (11), we derive

ε2→4
µ,λ,±(σ) =

+∞∫
−∞

ε5→4
µ,ρ (σ) ε2→5

ρ,λ,±(σ)dρ. (13)

In view of equality f ∗(2)λ,+ (cosh α, sinh α,−1) = f ∗(2)λ,− (cosh α, sinh α, 1) = 0, we derive
from (12) that

+∞∫
−∞

f ∗(2)ν,+ (cosh α, sinh α, 1) f (4)µ (cosh α, sinh α, 1)dα

=

+∞∫
−∞

ε2→4
µ,λ,+(σ)dλ

+∞∫
−∞

ei(λ+ν)α dα = 2π

+∞∫
−∞

ε2→4
µ,λ,+(σ) δ(λ + ν)dλ = 2π ε2→4

µ,−ν,+(σ),

where δ is the Dirac function. Therefore,

ε2→4
µ,λ,+(σ) = (2π)−1

+∞∫
−∞

f ∗(2)−λ,+(cosh α, sinh α, 1) f (4)µ (cosh α, sinh α, 1)dα.

Using the substitution cosh α = 1+(t−1)2

2 , we have
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ε2→4
µ,λ,+(σ) = 2σ π−1 e−iµ

2∫
0

t−iλ−σ−1 (2 − t)iλ−σ−1 eiµt dt. (14)

Theorem 1. Let ℜ(σ) < 0. Then,

ε2→4
µ,λ,+(σ) = 2−σ−1 π−1 e−iµ B(−iλ − σ, iλ − σ) 1F1(−iλ − σ;−2σ;−2iµ), (15)

where B is the Beta function.

Proof. Utilizing the equation [10] (Entry 2.3.6.1) on (14) leads us to derive the intended
expression, resulting in Formula (15).

Likewise, we obtain the subsequent equalities through a similar derivation process:

ε2→5
µ,λ,+(σ) = (2π)−1

 +∞∫
−∞

f ∗(2)−λ,+(cosh α, sinh α, 1) f (5)µ (cosh α, sinh α, 1)dα

+

+∞∫
−∞

f ∗(2)−λ,+(cosh α, sinh α, 1) f (5)µ (cosh α, sinh α, 1)dα


and

ε4→5
µ,λ (σ) = (2π)−1

+∞∫
−∞

f ∗(4)−λ

(
1 + α2

2
,

1 − α2

2
, α

)
f (5)µ

(
1 + α2

2
,

1 − α2

2
, α

)
dα.

Theorem 2. Let −1 < ℜ(σ) < 0. Then,

ε2→5
µ,λ,+(σ) = 2σ π−1 (−iµ)σ−iλ Γ(iλ − σ), (16)

where Γ is Gamma function.

Proof. By substituting a new variable t such that cosh α = 1+t2

2 , we obtain

ε2→5
µ,λ,+(σ) = 2σ π−1

+∞∫
−∞

(t)iλ−σ−1
+ eiµt dt = 2σ π−1

+∞∫
0

tiλ−σ−1 eiµt dt.

Then, use of the Laplace transform to the last integral gives the desired result (16).

Theorem 3. Let −1 < ℜ(σ) < 0. For sign λ = sign µ ̸= 0, we have

ε4→5
µ,λ (σ) = −2

√
2

π
ei(λ−µ)

(µ

λ

)σ+1/2
sin σπ K2σ+1

(
2
√

2µλ
)

. (17)

For sign λ = −sign µ ̸= 0, we have

ε4→5
µ,λ (σ) =

ei(λ−µ)

√
2 π

(
−µ

λ

)σ+1/2
cos σπ

[
J−2σ−1

(
2
√
−2µλ

)
− J2σ+1

(
2
√
−2µλ

)]
. (18)

Proof. Introducing a new variable t = α + 1, we obtain

ε4→5
µ,λ (σ) = 2−σ π−1 ei(λ−µ)

+∞∫
0

t2σ cos
(

λt − 2µ

t

)
dt. (19)
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Utilizing the formulas specified as [10] (Entries 2.5.24.4, 2.5.24.7), and applying them
to the integral presented in (19), results in the derivation of both (17) and (18).

Theorem 4. Let κ > 0 and −1 < ℜ(σ) < 0. Then,

4 (−i)σ−iλ sin(πσ)

+∞∫
0

t−iλ e−it2/4 K2σ+1(κt)dt

− iσ−iλ cos(πσ)
∫ +∞

0
t−iλ e−it2/4 [J2σ+1(κt)− J−2σ−1(κt)]dt

=
π Γ(−iλ − σ)

2σ κ2σ+1 eiκ2 Γ(−2σ)
1F1(−iλ;−2σ;−iκ2).

Proof. Let µ > 0. Taking the relationship ε5→4
µ,ρ (σ) = ε4→5

−ρ,−µ(−σ − 1), we obtain from (13)
that

ε2→4
µ,λ,+(σ) = M+(λ) + M−(λ),

where

M±(λ) = ±
±∞∫
0

ε2→5
ρ,λ,+(σ) ε4→5

−ρ,−µ(−σ − 1)dρ.

Choosing new variables t = 2
√±ρ in M±(λ) and supposing that κ =

√
2µ, we

complete the proof.

Remark 1. The result in Theorem 4 can be rewritten in terms of the Coulomb wave function
Fµ(ρ; x) ∼ xµ+1 e−ix

1F1(1 + µ − iρ; 2µ + 2; 2ix).
The particular case λ = 0 in (4) can be expressed in terms of Bessel and Hankel functions.

Indeed, using [11] (Entry 2.6.15.2), we have

M+(0) = −
√

2 π (−i)σ κ2σ+1 ei(σ+1)/2 Γ(−σ)
(

Jσ+1/2(µ) + i Yσ+1/2(µ)
)

= −
√

2 π (−i)σ κ2σ+1 ei(σ+1)/2 Γ(−σ) H(1)
σ+1/2(µ),

where Yσ+1/2 is the Bessel function of the second kind. Also, employing [11]
(Entry 2.12.18.2), we obtain

M−(0) = 2−1/2 π−2 iσ κ2σ+1 cos(σπ) Γ(−σ)
[
e−iσπ/2 J−σ−1/2(µ)− i eiσπ/2 Jσ+1/2(µ)

]
= −2−1/2 π−2 iσ+1 κ2σ+1 cos2(σπ) e−iσπ/2 Γ(−σ) H(2)

σ+1/2(µ).

Moreover, the integral in (14) with λ = 0 can be evaluated using the formula [10] (Entry
2.3.6.2) as follows:

a∫
0

tν−1 (a − t)ν−1 e−pt dt =
√

π Γ(ν)
(

a
p

)ν−1/2
e−ap/2 Iν−1/2

( ap
2

)
,

which is valid for ℜ(ν) > 0. Note Jν(iz) = eiνπ/2 Iν(z).

5. Composition of the Transformations B1 −→ B4 and B4 −→ B5

Considering the operator

f (5)λ =
∞

∑
n=−∞

ε1→5
λ,n (σ) f (1)n
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as a composition of the operators

f (5)λ =

+∞∫
−∞

ε4→5
λ,ρ (σ) f (4)ρ dρ

and

f (4)ρ =
∞

∑
n=−∞

ε1→4
ρ,n (σ) f (1)n ,

we obtain the equality

ε1→5
λ,n (σ) =

+∞∫
−∞

ε4→5
λ,ρ (σ) ε1→4

ρ,n (σ)dρ. (20)

Theorem 5. Let k ∈ N, κ > 0 and 0 < ℜ(ν) < 1
2 . Then,

Wk,ν

(
κ2/2

)
=
[
π ik Γ(ν + k +

1
2
)
]−1

×
[

sin(νπ)

21/2 Γ(ν − k − 3
2 )

+∞∫
0

t e−it2/2 Wk,ν

(
t2
)

K2ν(κt)dt

+
23/2 cos(νπ)

Γ(ν − k + 1
2 )

+∞∫
0

t eit2/2 W−k,ν

(
t2
) (

J−2ν(κt)− J2ν(κt)
)

dt
]

.

(21)

In particular,

Kν

(
κ2/4

)
=
[
π Γ(ν +

1
2
)
]−1

×
[

sin(νπ)

21/2 Γ(ν − 3
2 )

+∞∫
0

t3/2 e−it2/2 Kν

(
t2/2

)
K2ν(κt)dt

+
23/2 cos(νπ)

Γ(ν + 1
2 )

+∞∫
0

t3/2 eit2/2 Kν

(
t2/2

) (
J−2ν(κt)− J2ν(κt)

)
dt
]

.

(22)

Proof. Since

π∫
−π

f ∗(1)k (1, cos α, sin α) f (4)λ (1, cos α, sin α)dα =
∞

∑
n=−∞

ε1→4
λ,n (σ)

π∫
−π

ei(k+n)α dα,

we have

ε1→4
λ,n (σ) = (2π)−1

π∫
−π

f ∗(1)−n (1, cos α, sin α) f (4)λ (1, cos α, sin α)dα.

Using the substitution sin α = 2t
1+t2 , we obtain

ε1→4
λ,n (σ) = 2σ π−1

+∞∫
−∞

eiλt (1 + it)−σ−n−1 (1 − it)n−σ−1 dt.

The value of this integral can be evaluated in terms of the Whittaker function [12]
(Entry 3.384.9). Moreover, ε1→5

λ,n (σ) = i−n ε1→4
λ,−n(σ). Considering Theorem 3 and

Formula (20), introducing new variables t =
√

2ρ for ρ > 0 and t = 2
√−ρ for ρ < 0

and setting k = −n, ν = σ + 1
2 , and κ = 2

√
λ, we get (21).
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Setting k = 0 in (21) yields the Formula (22).

6. Concluding Remarks

We crafted a variety of bases featuring eigenfunctions of Casimir infinitesimal opera-
tors, intricately linked to a reduction in the group of unimodular diag(1,−1,−1)-matrices
to specific subgroups. Through diligent exploration, we uncovered the kernels of base
transformation integral operators and delved into the fusion of these transformations.
By virtue of composition being a closed operation, we unveiled integral relationships for
some select special functions, elegantly encapsulated in Theorems 4 and 5.
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