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Abstract: The fashion apparel industry is facing an increasingly growing demand, compounded by
the short sales lifecycle and strong seasonality of clothing, posing significant challenges to inventory
management in the retail sector. Despite some retailers like Uniqlo and Zara implementing inventory
management and dynamic pricing strategies, challenges persist due to the dynamic nature of fashion
trends and the stochastic factors affecting inventory. To address these issues, we construct a math-
ematical model based on the mathematical expression of the deterministic fashion level function,
where the geometric Brownian motion, widely applied in finance, is initially utilized in the stochastic
fashion level function. Drawing on research findings from deteriorating inventory management and
stochastic optimization, we investigate the fluctuation of inventory levels, optimal dynamic pricing,
optimal production rates, and profits—four crucial indicators—via Pontryagin’s maximum principle.
Analytical solutions are derived, and the numerical simulation is provided to verify and compare the
proposed model with deterministic fashion level function models. The model emphasizes the impor-
tance of considering stochastic factors in decision-making processes and provides insights to enhance
profitability, inventory management, and sustainable consumption in the fashion product industry.

Keywords: fashion products; dynamic pricing; stochastic optimal control; inventory management;
Pontryagin’s maximum principle

MSC: 60H05; 60G15; 49N05

1. Introduction

The surge in personalized consumption has led to a continuous increase in consumers’
demand for fashionable clothing. However, fashionable clothing faces challenges such as a
short sales lifecycle and strong seasonality. In 2023, both Nike and Adidas encountered
excess inventory issues. Nike currently holds inventory worth 9.3 billion, an increase of 43%
compared to the previous year, while Adidas holds inventory worth 6.7 billion, an increase
of 73%. This surplus inventory may result in sluggish sales, excessive capital occupation,
and profit decline due to discounted sales, thereby impacting the economic performance
and reputation of the brands. Dynamic pricing strategies are closely linked to inventory
reduction and increased sales profits. For instance, Uniqlo, GAP, and Zara have embraced
dynamic pricing strategies. Among them, Uniqlo’s successful execution of lowering prices
at the year’s outset and offering a 50% discount within a quarter has proven more effective
in profit enhancement than a 30% price hike at year-end. Although dynamic pricing helps
reduce inventory and increase profits, due to the perishability of fashion products, they
are greatly influenced by fashion trends, aesthetic trends, and seasonality; thus, the same
discount method cannot be applied every time. Therefore, the introduction of a random
fashion level function for studying inventory management and dynamic pricing strategies
for fashion products is imperative in research.
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In recent years, there has been extensive research on dynamic pricing and inventory
management issues for fashion products [1–3]. Due to their short product lifecycle and
high demand volatility, special attention needs to be paid to initial ordering before the sales
season starts, as well as replenishment decisions during the sales season [4–6]. With the
advancement of information technology, dynamic pricing has become easier, thus attracting
widespread attention to dynamic pricing strategies in enterprises [7–9]. However, unlike
general products, fashion apparel belongs to short-lifecycle products, where the value or
quantity of most products in inventory will decline over time, similar to characteristics of
deteriorating items [10]. Therefore, research on inventory and pricing decisions for fashion
products should draw insights from studies on perishable inventory and pricing decisions.
Kinkaid and Darling [11] were among the first to investigate the dynamic pricing of per-
ishable items. Gallego and Ryzin [12] developed an inventory model to study dynamic
pricing problems with price-sensitive and stochastic demand. Wang et al. [13] and Alad-
wani et al. [14] studied the optimal dynamic decisions for non-immediately deteriorating
items, with the distinction that Aladwani et al. [14] allowed for delayed payments. Rabbani
et al. [15] assumed demand to be a time-varying function of price discounts and initial
prices, establishing a perishable inventory model dependent on quality, price, and time.
Mohammadi et al. [16] developed a multi-objective mixed-integer nonlinear program-
ming model for perishable products with price-dependent demand and deterioration rates.
Halim et al. [17] considered the characteristics of nonlinear pricing and linear inventory-
dependent market demand for nonlinearly deteriorating items models. Udayakumar [18]
analyzed a model for perishable items with price-sensitive demand functions dependent on
inventory, allowing for shortages. Almathkour et al. [19] studied a finite horizon inventory
model with time-varying demand, non-instantaneously deteriorating items, and backlog.
Thus, due to the perishable nature and time-varying characteristics of fashion apparel,
implementing joint and time-varying dynamic pricing and production strategies is cru-
cial for managing inventory replenishment and increasing net profits. However, aside
from the direct impact of fashion levels, production rates, and demand rates on inventory
levels, apparel inventory inevitably faces external stochastic disturbances, such as prod-
uct returns, stockouts, and human damages [20–23]. Considering the impact of external
stochastic disturbances on inventory levels, research on joint dynamic pricing and inven-
tory strategies in stochastic fashion apparel inventory systems has become a hot topic in
recent years.

While previous studies have delved into dynamic pricing and inventory management
for deteriorating items, they have disregarded the influence of external random factors.
In recent years, there has been extensive research on the impact of stochastic elements on
inventory functions, offering valuable insights into inventory management strategies for
fashion products [24,25]. The optimal approach to addressing such optimization problems
involves utilizing the Pontryagin maximum principle from optimal control theory in con-
junction with solving the Hamilton–Jacobi–Bellman (HJB) equation [26]. Alshamriani [27]
pioneered the construction and resolution of a stochastic optimal control problem for a
production inventory model with deterministic deteriorating items. This involved intro-
ducing an Itô stochastic differential equation control system and leveraging the Pontryagin
maximum principle to obtain optimal state estimation for linear systems with noise. Li [28]
explored joint dynamic pricing and inventory control strategies in a stochastic inventory
system with deteriorating items. By applying stochastic optimal control methods, the prob-
lem of finding optimal joint dynamic pricing and inventory strategies is transformed into
solving the HJB equation. Additionally, Wang et al. [29] investigated joint decision-making
in dynamic pricing and production, deriving optimal dynamic pricing and production
policies using the Pontryagin maximum principle. Furthermore, Shi et al. [30] proposed
a limited-range dynamic pricing and preservation joint strategy for deteriorating items,
utilizing the Pontryagin maximum principle to maximize profits. Luo et al. [31] tackled
joint dynamic pricing and production policies for stochastic perishable inventory systems,
establishing a stochastic dynamic optimization model to maximize total discounted profits.
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Luo et al. [32] aimed to maximize expected total profits by considering a stochastic optimal
control problem for dynamic pricing and inventory management of non-instantaneous
perishable items with uncertain demand. In the realm of fashion products, Chen [33]
provided a mathematical expression for the fashion level function and characterized the
decay pattern of fashionability, investigating a clothing inventory model where demand
depends on price and fashion level. Chen [34] explored dynamic pricing strategies and
replenishment cycle problems for fashion apparel, taking into account the influence of fash-
ion levels on demand and applying the Pontryagin maximum principle method to derive
optimal dynamic pricing strategies and replenishment cycles. However, the fashion level
function should not be solely modeled as a monotonically decreasing exponential function;
it is also influenced by external factors such as brand image and reputation, seasonal and
cyclical variations, and stochastic factors related to consumer demographics and target
markets. Therefore, this paper considers the impact of stochastic elements on the fashion
level function and introduces a stochastic fashion level function for further investigation.

In considering the influence of random factors on fashion trends, this study draws
inspiration from Chen et al. [33] regarding the deterministic fashion level function, propos-
ing a stochastic fashion level function for investigating dynamic pricing and inventory
strategies of fashion products. In the fashion level function proposed by Chen et al. [33,34],
it exhibits a monotonically decreasing exponential form, aligning with the realistic scenario
where the fashion level gradually diminishes over time at a decelerating rate. To retain this
fundamental form and introduce the influence of random factors, we refer to the detailed
description of geometric Brownian motion in the literature [35,36], noting its widespread
application in finance. Additionally, geometric Brownian motion finds application in other
fields; for instance, Awudu et al. [37] introduced a stochastic production planning model
for a biofuel supply chain under uncertain demand and prices, proposing a stochastic linear
programming model within a single-period planning framework to maximize expected
profits. Albornoz et al. [38] established a dynamic model for exporters, where firms need
to bear sunk costs and fixed costs specific to each foreign market operation, and the profit
potential in each foreign market follows geometric Brownian motion. Drawing insights
from the varied applications of geometric Brownian motion across different domains, the
fashion level function can be viewed as a stochastic process, influenced by multiple fac-
tors, including consumer preferences, trend patterns, and market conditions. The path
dependency in geometric Brownian motion implies that its drift rate and volatility can
vary with the path [39]. Meanwhile, the increments of the path in geometric Brownian
motion follow a log-normal distribution. This indicates that changes in the fashion level
function follow a log-normal distribution, where its growth rate conforms to a normal dis-
tribution [40,41]. This aligns with the typical long-tail distribution observed in the changes
of the popularity of fashion products. Hence, this study introduces it for the first time
into fashion product research to characterize the variability of the stochastic fashion level
function. Geometric Brownian motion provides rich theoretical support for simulating the
fashion level function. The combination of its stochastic drift rate and volatility, along with
its path-dependent characteristics, allows the simulation results to better reflect changes in
the popularity of fashion products, offering a robust theoretical basis for decision-making
in the fashion industry. The specific arrangement of this study is as follows: Firstly, we
obtain a more realistic stochastic fashion level function; Subsequently, using the Pontryagin
maximum principle in stochastic optimal control, we solve the problem of dynamic pricing,
inventory control, and profit maximization for fashion products under the joint influence
of stochastic inventory and stochastic fashion level function, obtaining the corresponding
HJB equation; Next, we derive the Riccati system from the HJB equation and provide an an-
alytical solution using mathematical methods; finally, we validate the proposed new model
through numerical simulations, compare it with the model with deterministic fashion level
function in terms of inventory, dynamic pricing, and profit, conduct sensitivity analysis on
parameters, and draw conclusions of managerial significance. The main contributions of
this study are as follows:
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• This study integrates the mathematical expression of the deterministic fashion level
function, first introducing the widely applied geometric Brownian motion from finance
into the fashion level function, making it more realistic;

• It establishes a model for inventory decision-making and dynamic pricing of fashion
products under the joint influence of stochastic fashion level function and stochastic
inventory level, providing managerial insights for fashion product enterprises;

• It contrasts with the deterministic fashion level function, deducing inventory man-
agement strategies and optimal pricing schemes under different fashionability trends,
and reveals the significant impact of fashionability trends on profit. By adjusting price
system parameters, it discovers that fashion products insensitive to price tend to yield
higher profits under the same conditions.

The basic framework of this paper is as follows. In Section 2, we provide some
preparation, including the introduction subsequent symbols and stochastic models in this
paper. In Section 3, we establish and solve the stochastic dynamic optimization model. In
Section 4, we conduct numerical analysis and provide managerial insights. The specific
technical roadmap is outlined in Figure 1.

Dynamic Pricing and Inventory
Management of Fashion Products

Model under Stochastic Inventory and
Stochastic Fashion Level

Optimal Inventory Levels, Pricing, Production
Rates, and Profit Using Stochastic Optimal Control

Research Objectives

Numerical Analysis

Numerical Simulation
Comparison of Models under
Random and Deterministic

Fashion Levels

Sensitivity Analysis of
Price Coefficients

Results and
Conclusions

Model Formulation and
Solution

Study Cases and
Conclusions

Figure 1. Technical roadmap.

2. Preliminaries

In this section, we first introduce and define the symbols used in the proposed model.
Subsequently, we describe the process of extending a deterministic fashion level function to
a stochastic fashion level function. For rigor, we assume that all discussions are conducted
within a complete probability space (Ω, F , P,F). This probability space encompasses all
possible scenarios that we consider, providing a robust mathematical foundation for the
development and solution of our model. We first present and explain the necessary symbols,
as detailed in Table 1.

This paper focuses on the optimal dynamic pricing and inventory management strat-
egy within a single cycle, without considering multiple cycles or replenishment scenarios.
It is assumed that the time parameter t ∈ [0,+∞) is continuous. In paper [34], the authors
introduced a fashion level function θ(t) and provided the following specific expression:

θ(t) = θ0 exp(−ηt). (1)
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The function t 7→ θ(t) is non-negative and monotonically decreasing, with θ(0) = θ0 =
1, and η is a constant greater than zero. Such a function exhibits the characteristic of
exponential decay, as shown in Figure 2b.

Table 1. List of notations.

Notation Description

α The demand per unit time
β The price coefficient, i.e., the sensitivity of demand to price

P(t) The unit product price at time t
M(t) The unit production rate at time
I(t) The unit inventory level at time t
X(t) The fashion level at time t

D(P(t), X(t)) The demand rate function
Q(t) The cumulative demand up to time t

µ The drift parameter of the inventory function
σ The volatility parameter of the potential demand
ϵ The volatility parameter of the fashion level function

W(t), Y(t) Standard Wiener process (Brownian motion)
I0 The initial inventory level
X0 The initial fashion level function value

c1,c2 The production cost coefficient, c2 > 0
r1,r2 The inventory shortage cost , r2 > 0
C(·) The production cost function
H(·) The inventory holding or shortage cost function

E The expectation operator
ρ The discount factor
A The admissible control set

V(I, θ) The profit function

Through an analysis of fashion product characteristics, it becomes evident that the
fashion level function should not only exhibit a declining trend over time but also be
influenced by factors such as geography, environment, and statistical characteristics of the
product itself. The fashion level function proposed by Chen et al. [33,34] demonstrates
a monotonically decreasing exponential form, aligning with the realistic scenario where
fashion levels gradually diminish over time at a decelerating rate. In order to maintain
this fundamental form and introduce the influence of random factors, we investigate the
management characteristics related to fashion products when the fashion level function
is perturbed by simple random factors. For simplicity, we employ Brownian motion to
model the fashion level function as a stochastic process, where the fashion level function is
a stochastic process X = X(t), t ≥ 0, with the specific mathematical expression as follows:

dX(t) = µX(t)dt + ϵX(t)dB(t). (2)

Here, X(0) = x0 > 0, µ and ϵ are two non-zero constants, and B = B(t), t ≥ 0 is a standard
Brownian motion. Through numerical simulations, we can obtain a plot of the fashion level
function t 7→ X(t), as shown in Figure 2a. Comparing these two mathematical expressions
and their respective figures, it is evident that Figure 2b exhibits a strictly monotonically
decreasing trend, with the rate of decrease slowing down as time passes until the fashion
level function gradually approaches zero. In contrast, Figure 2a displays fluctuations but
ultimately follows the same trend as Figure 2b. Figure 2a is more in line with the real-world
scenario where fashion level function fluctuates over time, reflecting the influence of factors
such as regional aesthetic differences and climate uncertainties on fashionability.
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Figure 2. Fashion level function. (a) Stochastic fashion level. (b) Determinstic fashion level.

For the demand function t 7→ D(P(t), X(t)), as it primarily depends on the price function
t 7→ P(t) and the fashion level function t 7→ X(t), we adopt the following linear function:

D(P(t), X(t)) = α − βP(t) + X(t), (3)

where α and β are two real constants, and, in general, β is not equal to zero. It is worth
noting that the linear assumption for the demand function is widely used in perishable
inventory and management, as seen in the literature [28]. The form we use here is derived
from [34].

For the cumulative consumer demand function Q(t), we employ the following stochas-
tic integral process (Itô process) to characterize it:

dQ(t) = D(P(t), X(t))dt − σdW(t), (4)

where Q(0) ≥ 0, σ is a positive constant, and W = W(t), t ≥ 0 is a standard Brownian
motion, independent of the previously mentioned Brownian motion B.

Finally, for the sake of convenience, we assume that production (replenishment) is
instantaneous and infinite, with zero preparation time. According to Alshamrani [27] and
Li et al. [28], the continuous dynamic variation of inventory, influenced by production rates
and demand rates, satisfies an Itô-type stochastic differential equation:

dI(t) = M(t)dt − dQ(t), (5)

where I(0) = I0 ≥ 0. Based on this, by substituting (3) and (4) into (5), we obtain

dI(t) = (M(t)− (α − βP(t) + X(t)))dt + σdW(t). (6)

Equation (6) describes the instantaneous variation in inventory levels. The coefficient
(M(t)− (α − βP(t)) + X(t)) in this equation represents the expected change in inventory
levels at time t, while the perturbation term σdW(t) from (4) reflects the influence on
inventory levels, such as fluctuations due to factors like inventory damage. When inventory
levels are positive, consumer demand can be immediately met, and the fashion retailer
incurs inventory costs. Therefore, there is a need for a level of inventory to store goods.
Conversely, when inventory levels are negative, shortages occur, and customer demands
cannot be fulfilled. In such cases, the fashion manufacturer incurs shortage costs. Another
interesting question regarding Equation (6) is the statistical behavior of its parameters. In
other words, if the system is observable, can we provide estimates for these parameters and
study their asymptotic distributions? We will explore such questions in future research.
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3. Model Formulation

In this section, based on the background, model assumptions, and dynamic behavior
of the system discussed above, we introduce the stochastic control problem under consider-
ation in this paper. We focus solely on fashion products, such as apparel, and define the
objective function of their manufacturer:

Ψ(M, P, t) := E
∫ t

0
e−ρs{P(s)dQ(s)− (C(M(s)) + H(I(s)))}ds, t ≥ 0, (7)

Here, E represents the mathematical expectation under the probability space mentioned
earlier, ρ is the discount factor, C(M(s)) represents the production cost at time s when the
production rate is M(s), and H(I(s)) represents the inventory cost at time s when the inven-
tory level is I(s). For computational convenience, we assume that the functions x 7→ C(x)
and x 7→ H(x) are both non-negative and strictly convex, with second-order continuity.

By substituting (3) into (4) and then substituting (4) into (7), and using the martingale
property of Itô integrals, we obtain

E
∫ t

0
K(s)dW(s) = 0, t ≥ 0,

where K is any left-continuous process; we formulate the manufacturer’s objective func-
tion as

Ψ(M, P, t) = E
∫ t

0
e−ρs{P(s)[α − βP(s) + X(s)]− C(M(s))− H(I(s))}ds. (8)

Given that the fashion level function X(t) satisfies Equation (2) and that the dynamic
inventory function I(t) is governed by Equation (6), we investigate a stochastic optimal
control problem. The objective is to find the optimal production rate and optimal retail
price from a permissible control set within a specified time interval [0, T] to maximize the
company’s total profit during this time span.

Based on the previous analysis, we already understand that the optimal production
rate and optimal retail price are both stochastic processes that depend on inventory level
function I and fashion level function X. Therefore, we can define the permissible control
set as follows:

A = {(m(I, X), p(I, X))|(m(I, X), p(I, X)) ∈ [0,+∞)× [0,+∞)},

where m(I, X) = m(t, I, X), t ∈ [0, T] and p(I, X) = p(t, I, X), t ∈ [0, T] are two stochastic
processes that depend on inventory I and fashion level function X, representing the pro-
duction rate and retail price, respectively. The values of I and X are determined by (2)
and (6), respectively. We denote the optimal production rate and optimal retail price as

m∗(I, X) = {m∗(t, I, X), t ∈ [0, T]}, p∗(I, X) = {p∗(t, I, X), t ∈ [0, T]}.

Consequently, we can formulate the model as the following optimization problem:

max
(p(I,X),m(I,X))∈A

E
∫ T

0
e−ρs{P(s)[α − βP(s) + X(s)]− C(M(s))− H(I(s))}ds, (9)

where I(t) and X(t) satisfy Equations (2) and (6), respectively. For the sake of brevity, in the
following discussions, we omit the dependence on t in the stochastic processes or functions
such as I(t), X(t), and P(t). To find the optimal control strategy, we employ dynamic
programming, assuming that V(t, I, X) represents the profit function.

Proposition 1. Under the assumptions of the model outlined above, the Hamilton–Jacobi–Bellman
(HJB) equation corresponding to Problem (9) is as follows:
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−Vt = max
(P(I,X),M(I,X))∈A

[e−ρt{P(t)[α − βP(t) + X(t)]− C(M(t))− H(I(t))

+ µX(t)VX + (M(t)− (α − βP(t) + X(t)))VI +
1
2

ϵ2X(t)2VXX +
1
2

σ2VI I ],
(10)

with boundary condition
V(T, I(T), X(T)) = 0. (11)

Proof. The proof idea of this proposition involves using Itô’s lemma and knowledge of
stochastic control. Specifically, it can be divided into the following three steps:

• Step 1: Using stochastic control theory, we define the necessary functions V(t, x, i) and
J(t, i, x; P(·), M(·)) for the proof, explain their meanings, and provide the relationship
between V(t, x, i) and J(t, i, x; P(·), M(·)).

Given an initial value t0 with t0 ∈ [0, T), by employing the optimal strategy between t0 and
T, we have

V(t0, x, i) = max
(P(I,X),M(I,X))∈A

E
∫ T

t0

e−ρs{P(s)[α − βP(s) + X(s)]

− C(M(s))− H(I(s))}ds,
}

.
(12)

where x = X(t0), i = I(t0). To simplify the proof, rewrite V(t, x, i) in the following form:

V(t0, x, i) = max
(P(I,X),M(I,X))∈A

E
∫ T

t0

f (s, X(s), I(s))ds. (13)

For convenience in our discussion, we denote P(I, X) and M(I, X) as P(·) and M(·), respec-
tively. We also define

J(t0, i, x; P(·), M(·)) =
∫ T

t0

f (s, X(s), I(s))ds, (14)

where P(·) and M(·) are understood as control functions within the interval [t0, T]. Then,
the expected value function can be expressed as

V(t0, i, x) = max E[J(t0, i, x; P(·), M(·))]. (15)

• Step 2: Using Itô’s formula, we compute V(t, x, i) and J(t, i, x; P(·), M(·)), explaining
their meanings and illustrating their relationship.

For any sufficiently small dt, according to the dynamic programming principle, the value
function V(t0, x, i) can be written as

V(t0, x, i) = max
(P(·),M(·))∈A

{
E
∫ t0+dt

t0

f (s, X(s), I(s))ds

+ V(t0 + dt, X(t0 + dt), I(t0 + dt))
}

.
(16)

Now, assuming that V(t0, x, i) achieves its optimum at (P, M), we have

V(t0, x, i) = E[J(t0, x, i; M, P)]. (17)

Due to the optimality of the value function, (P, M) also satisfies the following equation:

V(t0 + dt,X(t0 + dt), I(t0 + dt))

= max
(P(·),M(·))∈A

E[J(t0 + dt, X(t0 + dt), I(t0 + dt)); P(·), M(·)]

= E[(t0 + dt, X(t0 + dt), I(t0 + dt); P∗, M∗)].

(18)
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We also rearrange V(t0, x, i) as follows:

V(t0, x, i) = E
[∫ t0+dt

t0

f (s, X(s), I(s))ds + V(t0 + dt, X(t0 + dt), I(t0 + dt); P∗, M∗)
]

= E
[∫ t0+dt

t
f (s, X(s), I(s))ds + J(t0 + dt, X(t0 + dt), I(t0 + dt); P∗, M∗)

]
.

(19)

Noting the adaptivity of the processes P∗ and M∗ and utilizing Itô’s formula, we obtain the
following expression:

J(t0 + dt, X(t0 + dt), I(t0 + dt); P∗, M∗) =J(t0, x, i; P∗, M∗) + Jtdt + JXdX + JIdI

+
1
2

JXX(dX)2 +
1
2

JI I(dI)2.
(20)

• Step 3: We simplify the above result to obtain an equation.

Taking the expected value on both sides of the above equation and substituting Equations (2)
and (6), we obtain

E[J(t0 + dt, X(t0 + dt), I(t0 + dt); P∗, M∗)]

= V(t0, x, i) + (M(t)− (α − βP(t) + X(t)))VIdt

+ Vtdt + µX(t)VXdt +
1
2

ϵ2X(t)2VXXdt +
1
2

σ2VI Idt.

(21)

Next, substituting Equation (21) into Equation (16), we can obtain

V(t0, x, i) = max
(P(·),M(·))∈A

E
∫ t0+dt

t0

f (s, X(s), I(s))ds + (M(t)− (α − βP(t) + X(t)))VIdt

+ V(t0, x, i) + Vtdt + µX(t)VXdt +
1
2

ϵ2X(t)2VXXdt +
1
2

σ2VI Idt. (22)

After simplification, we obtain the equation

−Vt = max
(P(.),M(.))∈A

[e−ρt{P(t)[α − βP(t) + X(t)]− C(M(t))− H(I(t))

+ µX(t)VX + (M(t)− (α − βP(t) + X(t)))VI +
1
2

ϵ2X(t)2VXX +
1
2

σ2VI I ].
(23)

Dividing both sides of the equation by dt and substituting the form of Equation (9) into
Equation (23), we have

−Vt = max
(P(.),M(.))∈A

[e−ρt{P(t)[α − βP(t) + X(t)]− C(M(t))− H(I(t))

+ µX(t)VX + (M(t)− (α − βP(t) + X(t)))VI +
1
2

ϵ2X(t)2VXX +
1
2

σ2VI I ].
(24)

Here, we have established this proposition.

Now, for a function V, let us denote VI =
∂V
∂I and VI I =

∂2V
∂2 I .

Proposition 2. Let Cmm > 0. If there are no constraints on the control variables M(t) and P(t),
then, under the joint influence of stochastic inventory and stochastic fashion level function, the
optimal dynamic pricing M(t, I, X) and the optimal production rate P(t, I, X) for the fashion
supply system have the following behavior:

M∗(t, I, X) = eρtC−1
M (VI),

P∗(t, I, X) =
α + X + βeρtVI

2β
,

(25)
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where t ∈ [0, T].

Proof. By taking the first derivatives of the HJB equation (Equation (3)) with respect to the
production rate and retail price, we can obtain the optimal production rate M∗(t, I, X) and
the optimal dynamic pricing P∗(t, I, X), as given in (25).

To facilitate illustration and align with most production control models, we adopt the
assumption that production cost and inventory cost are both quadratic, as expressed in the
following form (and as referenced in [42]):{

C(M) = c1M + c2M2,

H(I) = r1 I + r2 I2,
(26)

where c2 > 0 and r2 > 0. In this case, the HJB equation from Proposition 1 will take the
following form:

−Vt = max
(p(I,X),m(I,X))∈A

[e−ρt{P(t)[α − βP(t) + X(t)]− (c1M + c2M2)− (r1 I + r2 I2)

+ µX(t)VX + (M(t)− (α − βP(t) + X(t)))VI +
1
2

ϵ2X(t)2VXX +
1
2

σ2VI I ].
(27)

In this way, we can also derive that the optimal production rate and optimal dynamic
pricing from Proposition 2 have the following forms:

M∗(t, I, X) =
eρtVI − c1

2c2
,

P∗(t, I, X) =
α + X + βeρtVI

2β
.

(28)

At the end of this section, based on the form of the HJB equation, we consider a utility
function with a quadratic form as follows:

V(t, X, I) = e−ρt[(a1(t) + a2(t)I + a3(t)I2 + a4(t)IX + a5(t)X + a6(t)X2)]. (29)

Proposition 3. Assuming that the utility function is given as shown in (29), the Riccati system
for this model is as follows:

4c2ρβa1(t) =c2α2 + c2a2
2(t)β2 + c2

1β

+ βa2
2(t)− 2c1βa2(t) + 4c2βσ2a3(t)− 2αβc2a2(t) + 4βc2a′1(t),

ρc2a2(t) =βc2a2(t)a3(t)− c1a3(t) + a2(t)a3(t)− r1c2 − αc2a3(t) + c2a′2(t),

ρc2a3(t) =c2βa2
3(t) + a2

3(t)− r2c2 + c2a′3(t),

ρc2a4(t) =c2βa3(t)a4(t) + a3(t)a4(t)− c2a3(t) + c2µa4(t) + c2a′4(t),

2βc2ρa5(t) =c2β2a2(t)a4(t) + αc2 − c1βa4(t),

+ βa2(t)a4(t)− c2αβa4(t)− c2βa2(t) + 2µc2βa5(t) + 2c2βa′5(t),

4c2βρa6(t) =c2β2a2
4(t)− 2c2βa4(t) + c2 + βa2

4(t) + 8c2βµa6(t)

+ 4c2βϵ2a6(t) + 4c2βa′6(t),

(30)

where 0 ≤ t ≤ T.

Proof. By substituting (29) into the left-hand side of (27) and (28) into the right-hand side
of (27), after a series of simplifications, one can match the coefficients in front of the constant
term, I, I2, X, X2, and IX to obtain (30).

For the Riccati system in Proposition 3, elementary calculations can show that
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a3(t) =
2r2c2(exp

{√
ζ
c2
(t − T)

}
− 1)

√
ζ + c2ρ + (

√
ζ − c2ρ) exp

{√
ζ
c2
(t − T)

} ,

where ζ = 4r2c2(1 + c2β) + c22ρ2. With the expression for a3(t), we can further obtain the
expressions for a2(t) and a4(t) as follows:

a2(t) = exp
(
−

∫ T

t
p2(s)ds

)[∫ T

t
g2(s) exp

(∫ T

t
p2(s)ds

)
ds + k2

]
,

and

a4(t) = exp
(
−

∫ T

t
p4(s)ds

)[∫ T

t
a3(s) exp

(∫ T

t
p4(s)ds

)
ds + k4

]
,

p2(s) =
a3(s) + βc2a3(s)− ρc2

c2
,

g2(s) =(r1 +
c1a3(s) + c2αa3(s)

c2
),

p4(s) =(β +
1
c2
)a3(s) + µ − ρ.

Similarly, from a3(t), a2(t), and a4(t), we can also provide the expressions for a1(t), a5(t),
and a6(t) as follows:

a1(t) = exp
(
−

∫ T

t
ρds

)[∫ T

t
g1(s) exp

(∫ T

t
−ρds

)
ds + k2

]
,

a5(t) = exp
[
−

∫ T

t
(ρ − µ)ds

][∫ T

t
g5(s) exp

(∫ T

t
(µ − ρ)ds

)
ds + k5

]
,

a6(t) = exp
[
−

∫ T

t
(2µ + ϵ2 − ρ)ds

][∫ T

t
g6(s) exp

(∫ T

t
(2µ + ϵ2 − ρ)ds

)
ds + k6

]
,

where

g1(s) =(− α2

4β
−

c2
1

4c2
− (

c2β + 1
4c2

)a2
2(s) +

c1 + αc2

2c2
a2(s)− σ2a3(s),

g5(s) =− βc2 + 1
2c2

a2(s)a4(s) +
c1 + c2α

2c2
a4(s) +

1
2

a2(s)−
α

2β
,

g6(s) =− βc2 + 1
4c2

a2
4(s) +

1
2

a4(s)−
1

4β
.

The constants k1, k2, k4, k5, and k6 can all be determined from the terminal condition in (11).
This allows us to solve for the optimal production rate as follows:

M∗(t, I, X) =
[a2(t) + 2a3(t)I + a4(t)X]− c1

2c2
, (31)

and the optimal pricing as

P∗(t, I, X) =
α + X + β[a2(t) + 2a3(t)I + a4(t)X]

2β
. (32)

4. Results and Discussions
4.1. Numerical Analysis

To validate the effectiveness of the mathematical model presented in Section 3, we
drew upon the parameters obtained from numerical simulations in the studies in [34,42].
The parameters of our model are specified as follows: initial demand quantity 40, the
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demand per unit of time α = 20, the price coefficient β = 0.5, time range t = 0 to T = 10,
initial fashion level X0 = 1, fashion decay factor µ = 0.01, inventory drift parameter
σ = 0.2, and volatility parameter of the fashion level function ϵ = 0.8. Using Matlab 2017b
code, we obtained graphical representations of the inventory function (see Figure 3a), the
optimal production rate (see Figure 3b), the optimal dynamic pricing (see Figure 3c), and
the profit (see Figure 3d). These figures better illustrate the underlying mechanisms in
the model.
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Figure 3. Inventory level, dynamic pricing, optimal production rate, and profit sample track trends
under stochastic fashion level.

Figure 3a shows the inventory dynamics of fashion products within the planning
horizon under the influence of stochastic fashionability. As shown, under the optimal joint
dynamic pricing and production control strategy, the optimal inventory level of fashion
products decreases over time, eventually stabilizing at zero. At T = 2, the inventory func-
tion rapidly declines from 40 to 4; subsequently, the decrease becomes gradual, ultimately
approaching zero. This is because, at the beginning of the sales period, the inventory
function declines rapidly due to the high fashion level of the product and the relatively low
factory production rate. This trend aligns with the real−life variation in fashion product
inventories, indicating a balance between production and sales at the end of the fashion
product sales period, with minimal product surplus.

Figure 3b presents the optimal production rate of fashion products within the plan-
ning horizon under the influence of stochastic fashion level function. As depicted, the
production rate of fashion products exhibits an initial sharp increase, followed by a period
of stability before decline. During the time interval from 0 to 1, the optimal production
rate is 0, indicating that initial fashion product inventory obviates the need for production.
Subsequently, as inventory levels decrease significantly, the production rate of products
notably rises, peaking at 5.201 at t = 4 and sustaining until t = 8. Thereafter, the production
rate of fashion products begins to decline, reaching 0.501 at t = 10. This demonstrates that,
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at the end of the sales cycle, the optimal production rate of fashion products gradually
approaches the ideal state of 0, ultimately eliminating surplus inventory production.

In Figure 3c, the optimal pricing of fashion products within the planning horizon under the
influence of stochastic fashion level function is depicted. It can be observed that optimal pricing
exhibits a trend of initially sharp increase, followed by a period of stability before declining.
For instance, at t = 3, the optimal dynamic pricing reaches a peak of 29.12, which persists until
t = 8, before rapidly decreasing. This phenomenon can be attributed to the initial high fashion
level function and good sales performance of the fashion products, leading to a rapid increase to
the peak. However, as time progresses, market saturation occurs, accompanied by a decline in
product fashionability, prompting the adoption of discount sales strategies. This implies that the
optimal pricing strategy allows product pricing to reach a relatively ideal level in the short term
and rapidly decrease towards the end of the sales cycle, facilitating inventory clearance. Within
the planning horizon and under the influence of stochastic fashion level function, Figure 3d
depicts the profitability of fashion products. As shown from this figure, the profit function also
exhibits a trend of initially rising and then declining. A notable observation from the figure is
that the profit reaches its peak of 1368 at t = 0.85, with a significant upward trend observed
during the time interval from 0 to 1. This trend is closely related to the substantial decrease
in the inventory function I(t) and the significant increase in the optimal pricing of fashion
products during the initial period, enabling the enterprise to maximize profits in the short term
and avoid losses throughout the sales period.

4.2. Comparison between Stochastic Fashion Level and Deterministic Fashion Level

To elucidate the feasibility and practicality of the model, we compared it with the
results of deterministic fashion level [34], investigating the variations in inventory function,
optimal production rate, dynamic pricing, and profit—four key performance indicators.
Interestingly, Figure 4 shows that the stochastic fashion level function indeed exerts a
noticeable influence on the aforementioned metrics of fashion products discussed earlier.
By comparing the stochastic fashion level model with the deterministic one, we derived
some meaningful managerial insights.
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Figure 4. The relationship between stochastic and deterministic fashion levels. (a) Stochastic fashion
level declines slower than deterministic fashion level. (b) Stochastic fashion level declines faster than
deterministic fashion level.

Based on Figure 5, the trends in inventory function, optimal production rate, optimal
dynamic pricing, and profit of fashion products are shown within the planning horizon
when the stochastic fashion level function decreases faster than the deterministic fashion
level function. Although the inventory function, optimal production rate, optimal dynamic
pricing, and profit exhibit similar trends under both models, there is a notable difference
in profit, with profits being smaller under the stochastic fashion level function model
compared to the deterministic fashion level function model. Specifically, the inventory
function still demonstrates a rapid decline, while the optimal production rate and optimal
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dynamic pricing show a similar trend of initially rapid increase, followed by a period of
stability, and then rapid decrease. In contrast, the optimal production rate and optimal
dynamic pricing under the deterministic fashion level model are slightly better than those
under the stochastic fashion level model. The difference in profit is significant compared to
the other three factors, with the profit peak under the deterministic fashion model being
1250, while, under the stochastic fashion model, it is only 1150. This is because, when
the fashion of fashion products decreases rapidly, consumer attractiveness diminishes,
which may be influenced by market saturation, fashion cycles, and other factors, causing
the fashion product to become less preferred by consumers. Therefore, companies may
consider conducting in−depth market research to understand consumer needs and prefer-
ences, timely adjust product positioning to meet market demand, enhance brand image
through effective branding and PR activities to increase brand visibility and reputation,
continually monitor consumer feedback and market dynamics, and timely adjust corporate
strategies and product policies to maintain sensitivity and adaptability to market changes,
thus preemptively avoiding rapid declines in fashionability. However, contrary to expec-
tations, Figure 6 demonstrates that, when the deterministic fashion function decreases
faster than the stochastic fashion level function, the trends in inventory function, optimal
production rate, optimal dynamic pricing, and profit of fashion products are opposite
to those shown in the figure. Specifically, under both models, although the inventory
function, optimal production rate, and optimal dynamic pricing exhibit similar trends
across different price coefficients, contrary to the depicted scenario, the stochastic fash-
ion model slightly outperforms the deterministic fashion model in terms of the optimal
production rate and optimal dynamic pricing. However, there is a significant difference
in profit peaks. For instance, under the stochastic fashion model, the profit peak is 2210,
whereas, under the deterministic fashion model, it is only 1250. This may be attributed to
excellent product design and quality, as well as associations with influential individuals or
celebrities, which enhance product attractiveness and fashion, along with factors such as
increasing the visibility and influence of fashion products on social media platforms and
digital channels. Therefore, companies should invest resources and efforts in developing
innovative and unique products, enhancing brand visibility and influence through effective
brand positioning, promotion, and marketing activities, establishing a fashion−related
brand image, leveraging digital technology and social media platforms to expand brand
exposure, and collaborating with influential individuals, celebrities, or other brands to
enhance product fashion and attractiveness.
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Figure 5. Inventory level, dynamic pricing, optimal production rate, and profit sample track trends
under faster decline of stochastic fashion level.
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Figure 6. Inventory level, dynamic pricing, optimal production rate, and profit sample track trends
under stochastic fashion level declines slower than deterministic fashion level.

4.3. Sensitivity Analysis of Price Coefficients

To examine the impact of price coefficients on the model outcomes, we considered a
range of different coefficient values and studied the variations in the inventory function,
optimal production rate, optimal dynamic pricing, and profit—four crucial performance
indicators in the model. These analyses demonstrate that price coefficients are indeed
significant factors that influence fashion product profits. Moreover, by varying the initial
inventory levels and comparing the key performance indicators in the model under different
price coefficient values, we obtained more generalizable conclusions.
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Based on the illustration in Figure 7, the impact of different price coefficients on the
inventory function, optimal production rate, optimal dynamic pricing, and profit of fashion
products within the planning horizon is demonstrated. It is observed that the trends in the
inventory function, optimal production rate, optimal dynamic pricing, and profit remain
largely similar across different price coefficients, with lower coefficients yielding higher
profits. Specifically, the inventory levels of fashion products exhibit minor differences across
various price coefficients, indicating the robustness of the optimal joint dynamic pricing
and production strategy concerning the inventory levels of fashion products under different
coefficient values. Furthermore, similar trends are observed for the optimal production
rate and pricing, with lower price coefficients corresponding to higher peak values in both
aspects across five different coefficient scenarios. Regarding the profit, an examination of
the sample trajectory plots under various price coefficients in Figure 7d reveals a common
trend of initial increase followed by a decrease across different coefficient conditions,
with lower price coefficients leading to higher profits. This is because low-price-sensitivity
fashion products refer to those for which consumers are less responsive to price changes,
instead prioritizing factors such as product quality, design, and brand image, among others,
over price considerations. As a result, consumers tend to purchase them based on these
attributes rather than being swayed by price fluctuations. A notable observation derived
from the findings is that, under equivalent circumstances, fashion products with lower
price sensitivity tend to achieve greater profits.
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Figure 7. Inventory level, dynamic pricing, optimal production rate, and profit sample track trends
under different coefficient values.

Figure 8 illustrates the variation trend in profit under the influence of different initial
inventory levels within the planning horizon. As depicted, despite the varying initial
inventory levels, profit trajectories all exhibit a common trend of initial ascent followed by
descent. However, it is observed that lower price coefficients correspond to higher profit
peaks. Specifically, at an initial inventory of 800 at T = 3.3, profit reaches its maximum
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value of 1640 when the price coefficient is 0.3, whereas, with a coefficient of 0.7, the profit
peak is only 550. From this, we can derive a more universally applicable conclusion: under
equivalent conditions, fashion products with low price sensitivity are more likely to yield
greater profits. Therefore, it is advisable for businesses to moderately introduce products
with high price sensitivity and to engage in flexible production planning.
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Figure 8. Inventory level, dynamic pricing, optimal production rate, and profit sample track trends
under different coefficient values.

5. Model Drawbacks and Future Improvements

This model explores the combined influence of stochastic fashion level function
and stochastic inventory levels on inventory decisions and dynamic pricing of fashion
products, extending upon the deterministic fashion level function proposed by Chen
et al. [33,34]. Through analysis of the deterministic fashion level function, we identi-
fied its exponential form that monotonically decreases over time. To maintain this basic
form and introduce stochastic elements, references [35,36] proposed a stochastic fashion
level function resembling geometric Brownian motion, providing theoretical insights and
management guidance.

However, further research has uncovered two limitations and potential improvements:
Firstly, in the equations governing stochastic inventory and fashion level functions,

we initially assumed they are independently driven by Brownian motions B(t) and W(t)
in Equations (2) and (6), respectively. Subsequent studies have indicated mutual influences
between stochastic inventory level and fashion level, suggesting that their driving processes
should not be independent. Therefore, future research plans to use two correlated Brownian
motions to separately drive stochastic inventory and fashion level functions, aiming for a
more realistic model;

Secondly, the current study focuses on optimal dynamic pricing and inventory manage-
ment strategies within a single cycle, without considering multiple cycles or replenishment.
To refine the model, we propose replacing Brownian motion with Poisson processes to
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redefine the equation for the stochastic inventory function. Poisson processes are suitable
for modeling stochastic processes with jumps, thereby better capturing scenarios involving
specific replenishment times. This will be a key focus of future research.

These enhancements will enhance the realism and comprehensiveness of our model,
facilitating a more accurate understanding and optimization of management decisions for
fashion products.

6. Conclusions

In summary, this study investigates the impact of stochastic factors on both the inven-
tory function and the fashion level function of fashion products. A stochastic inventory
model is developed, and four key performance indicators—inventory level, optimal pro-
duction rate, optimal dynamic pricing, and profit—are studied under this scenario. The
findings and managerial implications are as follows:

Firstly, the optimal dynamic pricing and production rate of fashion products exhibit
a linear feedback relationship with the inventory level and fashion level function. This
enables firms to accurately devise effective strategies for dynamic pricing and production
rate as inventory levels evolve over time, ensuring relatively stable decision-making;

Secondly, comparing deterministic fashion level function models with stochastic ones
reveals significant effects of fashion level changes on the four key performance indicators.
This underscores the importance for firms to invest in innovative designs and unique
product features, enhance brand recognition and influence, expand brand exposure through
digital technology and social media platforms, and collaborate with influential individuals
or brands to boost product appeal and fashionability;

Thirdly, concerning the price coefficient in the inventory function, our model suggests
that products with lower price sensitivity tend to yield higher profits under similar con-
ditions. Thus, firms should adjust their production planning accordingly by introducing
products with higher price sensitivity while remaining flexible. However, it is acknowl-
edged that current inventory models are somewhat theoretical, and future research will
explore statistical regularities in model parameters.
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