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1. Introduction

In the early 1900s, the renowned mathematician David Hilbert formulated his famous
inequality, known as the double series Hilbert inequality (see [1]), wherein he established
that if {Gu}_;, {Z,}", are two real sequences, such that 0 < Y5 ; G2 < o and
0 <Y ,7Z2 < o, then

1 1
iiGmZ"an ic?n 2 izﬁ ; 1)
n=1m=1 m+n m=1 n=1

In 1911, Schur demonstrated in his paper [2] that the constant 7t in (1) is optimal.
Furthermore, he established the integral analogue of (1), which is now recognized as the

Hilbert integral inequality in the form
1
e 2 2
([ rwa), @

/000 /000 S(;c)f;y)dxdy < 71(/000 Sz(x)dx)%

where S and T are real functions such that 0 < fomf S?(x)dx < 00,0 < [;° T?(y)dy < oo,
and 7 in (2) is still the best possible constant factor.

The inequalities expressed as (1) and (2) are crucial in the theory and application of
integral inequalities, especially in analyzing both the qualitative and quantitative aspects of
solutions to differential and integral equations. Recently, there has been rapid development
in fractal theory, which has found widespread use in science and engineering. Some
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researchers have utilized fractal theory and weight function methods to generalize classical
inequalities effectively. For instance, Liu [3] established a Hilbert-type integral inequality
and its equivalent form on a fractal set. Hilbert-type inequalities play a significant role
in mathematics, particularly in complex and numerical analysis. Over the years, these
inequalities have seen numerous refinements, generalizations, extensions, and applications
in the literature (see [4-7]).

In 1925, Hardy [8] extended (1) by introducing a pair of conjugate exponents (7, A),
where #7,A > 1 and satisfying 1/5 +1/A = 1, as follows. If G, Z, > 0, such that
0<Y® Gh<oo,and0 < Y2, Z) < oo, then

=[—

ot (fa) (£2)

In [9], the authors established the equivalent integral form of (3) as

—
—

[ e < 2 ([Corwa) ([romw) o

where S, T > 0, such that 0 < [;° SP(x)dx < coand 0 < [;° T*(y)dy < 0. The constant
factor 7t/ sin(7t/7) in (3) and (4) is optlmal

In 1998, Pachpatte [10] presented a new inequality akin to the Hilbert inequality
as follows: let G(s) : {0,1,2,...,p} C N—Rand Z(9) : {0,1,2,...,9} C N— R with
G(0) = Z(0) = 0. Define the operators as VGs; = Gs — Gs_1, VZy = Zy — Zy_1. Then

1
P |Gsl|Zs 1 4 5\ 2
< —/ _

q 3
x<2(q—l9+l)VZ19|2> . (5)

9=1

In 2000, Pachpatte [11] generalized (5) by introducing one pair of conjugate exponents
(m,u) :n,u>1with1/5+1/p = 1and proved thatif G(s) : {0,1,2,...,p} C N — Rand
Z(9):{0,1,2,...,q9} C N— Rwith G(0) = Z(0) = 0, then

1
2 g, |Gz 1w e (Y ﬁ
< g B —s+1)|VG]|T
YE I < L (Lo s

1
q "
x(Z(q19+1)|VZg|”> . (6)
=1

In 2002, Kim et al. [12] extended (6) and demonstrated that if 7,4 > 1, G(s) :
{0,1,2,...,p} € N—Rand Z(9) : {0,1,2,...,9} € N— R with G(0) = Z(0) = 0,
then

SRy |G| Zo] 1 ot a8 !
X [CENIUE) e A 2 (p—s+1IVG’
s=109=1 Us np + ;719 i Ul M s=1

==

q
x (2<q—19+1>|vz@|”> . )
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Also, the authors [12] established the continuous analogue of (7) as follows: if 7,
i > 1and S(0), and T(9) are real continuous functions on (0, x), (0,y), respectively, with
S(0) = T(0) = 0, then for x,y € (0,00), we have

0)|[T(0)]
/ / vﬂt (=) () dodd
;719 np

7]}(

< . }L yx”?y"? (/;‘(x _ e)ys’(e)y”de) ' (/Oy(y - a)\rr’(a)y”dﬁ) g

In 2011, Chang-Jian et al. [13] generalized (5) and demonstrated that if A; > 1, such
that 1/A; +1/g; = 1, Gi(s;) is a real sequence defined for s; = 0,1,2,...,m;, where m;
is a natural number and G;(0) = 0,i = 1,2,...,n.. Define the operator V by VG;(s;) =
Gi(s;) — Gi(s; — 1) for any function G;(s;),i =1,2,...,n. Then

Sl [124[Gi(s ‘)I

Yy .Y
s1=1s,=1 sp=1 / n Zl/q,
(ZS/%)

< M{n (%(ﬂ”li—si—"-l”VGi(Si)Mi) 1, (8)

Si:1

where

i=1 i=1

g o1/ A )
_ 1/q;
M= <n -y M) J1m

Also, the authors of [13] proved that if h; > 1 and A; > 1 are constants such that
1/A;+1/q; = 1, Tj(s;) is a real valued differentiable function defined on [0, x;), where
x; € (0,00). Assume T;(0) = 0fori =1,2,...,n. Then

/ / i l Si) dsy ...dsy

Zl/qz
(ZS/%)

where

Also, they demonstrated that if A;,q; > 1, such that 1/A; +1/g; = 1, Gj(s;, t;) is a
real sequence defined for (s;, t;), where s; = 0,1,2,...,m;, t; = 0,1,2,...,n; and m;, n;
(i=1,2,...,n) are natural numbers and assuming that Gi(0,t;) = G; (sl, ) = 0 for all
i=1,2,...,n. Define the operator V; and V; as

HV1Gi(sj, ti) = Gi(si, t;) — Gi(si — 1, t;),

V2Gi(si ti) = Gi(si, t;) — Gi(sj, t; — 1).
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Then
Z Z % ﬁ [Ti41Gi(si t)|
si=lt;=1  sy=1t,=1 / p Zl/ql
(Z Sit; /‘71)
1
m; N N A
<Z Z Sl+1 tj~|—1>|V2V1Gi(S,',t,‘)| l) , (10)
i=1 \s;=1#t=1
where

noq Y 1/A-n
L= (n— 2/\> .H(m,-ni)l/qi.
i=1""1 i=1

In the last few decades, much attention has been devoted to establishing discrete
analogues of the corresponding continuous results in various fields of analysis. This
appears along with establishing a dynamic inequality in this paper by using a general
domain called a time scale T. A time scale T is an arbitrary non-empty closed subset of
the real numbers R. For more details about dynamic inequalities and applications on time
scales, see [14-19].

The aim of this paper is to prove similar analogues of the inequalities (8), (9) on time
scales, and we can also generalize (10) on time scale delta calculus for an increasing function
by establishing some new dynamic Hilbert-type inequalities on time scale delta calculus.

The remainder of this paper is organized as follows. In Section 2, we show some basics
of the time scale theory and some lemmas on time scales needed in Section 3, where we
prove our results. These results as special cases when T = Nand T = R give the inequalities
((8) and (10)), (9), respectively. Also, we can obtain other inequalities on different time
scales, like T = g™ for g > 1.

2. Preliminaries and Basic Lemmas

In 2001, Bohner and Peterson [20] defined the forward jump operator by U'(T) =
inf{s € T : s > t}. For any function S : T — R, the notation 57 (7) denotes S(o(7)).
define the time scale interval [a, b]T by [a, b] := [a,b] N T.

In the following, we state the definition of ¥d—continuous and A—derivative function.

Definition 1 ([20]). A function S : T — R is called rd—continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd—continuous functions S : T — R is denoted by C,;(T,R).

Definition 2 ([20]). Assume that S : T — R is a function and let t € T. We define S®(t) to be
the number, provided it exists, as follows: for any € > 0, there is a neighborhood U of t, U = (t — 6,
t+8)N'T for some & > 0, such that

[S(o(t) = S(7) = 82D (@(t) = V)| < elo(t) =] forall y €U, 7 #0(t).
In this case, we say S®(t) is the delta or Hilger derivative of S at t.
In the following, we state several values of A—differentiable function at a point t € T.

Theorem 1 ([20]). Assume S : T — R is a function and let t € TX. Then we have the following.

1. If S is differentiable at t, then f is continuous at t.
2. If Sis continuous at t and t is right-scattered, then S is differentiable at t with

_ S(e(t) =5(t)
SA(t) = B OEr
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3. Iftisright-dense, then S is differentiable if the limit

s - 5()
y—t t—y

7

exists as a finite number. In this case,

SA(t) = lim S(t) =S(v)
y—t t—

Example 1. 1. If T = R, then for S : R — R, we obtain

5() =300 _ ¢

SA(t) = lim =S (t),

y—t t—y

where S’ is the usual derivative.
2.IfT =N, theno(t) =t + 1, and for S : N — R, we have

D=S0) _ S =50 _ g,
t) -
where A is the usual forward difference operator.

3.IfT = {t:t =gk k € Ny, q> 1}, then we have o(t) = qt and

ot
o(

SA(f) — (

_ _ S(qt) = S(¢)
SA(t) = AS(t) = ~G-Dt

The following theorem is about the chain rule formula on time scales.

Theorem 2 (Chain Rule [20] Theorem 1.87). Assume T : R — R is continuous, T : T — R is
delta-differentiable on T and S : R — R is continuously differentiable. Then <y exists in the real
interval [t, o (t)] with

!

(SoT)™(t) =S (T(1)TA(®). (11)
Definition 3 ([20]). A function S : T — R is called an antiderivative of s : T — R, provided that
SA(t) = s(t) holds forall t € T*.

In this case, the Cauchy integral of s is defined by
o
/ s(t)At = S(a) — S(r), forall r,a € T.
;

Theorem 3 ([20]). Every rd—continuous function S : T — R has an antiderivative. In particular,

ifty € T, then
</tS(T)AT>A =S(t), for teT.

to

In the following, we present the properties of integration on time scales.

Theorem 4 ([20]). Ifa,b,c € T,a,p € Rand S, T € Cy([a, b]1, R), then

1 fﬂb[as(t)—f—,BT(t)]At—af SHAt+B [T
2 [y s(ar=—[;'s(

3. [Us(t)at= [s(t At+fcb8(t)At

4. [TS(t)at=0.

5 |['s (t)At’ < [P15(1)|At.
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6. IfS(t) >0forallt € [a,b]y, then fab S(t)At > 0.

Theorem 5 ([21]). Leta, b € Tand S € C,4(T,R). Then, the following properties hold:

(i) If T =R, then
b b
/ﬂ S(H)At = /ﬂ S(t)dt.
(ii) If T = No U {0}, then
bh—
/bS(t)At - ZlS(t).
a t=a

(iii) IfF T = {t : t = ¢*, k € Ng, q > 1}, then

[ star= 3 s@uie.

tO k:}’lg
In the following, we present some auxiliary lemmas that we need to prove our results.

Lemma 1 (Integration by Parts [21]). Ifa,b € Tand S, T € C,4([a, b]y, R), then

b b
/S(t)TA(t)At:[S(t)T(t)]f;—/ SB ()T (1)A. (12)

a a

Lemma 2 (IHolder’s Inequality [21,22]). Ifa,b € Tand S, T € Cy4([a, b]y, R), then

1
v

1
b b v b
[ Isorat< [/ |5(t)|w] ' [/ |T(t)|"At} , (13)
a a a
where y > 1and 1/ 4+ 1/v = 1. The inequality (13) is reversed for 0 < v < 1ory < 0.

Let Ty and T, be time scales. Assume that CC,; denotes the set of functions S(t1, t7)
on T; x Ty, where S is rd— continuous in #; and t5. Let CC; ; denote the set of all functions
CC,4 for which both the A partial derivative with respect to ¢ and the A, partial derivative
with respect to t; exist and are in CC,;.

Lemma 3 (Two dimensional Holder’s inequality [23] Theorem 3.3). Assume thata, b € T
witha <b,S, T € CCpy([a,b]y x [a,b]y,R) and v, v > 1 such that 1/ +1/v = 1. Then

1

LS aT(r ) AT < [ f) 715G daragg| [ [ S 1T(x, &)l Arraa]

1
v

(14)

Lemma 4 (Fubini’s theorem [24]). If a,b,c,d € T and S € CC,y([a,b]y X [c,d]|p, R) is

A—integrable, then
b d d b
/(/ S(x,y)A2y>A1x:/ (/ S(X,]/)A1x>A2]/~
a c Cc a

Lemma 5 (Mean inequality [9]). Ifa;, B; > 0fori=1,2,...,n, then

n n o oa L Bi
Halﬁi < (21’:1 “1;31) (15)

SRV

Lemma 6. Let p;,r; > 1with1/p;+1/v; =1ands; > 0, wherei =1,2,...,n. Then

n n . B ):?:1 1/ri
Hsg/ri S (ZZ=1 Sl/rl) (16)
i=1

(n =Ty 1/p) " E )
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Proof. Applying Lemma 5 with a; = s; and 8; = 1/r;, we observe that

)):?:1 1/7;

ﬁsm < (Ciqsi/ri

i (17)
i1 (Y, 1/ i

Since 1/r; =1 — 1/p;, we can obtain that
n n n
Y Uri=Y (1-1/p)=n-) 1/p;,
i=1 i=1 i=1

and then the inequality (17) becomes

1)1

ﬁslm < (Lt Si/ri)):’zl /7i
T < — -,
i=1 (n— Y0 1/ py)" B /P

which is (16). O

3. Main Results

In this section, we present the key results of our study. Firstly, we establish the time
scale version of (8).

Theorem 6. Let a;,e; € T, p;,r; > 1, such that 1/p; +1/r; =1 and let A\; € C,4([a;, €], R)
be a delta-differentiable function with A;(a;) = 0;i=1,2,...,n. Then

n & im1]Ai(Gi)| A A
/an .../a1 ( ?:1(§i—ﬂi)/7’i)2?:]l/ri ‘:1 gn

1

< MTI( [l - @At sz )", 18
< MIT( [l c@re|"az) as)
where
n ?:11/’71'771 n 1
M= <n — ZUPi) [ Gei—ap). 19)
i—1 i=1

Proof. Applying the property (5) of Theorem 4 and the hypothesis A;(a;) = 0, we obtain

Gi Gi
/ / AR () At
ai

aj

= |Ai(Gi) = Ailay)| = [Ai(G)],

AR (k)

1

Aty >

and then

AR (k) | Bt (20)

n noori
[T <11/
i=1 i=1%
Applying (13) on ffﬂ)\?(t,')‘Ati with f(t;) = |A2(t;)| and g(t;) = 1, we observe that
Gi Gi pi Pii Gi ’17
/ (/ At,’) (/ Afi>
a; a; a;

1
1 Gi pi Pi
= (§i—a0’i<A‘ AR (t) AH) ,

IN

AR (t) AR ()

1

At;
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and then
1
LU 1 Pi
[T [ |ee]an < )i (/ )
i=1"4 z
n 1.n P' pll
— T —a) H( / i) . 21)
i=1 1
Substituting (21) into (20), we obtain
1. Sil A pi Pli
HM &) |<H )i </a AP (t) Atl) . (22)
i=1 i
Applying (16) with s; = ¢; — a;, we have
n ‘ n(E =)
H(éi—ai)l/rl < (L i —a) nl,)zn T (23)
i=1 (n—Yi 1/p)" == /P
Substituting (23) into (22), we obtain
n 1
n " 1) /1 Yiiil/ri n & pi 7
[T1AE)] < (i (6 — ) 1) Y, .H( / AR () Ati) : (24)
i=1 (n =y, 1/py)" B VP g\

Dividing (24) by (¥} (& — ai)/ri)z?zl ri and integrating over ¢; from a; to g;, i =
1,2,...,n, we observe that

“ “ im1 i (8)| A A
./an '”'/al (Xiz (ﬁifa')/r-)z?:ll/ri C1--- Aln

1
At)p’Agl...Agn

(t)

o
) AG; (25)

1 , i
Applying (13) on f;ll (fa€i|AiA(ti)|piAti) PEAG; with f(&) = (fé’ |AS( -)|p'Ati) ’i and

(/:" [l -)é(/al )
([ [ b nets)"

g(&;) =1, we have

1
r;

AR (1)

1

IN

€ Gi pi %
/ ( / At,-) AG;
ai a;

1

and then

IN
L
|
&

‘e‘,_
N\
\
\

) . (26)
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Substituting (26) into (25), we have

/ / |4 (G) AZ.. AR

L1 (G ) /) E
< (n—fl/pl)
i=1

i=1 1/pi— 1
) @)

o
JE AR () |p’At)A§lw1thf &) = [O|AM ()" Atrand g2 (&) =1,

- ([

i=1

Applying (12) on f;ll
we obtain
[ [ peca]"an)ag
Gi ; g g
= ([Tpeaan)sel - [ pee|"s @ o9

where ¢(¢;) = {; — ¢;. Since g(¢;) = 0, we can find from (28) that

& Gi i & l,
Substituting (29) into (27), we obtain
Zn 1|A (Cl)' A A
L / &= ag) ) B 17 B

n Z,:l 1/pi—n " 1

= (n—Zl/p,») [ei—a)
i=1 i=1

i=1 \’4i

Substituting (19) into (30), we obtain

/ / H" 1|7\ ()| AZy .. Ay

)/r) Y 1/r
ﬁ(/ i—0o(&i)]

A?(cz-)ﬂ”"Aéi) g
whichis (18). O

Corollary 1. Ifweput T = Noand a; = 0fori =1,2,...,n,into Theorem 6, then o (&;) = &; +1,
and we obtain the analogue of inequality (8) as follows

1

el ezl g—1 -
\ { [T AiG) T (1 . p) 7

: = i— &= 1lanE)r) @6
Clzz:o g;o (X0, & /)= /i 111 ci;o[ JIAA;(E)]

n Zl}:l=l 1/pi*” n 1
M:(n—Zl/pl) e/l
i=1

i=1

where

In the following, we present some special cases in (the continuous and quantum)
calculie,ie., whenT=Rand T = qNU for g > 1. These cases are new and interesting for
the reader.
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Corollary 2. In Theorem 6, if T =R, a; = 0, p;,v; > 1, such that 1/p; +1/r; = 1 and
Ai € C([0,¢], R) is a differentiable function with A;(0) = 0;i =1,2,...,n, then 0(§;) = ¢; and
we obtain

=116l T [Cre _ /.pf.’%"
/ / 1C/T 111/7,'d€1“.d§nSME<\/O [Sl ngAl(glM dgl) ’

where

Corollary 3. In Theorem 6, if T = g™ for g > 1, p;,r; > 1, such that 1/p; + 1/r; = 1 and
Ai € C([aj, &i]p, R) with Aj(a;) = 0;i =1,2,...,n, then 0(&;) = q¢; and we obtain

£1/q en/q n n [ ¢€/q pi
S S SRRV (3] .SMH<E(_1)51 Y ,)

1
G1=a1  Cn=an ( (CZ — 4 )/1’) =1 1/7i i=1 \g;=a;

where

AgAi(Gi) = W,

and

S

n Z?:] 1/P1 n n
M= (nzl/m) 11 —ai)
i=1

i=1
In the following theorem, we generalize the previous results for two variables.

Theorem 7. Assume that a;,e;,€; € T, p;,r; > 1, such that 1/p; +1/r; = 1and A; €
CCl,([ai, &l x [ai, €]y, R) with Aj(a;, &) = Ai(T,a;) = 0 for &; € [a;, €]y and T; € [a;, €],
i=1,2,...,n. Then

€n €1 &n €1 7’! 1|/\ (T,,(:l)|
A Al AT ATy
/an /al '/a” '/al (i (ti— az)(gz —a;) /1 ) 117 261 Aot !

1

= NH</ / i = o (1)) (e = 0(6)) |2 (10,81) iAmMCi) " (32)
where )
n =1t/ Pi—1n . )
N= <”_21/?’i> [Tei —a)7i(ei —ai)7i. (33)
i=1 i=1

Here, the Ay—derivative of the function A(T,¢) is the A—derivative with respect to the first
variable T and the Ay—derivative of the function A(t, &) is the A—derivative with respect to the
second variable .

Proof. Applying the property (5) of Theorem 4, Fubini’s theorem and the hypothesis
Ai(a;, &) = Ai(Ti,a;) = 0, we obtain

AR (1, 9;)

AAZAl (ti, 0:) AoBi At

v

) ’/( /\AZ(tl,ﬁ)}AlAlti>A2ﬂi’

= Mz(Terl) = Ai(T, ;) — Ai(ag, i) +/\,(a1,a1)| = [Ai(T, &)l
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and then
AR (1 9;)

H (73, Gi)

)\iAZAI (ti, 9;)

(34)

Applying (14) on f;" ff" (t;,9) =1, f(t;,9) = 1 and

ot ;) ‘AAQAl (t:, )],

A2A1 i‘ 19

l 1
< (m—a) (G- )

1

i vi
AMB(1, ) ’ A2191-A1ti) ,
and then

AZAI t 19

aj;

n

< H(Ti*ﬂi)%( Gi—ai) (

i=1

1
pi Pi
A2191'A1ti> . (35)

Substituting (35) into (34), we observe that

1

H\A (1, &) |<H )i (& (

1
lAzﬁiAlti) " (36)

Applying (16) with s; = (7; — a;)(¢; — a;), we have

. L (O (= a) (& — ) )BT
[Tt —a)7i(&i—a)Ti < ~==0 . ) 37
z':l(T R (n—Y 1/ p;)" Lt 1/pi (37)

Substituting (37) into (36), we obtain

(C (t—a)(Gi — Ili)/ri)zzﬂ:l 1/ri
(n — Z?:1 1/p,»)”*2?:1 1/pi

xH(

Dividing (38) by (Y1 (% — a;)(&; — a;) /ri) i=11/7i and integrating over ¢; and t; from
ajtoe;ande; fori =1,2,...,n, respectively, we observe that

i1 i (T, 6|
/ / / / (T — @) (& —ap) /) E= VT Doy DG Ty - DTy
n Z,Zl 1/;71771
< <” - 1/Pi>
i—1

AN

n Yy 1/pi—n
= ( Zl/pz>

[TIAi(m. ¢yl <
i=1

1
IAzﬂiAl ti) : . (38)

1
pi Pi
AzﬁiAlfl) AV Y AL T AV s BA S

i=1

QIR

1
pi Pi
AzﬁiAlfi> ACiMT. (39)
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. 1
Applying (14) on [ f;f( AP (L, ;) IAZﬁiAlti) " AN T with h(E, ) = 1,

f(Gi, 1) =1and
gllTl _(

1
i Pi
AB2B1 (g ;) ’ AzﬂiAlti) )

we have
1
i Pi
/ / ( A2A1 t 19 ’ AzﬁiAlti) AZCiAlTi
1
l 1 pi Pi
< (e —a;)hi )i ( AzﬁiﬁﬁiAzéiAm) ,
and then

1
Pi Pi
Azl9iA1f1> AT

ll/al/(//!A

<H rlz 3<

1

AZAl t 19 ’ iAzl%‘Aﬂ}Az&‘AfQ) Vi' (40)

Substituting (40) into (39) and applying the Fubini theorem, we obtain

/aen /:l B ./:" /;1 e ’-1 )1!2(@{;6)12} a 7 AV Y IAY YAV s IS & o
i=1 [

n i= 11/’),‘771 n 1 1
< < Zl/lﬂz) [1(ei —ai)i(ei—a;)ni

i=1 i=1
1
pi Pi
X ( AzﬂiAlfiAzé‘iAlTi)
i=1
n i— 1/P1*” n 1 1
= Zl/pi H(ez a;)’i (81 a;)’i
i=1 i=1
" %
X (/ (/ { P Ay®; Alt}AlTl)AZCJ . 41)
l
: & A2 Pi .
Applying (12) on fai (f “ J2(t, 05) Azﬁl} Alti) A1T;, with
K Gi JAVYANT pi A
f(n) = /a /a AP, 00) | A0 | Aqty and g7 (Ty) =1,

we obtain

€ T G pi
/(/ [/ A (1, 9;) Azﬁi]Aﬂi)AlTi
aj; a; aj;
o[ réi €i
— st ][
a; a;
€ Gi
~[lem|f
a; a;

1 1

AR (8, 9;)

1

& Azﬁi] Avt;

aj

)L'AZAl (Tl', 191)

1

piAzl%} AT, (42)
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where ¢(7;) = T; — €;. Since g(¢;) = 0, we know from (42) that
€ T G ;
/ </ U )‘iAzAl(fi,ﬂi) ’ AZﬂi:| Alti>A1Ti
a; a; a;
€; §i ArAq pi
= /a lei —o(T)] /u AN ) Mt | M. (43)

Integrating (43) over ¢; from a4; to ¢; and then applying Fubini’s theorem, we obtain

IATATA
RGN

- [ [e-eml][]
_ / i’[ez o(5)] (/ [/g

1

A2Al(t 19)

ZAzﬁi] Alti) M TN

)\iAzAl (7i, )

pi
A219i:| M TN

AAZAl ( 9, )

A2l9 :| AZélAlfl

A28 (1, 8)

pi
Azl%} Az(fi) ArT;. (44)

Applying (12) on [, [fg /\iAZAl(Ti/ﬁz) Azﬁ}Azézmthf Gi) = f@ A28 (7, 9) " ot
and g*(&) = 1, we see
& [ rGi
/[/ AN (1, ;) A2l9:|A2§z
a; a;
020 pi ‘i
= (51)(/ (T, 0) Az@)
l [li
€ pi
- [ @ |n e | sa (45)

1

where g(¢;) = ¢; — ¢;. Since g(¢;) = 0, we know from (45) that

/%i U@ AP (7, 8;) piAzﬁi]Azfji = /‘%(ei - U(Ci))’AiAZAI(Ti' &)

i

Mg (46)

Substituting (46) into (44) and applying Fubini’s theorem, we obtain

/a, / (/ [ A (ki 9) iAzﬁi}Alti)AlriAzci
= /i(ez—a(ﬂ))</ﬁ:.( — (&) A2 (1, &) iA2€i>A1Ti
= /E/ & — (1)) (& — (&) AN (1, &) | Armidagi 47)

Substituting (47) into (41), we see that

€n ey &n €1 ;'1 |/\'(Tir §1)|
/a,, /a1 .../an /a1 T )1({; mpEyS ) /7 DpCr.. Aoy ATy

n ?:1 l/piin n 1 1
= <” Zl/Pi> H(ei—ﬂi)” (e —a;)ii
n

i=1
1

([ [ = otmnte = oten x| armoa ) *
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Substituting (33) into (48), we have

€n  [€1 en €1 ” Ai(T,
/ / / / 1| (1 (:1)| l/r,AZé’l---AZ(:nAlTl---AlTn
o don e o G ) @ )

<NH<// e — (1) (e — o(&))]A w

pi Pi
A1TiA2§i> ,
whichis (32). O

AP (7, &)

Corollary 4. If T = Ny and a; = 0, then 0(¢;) = ¢; + 1 and we obtain the analogue of inequality
(10) as follows:

Elileﬁl e1—1e,—1 H?:l‘/\i(Ti/ (;:l)|

Y
=0t=0  &=0g=0 (D0 Té;/r)E=

1

n [e—1e— Pi
<NH(2 (e e Dl mn) ,

07=
where MA;i(T;, &) = Ai(Ti +1,8;) — AT, 8i), DaAi(Ti, 6i) = Ai(T, & + 1) — Ai(T, &;) and
n Z?:l 1/Pz_7’l n 1
N:(n—Zl/pl) [ (eiei) .
i i1

In the following corollaries, we show some particular cases in (the continuous and
quantum) calculie, i.e,, when T = R and T = g™ for g > 1, which are original.

Corollary 5. If T=R,a; =0, p;,r; > 1, such that 1/p; +1/r; =1, A; € C([0, ;] x [0, €], R)
with A;(0,8;) = Ai(7;,0) = 0for &; € [0,¢;]and 7; € [0,€;],i=1,2,...,n, then 0(&;) = &; and

we obtain
i1 Ai(T, &)
/ / / / ngl/r) - 11/rid§1"'d€”d71"-d7n
2 pi ,,%.
(/ / — i) 90T Ai(Ti, i) dTidffi) ,
where
n Y, /pi—n n )
N = (n -y l/pi> [ T(eien) ™.
i=1 i=1

Corollary 6. If T = g™ for g > 1, p;,r; > 1 such that 1/p; +1/r; = Land A; : [a;, €] X
[aj, €ilp = Rwith Ai(a;, &) = Ai(Ti,a;) = 0for &; € [a;, ei]pand T; € [aj, €], i=1,2,...,n,
then o (t) = qt and we obtain

3D S 3 S L SRR CH)]
E

T =a1 Tn=an ¢1=0a1 Gn=0an (21 l(Tl )(gl - ai)/r

1

n [¢&/q9 €/q AA i\ i
gNH(Z E —q1) (e; — q&;) |72 (13, i) ) )

61 aj T=
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where

i=1

n Z?:ll/pl n n 1 1
N = <”_21/Pi> [I(ei —ai)® (e; — ;).
i=1

Theorem 8. Let aj,e; € T, hj > 1, pj,r; > 1 such that 1/p; +1/r; = Land A; € Cpy([a;, i,
RT U {0}) is a delta-differentiable function and an increasing function with A;(a;) = 0;i =

1,2,...,n. Then
hi
L ALY Y
; ; " - ‘):?:11/71‘ 1.-- n
1 n (lel (61 az)/rz)

n & ‘ il
< QII( [Me-c@n (W@ ad@) "as)", )
=1\’
where
n Zznzl 1/p1_n n 1
Q= (”—Zl/r’i> [ Thi(ei —ai)ri. (50)
i=1 i=1
Proof. Applying the chain rule formula (11) on the term )\?" (t;), h; > 1, we obtain
) A o
A ()] " = maAl T @AR (8, (51)

where {; € [t;, 0(t;)]. Since A; is an increasing function, h; > 1 and {; < o(t;), we know
from (51) that

()] < A AR ),

and then (where A;(a;) = 0), we observe that

i [l adean > [ [l )]k = A @) - AGa) = A8 (@),
Thus, ; : Y
[Tn [ ) AR )AL = TTAN ) 62)
i=1 ai i=1

Applying (13) on [Z/[A7(t:)] " AL (1) Aty with £(£) = [AZ(£)]" AL () and (1) =
1, we have

[ e s

i

INA
7N
a\
= o™

>

Real
~
Y
—
RS P
A~

>

Q

—

Ryl

=

=

AN
>

>

—

—

l/
~—

=
>

Raa
~~_

=

and then

[1 / U Ay <T@ - ) | (

i=1"74i i=1 =1

J; (ot ate)"sn) " e
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App1y1ng (16) Wlth S = gi —a;, we have
ﬁ(g —ﬂ')l/ri < (2?21(61' —ﬂj)/rl’)le 1/7; -
l l o n .
- (n— Y, 1/p;)" E=r /P

Substituting (55) into (54), we obtain

n n g [\ i1 1/
)t;.li ’ < (Zi:l (gz az)/rz) §
;'[:Il 1 (g ) — (1/1 _ Yl_ 1/p‘)1’17£i:1 1/p1

xHh (/ (;y ()] ALt ))’”Ati)”l". (56)

Dividing (56) by (£ (& -
1,2,...,n, we observe that

/ / hi(él) Ay ... A&,

gl_a)/r) Kim 1/7i

zn 11/P1
1/Pl>

</ ([/\?(ti)]’”1A?(ti))p1Ati> %Agl A

ai)/ri)zflzl Vri and integrating over ¢; from a; to €;, i =

M:

1

/m

i

X

n ..</a.f([/\l (t )]h 1/\A( ))piAti>piA(§i. -
Applying (13) on [ ([ ([2¢(t)]" 28(1))” Ati)é Mg with £(2) — 1 and

s@) = ([7 (nrear—ape) an) ",

1

X
—
=
&\m

we have
/ ( /g (O e R) ’7"Ati> ”L"Aéz-
< -ah ([7( 7 (e asw) " o) o) g
and then
N LT pi o
(1 (] (e az0)"s) s

= E(si ~a)’ -: (/us (/j ([)‘?(ti)]hifl/\?(ti)) piAti) Aéz) p%. (58)
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Substituting (58) into (57), we have
n hi .
/ / A (&) AT AL
z 1 gl — a4 )/1’ ) =1 1
n Zz:l 1/1171 n
< (n—zl/Pl) [ Thi(e
i=1 i=1

x q( L[ (et =ad) " an) o) a 59)

1

Applying (12) on f:]_i (fa? ( [Af(ti)]hi_lAiA(ti)) At; )Af,‘l with f(¢;) f(:’ ([A7 ] "
A8 (t;))PiAt; and g2 (€;) = 1, we obtain

L[ (sr—apen)" o),

1
&

= s ([T (e aze) " an)

1

aj

- [T (@) s .

where ¢(¢;) = &; — ¢;. Since ¢(¢;) = 0, we know from (60) that

L[ (rar=ade)"an)ag = [ - o@ (22 @)" sz, @

i i

Substituting (61) into (59), we observe that

h'
A (Gi)

ACq1...ACy,

/ / 1161_‘1)/7)'11”1 . :

n Z1:1 l/pz n
< <”—21/Pi> Hhi(sz
i=1 i=1

L
i

- e — (G TENETINA (A
TT( [ e oten (W ad ) "ae) " )

From (50), the inequality (62) becomes

Az,
A A WS R

1

< of](/ - <cz>>([ A ) se) ",

i

1=

which is (49). O

Remark 1. If T = Rand a; = Ofori = 1,2,...,n, then we obtain the inequality (9) for the
non-negative increasing function A with A;(0) =0,i =1,2,...,n

In the following remark, we present the discrete analogue of (9), i.e., when T = N,
which is new and interesting for the reader.
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Corollary 7. If T =N, h; > 1, p;,r; > 1 such that 1/p; + 1/r; = 1 and A; is a non-negative
and increasing sequence with A;(a;) = 0;i=1,2,...,n, then

= AN (&)
i=1""% 1
élgal - Gngﬂn ( ?:1(§i - gi)/ri)Z?:1 L/ri
M hi—1 pi G
=Q (Z (e — & — 1) (INi(@ + DI '8A(E)) ) ,
i=1 \g;=a;

where
n :1:1 1/Pi—”
Q= (”—Zl/r’z) hi(e; — a;)
i=1 i

4. Conclusions and Future Work

In this paper, we establish some new dynamic Hilbert-type inequalities on time scale
delta calculus by applying Holder’s inequality, the chain rule and the mean inequality. In
the future, we will prove Hilbert-type inequalities on diamond—ua calculus and fractional
conformable calculus.
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