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Abstract: After the initiation of Jachymski’s contraction principle via digraph, the area of metric fixed
point theory has attracted much attention. A number of outcomes on fixed points in the context of
graph metric space employing various types of contractions have been investigated. The aim of this
paper is to investigate some fixed point theorems for a class of nonlinear contractions in a metric
space endued with a transitive digraph. The outcomes presented herewith improve, extend and
enrich several existing results. Employing our findings, we describe the existence and uniqueness of
a singular fractional boundary value problem.
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1. Introduction

Fractional differential equations (abbreviated as FDEs) are generalisations of the ordi-
nary differential equations to an arbitrary non-integer order. In the recent past, FDEs have
been studied on account of their remarkable growth and relevance to the field of fractional
calculus. For an extensive collection on the background of FDE, we refer the readers to
consult [1-5] and the references therein. Various researchers (e.g., [6-11]) have discussed
the existence theory of FDE employing the approaches of fixed point theory. Recall that a
typical fractional BVP (abbreviation of ‘boundary value problem’) in a dependent variable
¢ and independent variable 6 can be represented by

—D'(8) = h(e,ﬁ(e),mﬁ(e),mﬁ(e), : ..,D“Hz?(e))

DM9(0) =0, 1<i<r-—1,

D-1t19(0) = 0, 1
m—2 ( )

DY18(1) = ¥ q;D"18())

where

e reN,r>3andr—1<:<v,

e O<my<m<--<ap <o, qandr—3<a,_1<1—2,

. I} is standard Riemann-Liouville derivative,

o heC([O,l] x R”; [O,oo)),

—n,_q—1

m—2
* gi€ERand0< @ <@ < - <@y <1with0< Zq]-co]. <1
i=1

]
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Fixed point theory plays in metric space (in short, MS) a central role in nonlinear func-
tional analysis. Throughout the foregoing century, BCP has been expanded and generalised
by numerous authors. A common generalisation of this finding is to expand the standard
contraction to ¢-contraction by means of a proper auxiliary function ¢ : [0,c0) — [0, c0).
A variety of generalisations has been developed through effectively modifying ¢, result-
ing in a huge number of articles on this topic. Matkowski [12] invented a new class
of g-contraction that incorporated the concept of comparison functions, which has been
further studied in ([13-17]) besides several others. Quite recently, Pant [17] established
an interesting non-unique fixed point theorem enlarging the class of ¢-contractions in a
complete metric space.

In 2008, Jachymski [18] established a very interesting approach in fixed point theory
in the setup of graph metric space. Graphs are algebraic structures that subsume the partial
ordering. The chief feature of the graphic approach is that the contraction condition is
required to hold for merely certain edges of the underlying graph. This approach gave
rise to an emerging discipline of research in metric fixed point theory, which led to the
appearance of numerous works, e.g., see [19-25]. In 2010, Bojor [19] extended the results of
Jachymski [18] to (G, ¢)-contraction in the sense of Matkowski [12].

The intent of this manuscript is to expand the outcomes of Bojor [19] adopting the
idea of Pant [17] and to prove the fixed point theorems under the enlarged class of (G, ¢)-
contraction in the setup of graph metric space. Employing the findings proved herewith,
we study the existence and uniqueness of positive solutions of a particular form of BVP (1),
such that the FDE remains singular.

2. Graph Metric Space

The set of real numbers (resp. natural numbers) are indicated by R (resp. N). By a
graph G, we mean the pair (V(G), E(G)), whereas V(G) (known as set of vertices) and a
set E(G) (known as set of edges) have a binary relation on V(G).

Definition 1 ([26]). A graph is named as a digraph (or, directed graph) if every edge remains an
ordered pair of vertices.

Definition 2 ([26]). The transpose of a graph G, is a graph denoted by G, described as
V(G =V(G) and E(G')={(v,u) € V(G)?: (u,v) € E(G)}.
Definition 3 ([26]). Each digraph G = (V(G), E(G)) induces an undirected graph G, defined by
V(G) = V(G) and E(G) = E(G)UE(G™).

Definition 4 ([26]). For any two vertices v and u in the graph G, a finite sequence {vo, v1, v2, ... Vp }
of vertices is said to form a path in G from v to u of length p if vo = v, vy = uand (v,_1, vy) €
E(G),Vre{1,2,...p}.

Definition 5 ([26]). A graph G is known as connected if any two vertices of G enjoy a path. If G is
connected then G is referred as weakly connected.

Definition 6 ([18]). Let (V,0) be a MS and G := (V(G), E(G)) a digraph. Then the triplet
(V,0,G) called a graph MS if

*  E(G) contains all loops;

*  Gadmits no parallel edge.

Definition 7 ([20]). Given a graph MS (V, 0, G), Gis referred as a (C)-graph if for every sequence
{vn} C V having the properties: v, — v and (vp,vpy1) € E(G), for every n € N, 3 a
subsequence {vp, } with (vp,, v) € E(G), Vr € N.
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Definition 8 ([23]). Given a graph MS (V,0,G), amap R : V — Vis named as G-edge preserving if
(v,u) € E(G) = (Rv,Ru) € E(G).
Definition 9 ([24]). A digraph G is referred as transitive if for all v,u, w € V(G) with
(v,u) € E(G) and (u,w) € E(G) = (v,w) € E(G).

Definition 10 ([27]). An increasing function ¢ : [0,00) — [0, 00) is named as comparison
function if lim ¢"(t) =0,Yt>0.
n—oo

For further discussions on comparison functions, we refer the monographs of Rus [27]
and Berinde [28].

Proposition 1 ([27,28]). Every comparison function ¢ verifies that ¢(t) < t, ¥Vt > 0 and
¢(0) =0.

Definition 11 ([29]). A self-map R defined on a MS (V, o) is referred as

*  PM (Picard mapping) if Fix(R) = {v*} (a singleton set) and R"(v) — v*,Vv e V;

e WPM (weakly Picard mapping) if Fix(R) # @ and the sequence {R"v} converges to a fixed
pointof R, Vve V.

3. Main Results

Given a digraph G := (V(G), E(G)), a self-map Ron Vand v € V(G), we adopt the
succeeding notations:

[Vl = {u € V(G) : Japathin G from v to u};

Vk={veV:(v,Rv) € EG)};

and
Fix(R) = {ve V:R(v) = v}.

We are now going to demonstrate the following fpt in a graph MS over a class of
(G, ¢)-contractivity condition.

Theorem 1. Let (V, 0, G) be a graph MS whereas (V, ) is a complete MS and G is a transitive.
Let R: V — Vbea G-edge preserving map and Vg # @. Also, assume that either, R is orbitally
G-continuous, ot, Gis a (C)-graph. If there exists a comparison function ¢ such that

0(Rv,Ru) < ¢(o(v,u)) V (v,u) € E(G) with [v # R(v) or u # R(u)], ()
then R is a WPM.

Proof. Take vy € Vg so that (vp, Rvp) € E(G). Construct a sequence {v,} in the follow-
ing way:
Va1 = R'(vo) = R(vn), Vn €N 3)

Since (vp, Rvp) € E(G) and Ris a G-edge preserving, by easy induction, we have
(R"vy, R 1vy) € E(G)
which through (3) simplifies to

(Vn/ Vn+1) € E(G) vV n € No. (4)
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Define 0, := 0(Vy, v;y+1). If there is some 1y € Ny with ¢,, = 0, then by (3), we find
Vig = Vg1 = R(Viy); 80 vy € Fix(R), unless, we have g, > 0 for every n € Ny. Then, we
have v, # v;4+1 = R(vy). On implementing (4) and the contractivity condition (2), we find

0n = 0(Vi, Vus1) = 0(Rvy_1, Rvyy) < @(0(Vi—1,Vn)),

or,
on < ¢(an-1) Vn €N ®)

Using monotonicity of ¢ in (5), we have

on < @(0n-1) < ¢*(0n—2) < -+ < ¢"(00),

or,

on < ¢"(00), VneN. (6)
With n — oo in (6) and employing the definition of ¢, we find

lim ¢, = 0. )

n—oo

Choose € > 0. Then, owing to (7), we can find n € Ny allows for

on < e—g(e). 8)

Now, we seek to verify that {v,} is Cauchy. Implementing the monotonicity of ¢, (5)
and (8), we find

Q(an Vn+1) + Q(Vn+1/ Vn+2> = 0n + On+1
on + ¢(on)

e—g(e) +ple—g(e)] <e—g(e) + p(e)
E.

Q(Vi’l/ Vn+2)

VANVAR VAN

Implementing the monotonicity of ¢, transitivity of G, (4), (8), and the contractivity condi-
tion (2), we find

0(vi, viny3) < (Vi V1) + 0(Vi1, Vit3)
0n + 0(Rvy, Rvy12)
< e—¢(e) + 9(e(Vu, Vut2))
< e—g(e) +9(e)

e.
By easy induction, one finds
0(Vie, Vuyp) <e, VpeN

It turns out that {v, } continues to be Cauchy. Through the completeness of (V, ¢), there

exists v € V whereby v, S
Suppose that R is orbitally G-continuous. Then, one finds

Vi1 = R(vi) 5 R(v),
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leading to, in turn, R(v) = v. Therefore, v is a fixed point of R. Otherwise, if Gis a (C)-
graph, then, a subsequence {vy, } of {v;} can be determined that satisfies (vy,, v) € E(G)
for every k € Ny. By contractivity condition (2), we have

0(Viy+1,Rv) = 0(Rvy,, Rv) < ¢(0(vy,,v)), Vke Ny

Using Proposition 1 (whether ¢(vy,, v) is zero or non-zero), the above inequality becomes
(Vi 1, Rv) < @(viyy, V).
Taking k — oo in the above inequality and using v;,, % v, we get

Q
Vi+1 — R(v),
leading to, in turn, R(v) = v. Hence, v is a fixed point of R. [J

Next, we present the uniqueness theorem corresponding to Theorem 1.

Theorem 2. Let (V, 0, G) be a graph MS whereas (V,0) is a complete MS and G is a transitive
and weakly connected. Let R : V — V be a G-edge preserving map and Vg # @. Also, assume that
either, R is orbitally G-continuous, or, G is a (C)-graph. If there exists a comparison function ¢
such that

o(Rv, Ru) < g(o(v,u)) ¥ (v,u) € E(G),

then R is a PM.

Proof. In regard to Theorem 1, if v, u € Fix(R), then, for every n € Ny, we find
R'(v)=v, R'(u)=u
By the weak connectedness of G, there is a path {wy, wy, wy, ... Wp} between vand u, i.e.,
wo =V, wp = uand (w,_1,w;) € E(G), Vre{l,2,...p}
As Ris G-edge preserving, we find for each 0 <r < p — 1 that
(R'wy, R"w,.1) € E(G), VneN,. )

The application of the triangle inequality reveals that
p—1
o(v,u) = o(R"wy, R"wy) < Z o(R"wy, R"w,11). (10)
r=0

For every (0 < r < p—1), &, denotes o(R"w;, R"w,,1), where n € Ny. Now, it is
claimed that

lim J;, = 0.

n—o0

To substantiate this, on fixing #, assuming first that (5,’10 = 0 for some nyg € Ny, then,

Rt (w,) = R™*(w,, ). Thus, we find o1 = o(R™ 1w, R0 w, 1) = 0; so induc-

tively, we find ;, = 0 for every n > ny, so that lgll 0, = 0. In contrast, if 6, > 0 for every
n—oo

n € Ny, then, by (9) and the contractivity condition (2), we get
n+l = Q(RnHWr/ R Wii1)

< ¢(e(R'wy, R'w; 1))
= ¢(0)-
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Using the monotonicity of ¢ in (11), we get
Oh < 9(01) S @ (8 ) < - < 9" (&)
so that
S < 9" (d)- (11)

If 69 = 0, then by Proposition 1, one gets J;, = 0 yielding thereby nlgrolo 0y = 0. Otherwise, in
case dy > 0, using the limit in (11) and the property of ¢, one gets

lim ¢4, < lim ¢ "(60) = 0.

n—oo
Thus in each case, one has
: ro__
nlgrolo o, =0. (12)

Further, (10) can be written as

p—1

o(v,u) = o(R'wy, R”wp) < Z o(R'w;, R"w,11)
r=0

< N4+l
— 0asn—oo

which yields that v = u, so R has a unique fixed point. [

4. Applications to Fractional BVP
Consider the following fractional BVP:

{Uom(e) +h(6,9(0)) =0, V6e(0,1), 13)

8(0) = ¢'(0) = ¢"(0) =0, 8"(1) = 58" (¢),

along with the following assumptions:

e 3 <14,

e 0<t<],

e 0<yt3<«],

e 1:[0,1] x [0,00) — [0, c0) is continuous,

*  hremains singular at = 0, which means lim #(6,-) = .
6—0+

Obviously, the BVP (13) is identical to an integral equation given as under

179171
(t—1)(—2)(1—ne3

1 1
ﬂ@)z%(ﬂ&@ﬂﬁﬂ@ﬂﬁ+ )Alﬂ&®MmM®MU(M)

where the Green function is

9171(170)’737(970)171, <o < 0 < 1/
G(6,0) = Y <o<o<

9'71(;(77)‘7)[73, 0<8<oc<1

9°G(6,0)

502 becomes

and the function H(6, ) :=

(=1D(=2) 1)
I(

D31 —0)3—(0—0)3], 0<o<0<],

L1—
RIOER
b (=D0=2) gi=3(1 _ )3, 0<0<o<l1.

(
D(
L
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Asusual, I'(+) and B(-, -) will denote the special functions: gamma function and beta
function, respectively. Motivated by [8,9], we will determine the unique positive solution
of (13).

Proposition 2 ([9]). The functions G and H enjoy the following properties:

. G and H both are continuous;
e G(8,0) >0and H(6,0) > 0;

e G(6,1)=0;
1 2
. su G(6,0)do = ;
ogeglfo (6,0) (—2)T(i+1)

1 03(—1)(1—¢
e [VH(t,0)do = %

Lemmal. If0 < p <1, then,

1

sup [ o) = (B —p1=2) = pl1=p,0).

Proof. Making use of definition of G, we get
1
/ G((),U)U*Pdtf—/ G(6,0)0 de+/ (0,0)0 Pdo
0

et (1—0) 2 — (60— U)’l, Lg=1(1—0)—3 _
/ (l) Pda—i—/ Ta Pdo

B 19111_ B (9_0.)11 »
/ “’da—/o T o tdo
-1 0
= ‘1%(0/0 (1-0)"~ 3¢ _Pda—ﬁ/o (9—0)‘_10_Pd0
B 61—1 1
= W‘B(l—p,l—Z) —mll (15)

where

= [0y tovior= [ (1-5) "o 10par =000 [*(1-9)7 () Foar

Applying the change of variables v = ¢/ so that 8dv = do in the above integral, we find

0
= 9“/0 (1—0)~loPdo = 61 PB(1 — p, ). (16)
By (15) and (16), we obtain
' G, errdo = &g 2~ 80
/0 (0,0)c U—mﬁ( — O b= )—mﬁ( = p0).
Defining

I'(1) T'(1)

Naturally, the function ¢(#) remains increasing on [0, 1]. Hence, we conclude

o(0) = B0 =2 pr BU—p1) gy

1
sup [ G(6,0)0 Pdo = sup $(8) = p(1) = —— [B(1—p,—2) — B(1—p,1)].
0<6<170 0<6<1 I'(r)

O
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Lemma 2. If0 < p < 1, then,

t—1(t—2)

/O ' H({,0)o Pdo = ( 0 (03 — 0 P28(1—p,1 —2)),

Proof. We have
/01 H({,0)0 Pdo = /(fH(Z,(T)U_F’d(T—l—/[1 H(¢,0)0 Pdo
_ 6(1_1)(1_2) 1— I— I— — 1 (1_1)(1_2) — -3, _—
_/0 T[ﬂ S1—-0) 3~ (t—0) 3}0 pd0'+/£ Tﬂ 31— 0) 30 Pdo

— ! (l_ 1)([_2)61_3(1 _(7)1—30.—‘0‘10__ /f (l — 1)0 _2) (E _ 0_)1—30.—de

0 (1) 0 (1)
T Y S
STy
_=he=2) })(E; —2) 0-3B(1—p,1—2) — (=1(-2) ;)(E; -2 /j(z — o) 3 Pdo

In keeping with the argument of the proof of Lemma 1, we conclude

/O " H( 0)oPdo = (“1;(([;‘2)41%(1 —pi—2)
_ (l — })((l; — 2) étfp7213(1 —p, - 2)
(1_1)(1_2) — 1—p—
i v (03 =P 2)B(1—p,1—2).

O

Remark 1. Denote

o 1 ﬁ(él*ﬁ?)_glfpr)
Vi | (0 B ) B - —2) - pla )|

Finally, we present the main results.

Theorem 3. Let the BVP (13) satisfy the above standard assumptions. Also, assume that 0 < p <1
and that 0°P1h(6, o) is continuous. If u € (0,1/A] and ¢ remains a comparison function with

01 >0,>0and0<0<1=0<6[h(0,01) —1(6,02)] < pup(cy — ), (17)
then, BVP (13) possesses a unique solution.

Proof. Endow the following metric on C[0, 1]:

e(8,u) = sup [9(6) — u(6)|-
0<6<1

Defining
V={8€C[0,1]:8(6) > 0}.

Then, (V, 0) forms a complete MS. On V, consider the relation

E(G) = {(8,u) € V?:9(0) < u(B), foreach 6 € [0,1]}.
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Clearly, G is transitive, and (V, ¢, G) forms a graph MS. Now, choose ¢, € V. Define
w := max{9,u} € V. Then, {8, w, u} admits a path in G from & to u. Thus, G remains
weakly connected.

We will verify that G is a (C)-graph. Assuming {8,} C V verifying ¢, — ¢ and
(%n,0n+1) € E(G), Yn € N. Then, V 6 € [0,1], {8,(6)} is an increasing sequence in R
that converges to #(6). Hence, Vn € Nand V 6 € [0,1], we find 9,(8) < 8(0) so that
(8,,9) € E(G), VneN.

Now, define the map R: V — Vby

_ [ 7o' !
(R9)(0) = /0 G(0,0)(&8(0))de + gy =) /0 H(L, 0)i(o, 8(0))do. (18)

Let 0 € Vbe zero function. Then, for every 6 € [0,1], we find 0(f) < (R0)(0), thereby
yielding (0, R0) € E(G). Thus, 0 € Viie., Vg # @.

Take (8, u) € E(G), thereby implying ¢(6) < u(8), for each 6 € [0, 1]. Consequently,
we find

1791—1
(—1)(—2) 1 —ne3)
- /01 G(0,0)0 Poh(x, 8(c))do

1791—1

(=1 =2)(1—ne3)
01 G(0,0)0 Polh(o, u(o))do

1 1
(RY)(6) :./o G(0,0)h(o,8(0))do + /0 H(¢,0)h(o,9(0))do.

1
+ /0 H(¢,0)oPofh(o,d(0))do
<

’76171
(=D(=2)(1—ne3)
1—1

_ [ Ui !
_‘/O GO, (&, 1T+ {5y ) /O H(¢, 0)(o, u(0))do
= (Ru)(6)

yielding (R9, Ru) € E(G). Hence, R is G-edge preserving.
On the other hand, for (9, 1) € E(G), we also have

0(R8,Ry) = sup |(R8)(6) — (Ru)(6)| = sup [(Ru)(0) — (RD)(0)]

+

/01 H(,0)oPofh(o, u(o))do

0<6<1 0<6<1
= sup | [ 6(0,0)(h(c, n(0)) - hle, 0(0))) o
0<o<1L/0
1791—1

1
S VR (e | HE.o) (@, 1(e)) = (e, 0)(@)dor
< sup Ol G(0,0)0Pol[h(o, u(o)) — h(o,d(0))]do

0<6<1

+ T 2;7)(1 =) /01 H(, o)o Pofh(o, u(o)) —h(o, 8)(0)|do

1
<sup [ G(0,0)r P up(u(c) — #(c))do

T HEO (o) ~ oo
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Using the monotonicity of ¢, the above relation reduces to

1
0(RY, Ru) < pe(o(d, 1)) sup [ G(6,0)0 Pdo
0<0<0~0

=

+

(=1 —2)(1—nli—3) no(o(p,v)) /01 H(¢,0)odo

1
:#4’(@(19#))[511}3 / G(6,0)0 Pdo
0<6<0 0

1
+(1_1)<l_2’7)(1_;7@_3)/0 H(g,a)apda} (19)

Using Lemmas 1 and 2, (19) reduces to

o(RY, Ry) <pg(a(d, 1)) Hl)(ﬁ(l —pt=2) = pl—p0) + iy )

1—2)(1—nt3)
([ - 1)([ - 2) 1—3 1—p—2 '
S ()]

= 9006, 1) | 5 (BC1 = prt =) = B(1 = p.0)

n(f[—?) o gt—p—Z)
gy P =2
77(£1—3 _ El—p—Z)

= nole(o) | g5 | (1+ B = ) B —pi=2)=p—p0)|
= (o9, u))A.

As 0 < u < 1/A, the last inequality becomes

_|_

0(RY, Ru) < pp(o(®,p1))A < @(o(d, 1)) (20)

Thus, R verifies the contraction condition mentioned in Theorem 2. Therefore, by Theorem 2,
Ris a PM. Thus, in view of (14) and (18), the unique fixed point of R will form the unique
solution of BVP (13). O

Theorem 4. Along with the assertions of Theorem 3, BVP (13) owns a unique positive solution.

Proof. By Theorem 3, let @ € V be the unique solution of BVP (13). Owing to the fact
W € V, wehave @w(0) > 0,V 0 € [0,1]. This means that @ is a unique nonnegative solution
of given BVP. By contradiction method, we will verify that @ remains a unique positive
solution of the BVP, i.e., p(x) > 0, forallx € (0,1). If 30 < 6* < 1 verifying w(6*) = 0,
then by (14), we observe that

179*1—1
(=1 =2)(1 —ne3)

By the definition, 7 is nonnegative. Thus in view of Proposition 2, both summands in RHS
are nonnegative. Consequently, we find

1 1
D(6%) = /0 G(6", 0)h(0, @ (o) )do + /0 H(¢, 0)h(0, x(0))do = 0.

/O ' G0, o), w(e))de =0,

/01 H(¢,0)h(o,0(0))do =0
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G(0*,0)h(o,w(c)) =0, ae. (0),
H{,o)h(o,@w(0)) =0, ae (0).

Take an arbitrary ¥ > 0. By the singular property of /1, we can find an € > 0 with 7i(c,0) > «,
Vo €[0,1] N (0,€e). Note that

[0,1] N (0,e) C {c € [0,1] : h(c, @(0)) > K}

and
R([0,1] N (0,€)) >0,

where X denotes the Lebesque measure. Hence, (21) yields that

G(0*,0) =0, ae. (0),
H(¢,0) =0, ae. (0)

which contradicts the fact that G(6*, -) and H(Y, -) are rational functions. This completes

the proof. O

5. Discussions

This article is devoted to prove some outcomes on fixed points under an expanded class
of (G, ¢)-contraction in the setup of graph metric space. The results presented in this article
give new insights into graph metric spaces. Our findings extend, enrich, unify, sharpen
and improve a few fixed point theorems, especially due to Matkowski [12], Pant [17],
Jachymski [18] and Bojor [19]. Applying our findings, we describe the existence of the
unique positive solution of a BVP involving singular fractional differential equations. We
can prove the analogues of our results under Boyd-Wong contractions, weak contractions,
(1, ¢)-contractions, F-contractions, Z-contractions, and similar others.
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