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Abstract: In this study, a different generalization of q-Bernstein operators with the parameter
λ ∈ [−1, 1] is created. The moments and central moments of these operators are calculated, a
statistical approximation result for this new type of (λ, q)-Bernstein operators is obtained, and the
convergence properties are analyzed using the Peetre K-functional and the modulus of continuity for
this new operator. Finally, a numerical example is given to illustrate the convergence behavior of the
newly defined operators.
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1. Introduction

The well-known way to find a new function approximating a function is to use Bern-
stein operators, where the function is a continuous function defined on the interval [0, 1].
Over the years, researchers have developed several variations of this operator, sometimes
expanding the function space studied (for example, eliminating the necessity for the func-
tion to be continuous), sometimes extending the domain of the function, and sometimes
achieving a better approximation rate, even though working in the same function space.
Especially in recent years, there have been many examples (see [1–9]).

In our paper, we focus on a generalization of the q-analogue of Bernstein operators,
because studying the area of q-calculus is very important, as it has many applications in
mathematics, mechanics, and physics. In the area of approximation theory, the pioneering
researcher who brought the q-analogue of Bernstein polynomials to the literature was Pro-
fessor Lupaş (see [10]). After a decade, another generalization of q-Bernstein polynomials
was presented by Phillips [11]. Many years later, q-Bernstein operators were studied [12–14].
Following these developments, many researchers have investigated the approximation
properties of various types of q-Bernstein operators by further developing this type of
operator (see [15–23]). Furthermore, not only the q-analogues of the Bernstein operators but
also the q-analogues of various other operators have been extensively studied (see [24–33]),
which indicates how productive these studies on q-analysis are.

Another important issue is the use of Bernstein polynomial bases with certain proper-
ties to create surfaces and curves in computer-aided geometric design (CAGD) (see [34–36])
and computer graphics. An important and comprehensive study explaining this subject was
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conducted by Farouki [37]. These basis functions are effective in the numerical solutions of
partial differential equations, CAGD, font design, and 3D modeling.

Before mentioning the other studies motivating us, it is necessary to explain the new
concepts used in such studies, in other words, the q-analogues of the ordinary definitions,
so that it is easy to understand what was achieved in these inspiring studies. Therefore,
we start by explaining these. Firstly, we elucidate q-integers. For further details about
q-integers, we refer the interested reader to references [38,39].

Let a value q > 0 be given and s be a non-negative integer.The q-integer [s]q is
defined by

[s]q :=

{ 1−qs

1−q , if q ̸= 1,

s, if q = 1.

In addition to that, the q-factorial is expressed as

[s]q! :=

{
[s]q[s − 1]q · · · [1]q, if s = 1, 2, · · · ,
1, if s = 0,

and q-binomial coefficients are also defined as[
v
s

]
q

:=
[v]q!

[v − s]q![s]q!
for 0 ≤ s ≤ v.

From now on, we assume that q ∈ (0, 1] throughout entire study. At this stage,
we can now introduce the studies that form a cornerstone for us. Let us mention q-
Bernstein operators. Suppose that h is a continuous function defined on [0, 1], the q-
Bernstein operators introduced by Phillips [11] are in the following form:

Bv,q(h; x) =
v

∑
s=0

bv,s(x; q) h
(
[s]q
[v]q

)
, (1)

where bv,s(x; q)(s = 0, 1, · · · , v) are the basis functions of q-Bernstein operators. Before pro-
viding the definition of bv,s(x; q), we need to decide which notation to use instead of
∏v−s−1

r=0 (1 − qrx). From now on, we will presume that ∏v−s−1
r=0 (1 − qrx) = (1 -⃝x)v−s for

simplicity and brevity. Now, we present the definition of bv,s(x, q) as follows:

bv,s(x; q) =

v
s


q

xs
v−s−1

∏
r=0

(1 − qr x) =

v
s


q

xs(1 -⃝x)v−s . (2)

Let −1 ≤ λ ≤ 1, x ∈ [0, 1] and 0 < q ≤ 1. Inspired by the above studies, under these
assumptions, we establish (λ, q)-Bernstein operators defined as follows:

Bλ
v,q(h; x) =

v

∑
s=0

bλ
v,s(x; q) h

(
[s]q
[v]q

)
, (3)

where

bλ
v,0(x; q) = bv,0(x; q)− λ

[v]q + 1
bv+1,1(x; q);

bλ
v,s(x; q) = bv,s(x; q) +

λ

[v]q + 1
(bv+1,s(x; q)− bv+1,s+1(x; q)); (s = 1, 2, · · · , v − 1)

bλ
v,v(x; q) = bv,v(x; q) +

λ

[v]q + 1
bv+1,v(x; q),

In addition, bv,s(x; q) are defined in (2) and h is a continuous function on [0, 1].
Firstly, it is clear that the operators B0

v,q(h; x) reduce to the q-Bernstein operators given
in (1) when λ = 0; moreover, the operators B0

v,1(h; x) transform into well-known classical
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Bernstein operators when λ = 0, q = 1. Secondly, if q = 1, the operators Bλ
v,1(h; x) convert

into the λ-Bernstein operators introduced in [40].
In this study, we present statistical approximation results using the notion of statisti-

cal convergence for a new generalization of q-Bernstein operators with the parameter λ.
After this stage, we give the convergence properties thanks to the Peetre K-functional for
this operator. To achieve this, we first establish several lemmas that play a crucial role in
our main results.

2. Auxiliary Results

The lemmas we use in the proof of the main results are as follows:

Lemma 1. Let −1 ≤ λ ≤ 1, x ∈ [0, 1], and 0 < q ≤ 1. Then, the operators Bλ
v,q(h; x) are positive

linear operators.

Proof. It is obvious that the operators Bλ
v,q(h) are linear, so it is sufficient that we prove

these operators to be positive, i.e., bλ
v,s(x; q) ≥ 0 for 0 ≤ s ≤ v.

It is worth noting that the inequality

bv,s(x; q) ≥ 0 (4)

holds for s = 0, 1, · · · , v, as demonstrated in [11].
For s = 0, utilizing [v + 1]q ≤ [v]q + 1 and the inequality stated in (4), we obtain

bλ
v,0(x; q) = bv,0(x; q)− λ

[v]q + 1
bv+1,1(x; q)

= bv,0(x; q)
(

1 −
[v + 1]q
[v]q + 1

λx
)
≥ 0.

For s = v, we have

bλ
v,v(x; q) = bv,v(x; q) +

λ

[v]q + 1
bv+1,v(x; q)

= bv,v(x; q)
(

1 +
λ[v + 1]q
[v]q + 1

(1 − x)
)
≥ 0,

because 0 <
[v+1]q
[v]q+1 ≤ 1, 0 ≤ 1 − x ≤ 1, and λ ∈ [−1, 1].

First of all, since 0 ≤ (1−qv−sx)
[v+1−s]q

≤ 1
[2]q

and − 1
[2]q

≤ − x
[s+1]q

≤ 0 for 1 ≤ s ≤ v − 1, we
establish the following inequality:

−1 <
(1 − qv−sx)
[v + 1 − s]q

− x
[s + 1]q

< 1. (5)

We obtain

bλ
v,s(x; q) = bv,s(x; q) +

λ

[v]q + 1
(bv+1,s(x; q)− bv+1,s+1(x; q))

= bv,s(x; q)
(

1 +
λ[v + 1]q
[v]q + 1

(
(1 − qv−sx)
[v + 1 − s]q

− x
[s + 1]q

))
≥ 0

by considering the inequalities given in (4) and (5).
As a result, we obtain the proof.

Lemma 2. Let x ∈ [0, 1], 0 < q ≤ 1 and λ ∈ [−1, 1]. For the (λ, q)-Bernstein operators Bλ
v,q(h; x)

(v > 0), the following equalities hold:
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Bλ
v,q(1; x) =1, (6)

Bλ
v,q(t; x) =x +

λ(q − 1)[v + 1]q
([v]q + 1)q[v]q

x(1 − xv) +
λ

([v]q + 1)q[v]q
(1 − xv+1 − (1 -⃝x)v+1) (7)

Bλ
v,q(t

2; x) =x2 +
x(1 − x)
[v]q

+
λ(q2 + 1)[v + 1]q
([v]q + 1)q2[v]2q

x(1 − xv) (8)

+
λ(q2 − 1)[v + 1]q
([v]q + 1)q[v]q

x2(1 − xv−1)− λ

([v]q + 1)q2[v]2q
(1 − xv+1 − (1 -⃝x)v+1).

Proof. If we perform some straightforward mathematical calculations, we conclude that

Bλ
v,q(h; x) =

v

∑
s=0

bv,s(x; q)h
(
[s]q
[v]q

)
+

λ

[v]q + 1

v−1

∑
s=0

bv+1,s+1(x; q)
[

h
(
[s + 1]q
[v]q

)
− h

(
[s]q
[v]q

)]
.

It is evident that

Bλ
v,q(1; x) =

v

∑
s=0

bv,s(x; q)h
(
[s]q
[v]q

)
= Bv,q(1; x) = 1,

because we know that Bv,q(1; x) = 1, as stated in [11].
Considering the fact that

[s + 1]q − [s]q = (
q − 1

q
)[s + 1]q +

1
q

,

we obtain

Bλ
v,q(t; x) =

v

∑
s=0

bv,s(x; q)
(
[s]q
[v]q

)
+

λ

[v]q + 1

v−1

∑
s=0

bv+1,s+1(x; q)
[(

[s + 1]q
[v]q

)
−

(
[s]q
[v]q

)]

=Bv,q(t; x) +
λ

[v]q + 1

v−1

∑
s=0

bv+1,s+1(x; q)
[
[s + 1]q − [s]q

[v]q

]

=x +
λ

([v]q + 1)[v]q

v−1

∑
s=0

bv+1,s+1(x; q)
[
(1 − 1

q
)[s + 1]q +

1
q

]

=x +
λ(q − 1)

([v]q + 1)q[v]q

v−1

∑
s=0

bv+1,s+1(x; q)[s + 1]q +
λ

([v]q + 1)q[v]q

v−1

∑
s=0

bv+1,s+1(x; q)

:=x + S1 + S2,

since Bv,q(t; x) = x as shown in [11].
When we first examine S1, we find the following result:

S1 =
λ(q − 1)

([v]q + 1)q[v]q

v−1

∑
s=0

bv+1,s+1(x; q)[s + 1]q

=
λ(q − 1)

([v]q + 1)q[v]q

v−1

∑
s=0

[s + 1]q
[v + 1]q!

[v − s]q![s + 1]q!
xs+1(1 -⃝x)v−s

=
λ(q − 1)[v + 1]q
([v]q + 1)q[v]q

x
v−1

∑
s=0

[v]q!
[v − s]q![s]q!

xs(1 -⃝x)v−s

=
λ(q − 1)[v + 1]q
([v]q + 1)q[v]q

x(1 − xv).
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Secondly, let us analyze S2, leading us to the following conclusion:

S2 =
λ

([v]q + 1)q[v]q

v−1

∑
s=0

bv+1,s+1(x; q)

=
λ

([v]q + 1)q[v]q

v−1

∑
s=0

[v + 1]q!
[v − s]q![s + 1]q!

xs+1(1 -⃝x)v−s

=
λ

([v]q + 1)q[v]q

v

∑
s=1

[v + 1]q!
[v + 1 − s]q![s]q!

xs(1 -⃝x)v+1−s

=
λ

([v]q + 1)q[v]q
(1 − xv+1 − (1 -⃝x)v+1).

All these assessments collectively point towards the following result:

Bλ
v,q(t; x) = x +

λ(q − 1)[v + 1]q
([v]q + 1)q[v]q

x(1 − xv) +
λ

([v]q + 1)q[v]q
(1 − xv+1 − (1 -⃝x)v+1)

In [11], it is given that Bv,q(t2; x) = x2 + x(1−x)
[v]q

. Now, let us evaluate Bλ
v,q(t2; x) by

using this result alongside the following:

[s + 1]2q = [s + 1]q + q[s + 1]q[s]q and [s]2q =
[s + 1]q[s]q

q
−

[s + 1]q
q2 +

1
q2 .

We have

Bλ
v,q(t

2; x) =
v

∑
s=0

bλ
v,s(x; q)

(
[s]q
[v]q

)2

=
v

∑
s=0

bv,s(x; q)
(
[s]q
[v]q

)2

+
λ

[v]q + 1

v−1

∑
s=0

bv+1,s+1(x; q)
[s + 1]2q − [s]2q

[v]2q

= Bv,q(t2; x) +
λ

([v]q + 1)[v]2q

v−1

∑
s=0

bv+1,s+1(x; q)
{

q2 + 1
q2 [s + 1]q +

q2 − 1
q

[s + 1]q[s]q −
1
q2

}
:= x2 +

x(1 − x)
[v]q

+ S3 + S4 + S5.

Starting with S3, followed by S4 and S5, we will compute them sequentially.

S3 =
λ(q2 + 1)

([v]q + 1)[v]2qq2

v−1

∑
s=0

bv+1,s+1(x; q)[s + 1]q

=
λ(q2 + 1)

([v]q + 1)[v]2qq2

v−1

∑
s=0

[v + 1]q!
[v − s]q![s + 1]q!

xs+1(1 -⃝x)v−s[s + 1]q

=
λ(q2 + 1)[v + 1]q
([v]q + 1)[v]2qq2 x

v−1

∑
s=0

[v]q!
[v − s]q![s]q!

xs(1 -⃝x)v−s

=
λ(q2 + 1)[v + 1]q
([v]q + 1)[v]2qq2 x(1 − xv).
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S4 =
λ(q2 − 1)

([v]q + 1)[v]2q q

v−1

∑
s=0

bv+1,s+1(x; q)[s + 1]q[s]q

=
λ(q2 − 1)

([v]q + 1)[v]2q q

v−1

∑
s=0

[v + 1]q!
[v − s]q![s + 1]q!

xs+1(1 -⃝x)v−s[s + 1]q[s]q

=
λ(q2 − 1)

([v]q + 1)[v]2q q

v−1

∑
s=1

[v + 1]q!
[v − s]q[s − 1]q!

xs+1(1 -⃝x)v−s

=
λ(q2 − 1)[v + 1]q
([v]q + 1)[v]q q

x2
v−2

∑
s=0

[v − 1]q!
[v − 1 − s]q![s]q!

xs(1 -⃝x)v−1−s

=
λ(q2 − 1)[v + 1]q
([v]q + 1)[v]q q

x2(1 − xv−1).

S5 = − λ

([v]q + 1)[v]2q q2

v−1

∑
s=0

bv+1,s+1(x; q)

= − λ

([v]q + 1)[v]2q q2

v−1

∑
s=0

[v + 1]q!
[v − s]q![s + 1]q!

xs+1(1 -⃝x)v−s

= − λ

([v]q + 1)[v]2q q2

v

∑
s=1

[v + 1]q!
[v + 1 − s]q![s]q!

xs(1 -⃝x)v+1−s

= − λ

([v]q + 1)[v]2q q2 (1 − (1 -⃝x)v+1 − xv+1).

Based on all these computations, we can infer the following result:

Bλ
v,q(t

2; x) = x2 +
x(1 − x)
[v]q

+
λ(q2 + 1)[v + 1]q
([v]q + 1)[v]2qq2 x(1 − xv) +

λ(q2 − 1)[v + 1]q
([v]q + 1)[v]q q

x2(1 − xv−1)

− λ

([v]q + 1)[v]2q q2 (1 − (1 -⃝x)v+1 − xv+1).

Lemma 2 is proved.

In light of the above findings, moments can be increased or decreased by ϵ > 0 in
response to the values of λ ∈ [−1, 1] and q ∈ (0, 1] It is noted that the moments of the
operators B0

v,q(h) (λ = 0) are the same as those of the q-Bernstein operators obtained by
Phillips in [11]. In addition, when q = 1, the moments of the operators Bλ

v,1 are the same as
the moments of the λ-Bernstein operators given in [40].

Lemma 3. Let q ∈ (0, 1 ] and λ ∈ [−1, 1]. For ∀x ∈ [0, 1], we obtain the following central
moments of Bλ

v,q:

Bλ
v,q(t − x; x) =

λ(q − 1)[v + 1]q
([v]q + 1)q[v]q

x(1 − xv) +
λ

([v]q + 1)q[v]q
(1 − xv+1 − (1 -⃝x)v+1)

Bλ
v,q

(
(t − x)2; x

)
=

x(1 − x)
[v]q

+
λ(q2 + 1)[v + 1]q x(1 − xv)

([v]q + 1)q2[v]2q

−
λ(1 − q2)[v + 1]q x2(1 − xv−1)

([v]q + 1)q[v]q
− λ(1 − (1 -⃝x)v+1 − xv+1)

([v]q + 1)[v]2q q2

+
2λ(1 − q)[v + 1]q x2(1 − xv)

([v]q + 1)q[v]q
− 2λ x(1 − xv+1 − (1 -⃝x)v+1)

([v]q + 1)q[v]q
.
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Proof. Thanks to the linearity of Bλ
v,q, we have the following equalities:

Bλ
v,q(t − x; x) = Bλ

v,q(t; x)− xBλ
v,q(1; x)

Bλ
v,q

(
(t − x)2; x

)
= Bλ

v,q(t
2; x)− 2xBλ

v,q(t; x) + x2Bλ
v,q(1; x).

If we perform some computations using the equalities (6), (7) and (8) given in Lemma 2,
the desired results are obtained.

Lemma 4. Let q ∈ (0, 1 ] and λ ∈ [−1, 1]. For ∀x ∈ [0, 1], we obtain the following inequalities
related to central moments of Bλ

v,q:

Bλ
v,q(t − x; x) ≤ x(1 − xv)

q[v]q
+

(1 − xv+1 − (1 -⃝x)v+1)

([v]q + 1)q[v]q
:= Φv,q(x).

Bλ
v,q

(
(t − x)2; x

)
≤ x(1 − x)

[v]q
+

2x(1 − xv)

q2[v]2q
+

x2(1 − xv−1)

q[v]q
+

(1 − (1 -⃝x)v+1 − xv+1)

([v]q + 1)[v]2q q2

:= Ψv,q(x)

Proof. To prove the above lemma, first, we note that 0 ≤ (1 − xv+1 − (1 -⃝x)v+1) ≤ 1
because of the following equality:

1 = [x + (1 − x)]v+1
q =

v+1

∑
k=0

[
v + 1

k

]
q
xk(1 -⃝x)v+1−k

Now, from Lemma 3, we can obtain

Bλ
v,q(t − x; x) ≤

∣∣∣∣λ(q − 1)[v + 1]qx(1 − xv)

([v]q + 1)q[v]q

∣∣∣∣+ ∣∣∣∣λ(1 − xv+1 − (1 -⃝x)v+1)

([v]q + 1)q[v]q

∣∣∣∣
≤ x(1 − xv)

q[v]q
+

(1 − xv+1 − (1 -⃝x)v+1)

([v]q + 1)q[v]q
:= Φv,q(x)

by using the triangle inequality, the inequality [v + 1]q ≤ [v]q + 1, −1 ≤ λ ≤ 1, and 0 <
q ≤ 1.

Similarly to first one, we can have

Bλ
v,q

(
(t − x)2; x

)
=

∣∣∣∣∣ x(1 − x)
[v]q

+
λ(q2 + 1)[v + 1]q x(1 − xv)

([v]q + 1)q2[v]2q

−
λ(1 − q2)[v + 1]q x2(1 − xv−1)

([v]q + 1)q[v]q
− λ(1 − (1 -⃝x)v+1 − xv+1)

([v]q + 1)[v]2q q2

+
2λ(1 − q)[v + 1]q x2(1 − xv)

([v]q + 1)q[v]q
− 2λ x(1 − xv+1 − (1 -⃝x)v+1)

([v]q + 1)q[v]q

∣∣∣∣∣
≤ x(1 − x)

[v]q
+

2x(1 − xv)

q2[v]2q
+

x2(1 − xv−1)

q[v]q
+

(1 − (1 -⃝x)v+1 − xv+1)

([v]q + 1)[v]2q q2

:= Ψv,q(x)

Throughout this study, let C[a, b] be the space of all continuous functions on the closed
interval [a, b]. It should be noted that every continuous function on the interval [a, b] is
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bounded, hence the elements of C[a, b] are also bounded. Moreover, C[a, b] is a normed
space equipped with the norm

∥h∥C[a,b] = sup{|h(x)| : x ∈ [a, b]}.

3. Statistical Approximation

In this section, we review some details of the concept of statistical convergence and
give one of our main results for the operators introduced in (3).

We denote the set of natural numbers by N. Let A be a subset of N and χA be the
characteristic function of A. The density of the set A is defined by

δ(A) := lim
v→∞

1
v

v

∑
s=1

χA(s),

on condition that the limit exists [41].
Let {xi} be a sequence, if δ(i ∈ N : |xi − L| ≥ ϵ) = 0 for every ϵ > 0, the sequence

{xi} is statistical convergent to L. We denote this convergence by st − limv→∞ xv = L.
Now, we present an important theorem obtained by Gadjiev and Orhan [42].

Theorem 1. (See [42]) Let Cb[a, b] be a space of functions f ∈ C[a, b], which is bounded on the
positive axis and Lv : Cb[a, b] → C[a, b] be a sequence of positive linear operators provided that
st − limv→∞ ||Lv(ei; ·)− ei||C[a,b] = 0 for ei = ti (i = 0, 1, 2), then we get

st − lim
v→∞

||Lv(h; ·)− h||C[a,b] = 0

for any function h ∈ Cb[a, b].

Now, we present our statistical approximation theorem for the operators given in (3).

Theorem 2. Let h ∈ C[0, 1], λ ∈ [−1, 1], and v > 0. If q = {qv} (0 < qv < 1) is a sequence
such that st − limv→∞ qv = 1, we obtain

st − lim
v→∞

∥Bλ
v,qv(h ; ·)− h∥ = 0

for the operators Bλ
v,qv .

Proof. Let us show that the conditions of Theorem 1 hold for the operators Bλ
v,qv , which is

sufficient to prove our theorem. In order to enhance its comprehensibility, we assume that
ei(t) = ti for i = 0, 1, 2. Using the Equality (6) in Lemma 2, it is obvious that

st − lim
v→∞

∥Bλ
v,qv(e0; ·)− e0∥C[0,1] = 0 since ∥Bλ

v,qv(e0; ·)− e0∥C[0,1] = 0.

With the inequality (7) in Lemma 2, using the inequality 0 ≤ (1 − xv+1 − (1 -⃝x)v+1) ≤
1, [v + 1]qv ≤ [v]qv + 1, and the assumptions for λ and qv, for each x ∈ [0, 1], we obtain the
following inequality:∣∣∣Bλ

v,qv(t; x)− x
∣∣∣ ≤ ∣∣∣∣λ(qv − 1)[v + 1]qv

([v]qv + 1)qv[v]qv

x(1 − xv)

∣∣∣∣+ ∣∣∣∣ λ

([v]qv + 1)qv[v]qv

(1 − xv+1 − (1 -⃝x)v+1)

∣∣∣∣
≤ 1

qv[v]qv

+
1

([v]qv + 1)qv[v]qv

.

For a given ϵ > 0, let the following sets with the property M ⊂ M1 ∪ M2 be defined as

M =
{

i : ∥Bλ
i,qi

(e1; ·)− e1∥C[0,1] ≥ ϵ
}

,
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M1 =

{
i :

1
qi[i]qi

≥ ϵ

2

}
, M2 =

{
i :

1
([i]qi + 1)qi[i]qi

≥ ϵ

2

}
,

which also means that

δ
{

i ≤ v : ∥Bλ
i,qi

(e1; ·)− e1∥C[0,1] ≥ ϵ
}

≤ δ

{
i ≤ v :

1
qi[i]qi

≥ ϵ

2

}
+ δ

{
i ≤ v :

1
([i]qi + 1)qi[i]qi

≥ ϵ

2

}
.

(9)

Considering that st − limv→∞ qv = 1, we obtain

st − lim
v→∞

1
qv[v]qv

= 0 and st − lim
v→∞

1
([v]qv + 1)qv[v]qv

= 0.

This gives us that the right hand side of (9) is zero, so we get

st − lim
v→∞

∥Bλ
v,qv(e1; ·)− e1∥C[0,1] = 0.

Now, let us evaluate st − limv→∞∥Bλ
v,qv(e2; ·) − e2∥C[0,1]. Similarly to the previous

steps, starting from the Equality (8) in Lemma 2, for each x ∈ C[a, b], we obtain

∣∣∣Bλ
v,qv(t

2; x)− x2
∣∣∣ ≤ ∣∣∣∣ x(1 − x)

[v]q

∣∣∣∣+
∣∣∣∣∣λ(q2 + 1)[v + 1]q x (1 − xv)

([v]q + 1)[v]2q q2

∣∣∣∣∣
+

∣∣∣∣∣λ(q2 − 1)[v + 1]q x2 (1 − xv−1)

([v]q + 1)[v]q q

∣∣∣∣∣+
∣∣∣∣∣λ(1 − (1 -⃝x)v+1 − xv+1)

([v]q + 1)[v]2q q2

∣∣∣∣∣
≤ 1

[v]q
+

2[v + 1]q
([v]q + 1)[v]2qq2 +

[v + 1]q
([v]q + 1)[v]q q

+
1

([v]q + 1)[v]2q q2

≤ 1
[v]q

+
2

[v]2q q2 +
1

[v]q q
+

1
([v]q + 1)[v]2q q2 .

For a given ϵ > 0, we define the following sets

N =
{

i : ∥Bλ
i,qi

(e2; ·)− e2∥C[0,1] ≥ ϵ
}

, N1 =

{
i :

1
[i]qi

+
1

[i]qi qi
≥ ϵ

3

}
,

N2 =

{
i :

2
[i]2qi

qi
2 ≥ ϵ

3

}
, N3 =

{
i :

1
([i]qi + 1)[i]2qi

qi
2 ≥ ϵ

3

}
.

It is easily seen that N ⊂ N1 ∪ N2 ∪ N3, which implies that

δ
{

i ≤ v : ∥Bλ
i,qi

(e2; ·)− e2∥C[0,1] ≥ ϵ} ≤ δ

{
i ≤ v :

1
[i]qi

+
1

[i]qi qi
≥ ϵ

3

}
+ δ

{
i ≤ v :

2
[v]2q q2 ≥ ϵ

3

}
+ δ

{
i ≤ v :

1
([i]qi + 1)[i]2qi

qi
2 ≥ ϵ

3

}
.

(10)

Since st − limv→∞ qv = 1, we obtain that

st− lim
v→∞

1
[v]qv

+
1

[v]qv qv
= 0, st− lim

v→∞

2
[v]2qv qv2 = 0, and st− lim

v→∞

1
([v]qv + 1)[v]2qv qv2 = 0.

These statistical limits lead us to the conclusion that the right-hand side of (10) is zero,
that is,

st − lim
v→∞

∥Bλ
v,qv(e2; ·)− e2∥C[0,1] = 0.

So the theorem is proved.
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4. Direct Estimate

In this section, we provide a direct estimate for the operators Bλ
v,q(h; x). The first

modulus of continuity for a function h ∈ C[a, b] is denoted by ω(h, ξ). This means that

ω(h, ξ) = sup
0<z≤ξ, x∈[a,b]

|h(x + z)− h(x)|.

The Peetre K-functional is defined by

K2(h, ξ) = inf{∥h − g∥C[a,b] + ξ∥g′′∥C[a,b] : g, g′, g′′ ∈ C[a, b]},

where ξ > 0. Now, we present the following theorem given in [43].

Theorem 3. (See [43]) Let h ∈ C[a, b]. Then, there exists a positive constant C such that

K2(h, ξ) ≤ Cω2(h,
√

ξ),

where
ω2(h,

√
ξ) = sup

0<z≤
√

ξ

sup
x∈[a,b]

|h(x + 2z)− 2h(x + z) + h(x)|,

which is called the second-order modulus of smoothness.

To begin, we introduce a lemma whose proof is omitted due to its routine nature.

Lemma 5. Let
Bλ

v,q(h; x) = Bλ
v,q(h; x)− h(Bλ

v,q(t; x)) + h(x), (11)

then we get

• Bλ
v,q(1; x) = 1,

• Bλ
v,q(t; x) = x,

• Bλ
v,q(t − x; x) = 0.

Lemma 6. Let q ∈ (0, 1 ]. Then, for every v > 0, x ∈ [0, 1] and h′′ ∈ C[0, 1], we have

|Bλ
v,q(h; x)− h(x)| ≤ ξv,q(x)∥h′′∥C[0,1],

where ξv,q(x) =
Ψv,q(x)+(Φv,q(x))

2

2 .

Proof. We know that

h(t) = h(x) + (t − x)h′(x) +
∫ t

x
(t − u)h′′(u)du

because of Taylor’s expansion. Leveraging this expansion along with Lemma 5, yields

Bλ
v,q(h; x)− h(x) = Bλ

v,q

(∫ t

x
(t − u)h′′(u)du; x

)
.

Using Φv,q(x) and Ψv,q(x) given in Lemma 4 and the inequality∣∣∣∣∫ t

x
(t − u)h′′(u)du

∣∣∣∣ ≤ ∥h′′∥C[0,1]
(t − x)2

2
,
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we obtain∣∣∣Bλ
v,q(h; x)− h(x)

∣∣∣ ≤ ∣∣∣∣∣Bλ
v,q

(∫ t

x
(t − u)h′′(u)du ; x

)
−

∫ Bλ
v,q(t;x)

x

(
Bλ

v,q(t; x)− u
)

h′′(u)du

∣∣∣∣∣
≤ ∥h′′∥C[0,1]

{
Bλ

v,q

(∣∣∣∣∫ t

x
(t − u)du

∣∣∣∣; x
)
+

∣∣∣∣∣
∫ Bλ

v,q(t;x)

x

(
Bλ

v,q(t; x)− u
)

du

∣∣∣∣∣
}

≤
∥h′′∥C[0,1]

2

{
Bλ

v,q

(
(t − x)2; x

)
+

[
Bλ

v,q(t − x; x)
]2
}

≤ ∥h′′∥C[0,1]

(
Ψv,q(x) +

(
Φv,q(x)

)2
)

2
.

Hence, we get the proof of Lemma 6.

Finally, we present the most pivotal theorem of this paper.

Theorem 4. Consider a sequence qv ⊂ (0, 1] such that qv → 1 as v → ∞. Then, for x ∈ [0, 1]
and h ∈ C[0, 1], we have∣∣∣Bλ

v,qv(h; x)− h(x)
∣∣∣ ≤ 2Cω2(h,

√
ξv,qv(x)) + ω

(
h, Φv,q(x)

)
.

Proof. Using (11) and the modulus of continuity of h ∈ C[0, 1], for any g ∈ C[0, 1], where
the first- and second-order derivatives of g are also in C[0, 1], we obtain∣∣∣Bλ

v,qv(h; x)− h(x)
∣∣∣ ≤∣∣∣Bλ

v,qv(h − g; x)− (h − g)(x) + Bλ
v,qv(g; x)− g(x)

∣∣∣
+

∣∣∣h(Bλ
v,qv(t; x))− h(x)

∣∣∣
≤
∣∣∣Bλ

v,qv(h − g; x)
∣∣∣+ |(h − g)(x)|+

∣∣∣Bλ
v,qv(g; x)− g(x)

∣∣∣
+ sup

0<|Bλ
v,qv (t;x)−x|≤|Bλ

v,qv (t;x)−x|

∣∣∣h(Bλ
v,qv(t; x))− h(x)

∣∣∣
≤2∥h − g∥C[0,1] +

∣∣∣Bλ
v,qv(g; x)− g(x)

∣∣∣+ ω(h, |Bλ
v,qv(t; x)− x|)

≤2∥h − g∥C[0,1] +
∣∣∣Bλ

v,qv(g; x)− g(x)
∣∣∣+ ω(h, Φv,q(x))

Subsequently, using Lemma 6, we get∣∣∣Bλ
v,qv(h; x)− h(x)

∣∣∣ ≤ 2∥h − g∥C[0,1] + ξv,qv(x)∥g′′∥C[0,1] + ω(h, Φv,q(x)).

Considering Theorem 3, if we take the infimum over g ∈ C[0, 1] whose first and second
derivatives are the elements of C[0, 1] on this inequality, we obtain the result∣∣∣Bλ

v,qv(h; x)− h(x)
∣∣∣ ≤ 2K2(h, ξv,qv(x)) + ω(h, Φv,q(x))

≤ 2Cω2(h;
√

ξv,qv(x)) + ω(h, Φv,q(x)).

This completes the proof.

Thus, thanks to the Petree K-functional (consequently second-order modulus of
smoothness) and modulus of continuity for a continuous function h ∈ C[0, 1], we get
the rate of convergence for the operators Bλ

v,qv(h) to h as 1√
[v]qv

, which is same as the rate of

convergence as for the popular q-Bernstein operators given in [11].
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5. Numerical Example

In this section, we present a numerical example to illustrate the convergence properties
of the newly defined operators Bλ

v,q(h), we also compare the convergence with q-Bernstein
operators B0

v,q(h). In accordance with this purpose, we chose a function and tested its
convergence behavior for different parameters. All experimental algorithms were coded
using MATLAB R2019b.

We take the test function h(x) = x cos(2πx). The graphs of Bλ
v,q(h; x) with λ = 1 are

shown in Figure 1. It can be seen from Figure 1 that with the increase in v, B1
v,q(h) is getting

closer and closer to function h(x). In Figure 2, we fix v = 5 and q = 0.9, operators Bλ
v,q(h; x)

and h(x) with different values of the parameters λ are shown. It can be seen from Figure 2 that
under certain values of λ (such as λ = −1), the convergence behavior of Bλ

v,q(h) is better than
that of B0

v,q(h), that is q-Bernstein operators. Figure 3 shows the absolute error of B−1
10,0.99(h; x),

B−0.5
10,0.99(h; x) and B0

10,0.99(h; x) on h(x). Table 1 shows the absolute error bound of Bλ
v,q(h; x) on

the function h(x) when q = 0.9, q = 0.95 and so on. As can be seen from Table 1, for fixed q,
the closer λ is to −1, the smaller absolute error bound between Bλ

v,q(h) and h(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. The convergence of B1
10,0.999(h; x), B1

20,0.999(h; x), B1
50,0.999(h; x) to h(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. The convergence of B−1
5,0.9(h; x), B−0.5

5,0.9 (h; x), B0
5,0.9(h; x) to h(x).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3. Comparison of errors for B−1
10,0.99(h; x), B−0.5

10,0.99(h; x) and B0
10,0.99(h; x) to h(x).

Table 1. The absolute error bound of Bλ
v,q(h; x) to h(x).

q
∥Bλ

v,q(h)− h∥∞

λ = −1 λ = −0.5 λ = 0 λ = 0.5 λ = 1

0.9 0.242074235 0.242921216 0.243768198 0.244615179 0.245462161
0.95 0.146636656 0.147073061 0.147581795 0.14809053 0.148599265
0.99 0.074389442 0.074658736 0.07492803 0.075197324 0.075466618

0.995 0.066814352 0.067069407 0.067324461 0.067579516 0.06783457
0.999 0.06108183 0.061325904 0.061569978 0.061814053 0.062058127
0.9999 0.059833655 0.060075309 0.060316963 0.060558617 0.060800271

0.99999 0.059709692 0.059951105 0.060192518 0.060433931 0.060675344
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2024, 529, 126842. [CrossRef]
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27. Dinlemez, Ü.; Yüksel, İ. Voronovskaja Type Approximation Theorem For q-Szász-Beta-Stancu Type Operators. Gazi Univ. J. Sci.

2016, 29, 115–122.
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