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Abstract: Let S and C be affine semigroups in Nd such that S ⊆ C. We provide a characterization
for the set C \ S to be finite, together with a procedure and computational tools to check whether
such a set is finite and, if so, compute its elements. As a consequence of this result, we provide a
characterization for an ideal I of an affine semigroup S so that S \ I is a finite set. If so, we provide
some procedures to compute the set S \ I.
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1. Introduction

Let N be the set of non-negative integers. A monoid S is called an affine semigroup if
it is a finitely generated submonoid of the additive monoid Nd, for some positive integer
d. Equivalently, up to isomorphism, S is a monoid that is finitely generated, cancellative,
torsion free and reduced (see [1] for an overview on affine semigroups). We recall that a
monoid S ⊆ Zd is finitely generated if there exists a finite set A ⊆ Zd contained in S such
that S = ⟨A⟩, where

⟨A⟩ =
{

n

∑
i=1

λiai | n ∈ N, ai ∈ A, λi ∈ N for all i ∈ {1, . . . , n}
}

.

In particular, S = ⟨A⟩ is called the monoid generated by A and A is a set of generators
of S. It is known that, for every submonoid S of Nd, there exists a unique minimal set that
generates S, that is (S \ {0}) \ (S \ {0}+ S \ {0}). In particular, if S is an affine semigroup,
such a set is finite.

Let Q+ be the the set of non-negative rational numbers. If S = ⟨A⟩ ⊆ Nd is an affine
semigroup, we consider the sets cone(S) = {∑n

i=1 qiai | n ∈ N, ai ∈ A, qi ∈ Q+ for all
i ∈ {1, . . . , n}}, that is the cone spanned by S, and Group(S) = {a − b ∈ Zd | a, b ∈ S},
that is called the group generated by S. The sets N (S) = cone(S) ∩ Group(S), called the
normalization of S, and CS = cone(S) ∩ Nd are affine semigroups (by Gordan’s Lemma,
see for instance [2] (Lemma 2.9). Since S is finitely generated, if {g1, . . . , gn} ⊆ Nd is its
minimal set of generators, by relabeling if necessary, without loss of generality, we may
assume that there exists r ≤ n such that cone(S) = cone({g1, . . . , gr}). For minimality, we
may also assume that cone({g1, . . . , gr} \ {gi}) ̸= cone(S) for each i ∈ {1, . . . , r}. In such
a case, gi /∈ cone({g1, . . . , gr} \ {gi}) for each i ∈ {1, . . . , r} (otherwise cone({g1, . . . , gr} \
{gi}) = cone({g1, . . . , gr} = cone(S)). We say that {g1, . . . , gr} is a set of extreme rays of S.

One of the motivations for studying affine semigroups is to extend the notion of
numerical semigroup and some of its properties. A numerical semigroup is a submonoid
S of N such that N \ S is finite. It is known that every numerical semigroup is a finitely
generated monoid (so it is an affine semigroup) and every submonoid of N is isomorphic
to a numerical semigroup. Moreover, it is known that, if S = ⟨g1, . . . , gn⟩ ⊆ N, then S is
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a numerical semigroup if and only if gcd(g1, . . . , gn) = 1. The monographs [3,4] are very
good references for this and other interesting properties of numerical semigroups.

A possible way to generalize the notion of numerical semigroup to submonoids in
Nd is to focus on the property of cofiniteness. In general, we say that a set A is cofinite
in B if A ⊆ B and B \ A is a finite set. In particular, a numerical semigroup is a cofinite
monoid in N. A straightforward step in this direction is to consider submonoids S of Nd

such that Nd \ S is finite. These kinds of monoids have been introduced in [5], where they
are called generalized numerical semigroups. The study of the properties of these monoids
is still an active area of research (for some recent works, see for instance [6,7]). A more
general situation is considered in [8], where the authors introduce the class of monoids S
such that CS \ S is finite. A monoid S of such a family is called a CS-semigroup. In particular,
a generalized numerical semigroup is a CS-semigroup such that CS = Nd. Some recent
results on CS-semigroups are contained, for instance, in [9–11]. It is known that, if S is a
CS-semigroup, then S is finitely generated (so, the same occurs when S is a generalized
numerical semigroup), that is, the mentioned families of submonoids of Nd are classes of
affine semigroups.

A natural problem is to consider a set A ⊆ Nd and characterize when the set S = ⟨A⟩
is a CS-semigroup. A result of this type has been provided firstly in [12] (Theorem 2.8)
for generalized numerical semigroups and later in [13] (Theorem 9) for the general case
of CS-semigroups. Having in mind these results, in this paper, we consider a further
generalization for the property of cofiniteness of an affine semigroup S ⊆ Nd, considering
that the case S is cofinite in another affine semigroup C ⊆ Nd. In particular, in the main
result of this work, we provide a characterization for an affine semigroup S ⊆ Nd to be
cofinite in an affine semigroup C ⊆ Nd, in terms of the generators of C. We call this kind of
monoids C-cofinite. We provide such a result in Section 2, together with a procedure and
computational tools to check whether an affine semigroup is C-cofinite for a fixed affine
monoid C and, if so, to compute the set C \ S.

As a consequence of the previous result, we obtain a characterization for an ideal
of an affine semigroup to be cofinite in it. We recall that, if S is an affine semigroup,
an ideal I of S is a subset I ⊆ S such that I + S ⊆ I (in general, for X, Y ⊆ Nd, set
X + Y = {x + y | x ∈ X, y ∈ Y}). In Section 3, we give such a characterization so
that S \ I is finite. Furthermore, for a given affine semigroup S and an ideal I of it, we
provide two different approaches in order to check whether S \ I is finite and, if so, to
compute its elements: the first one uses similar procedures to those suggested for C-cofinite
submonoids, the second one uses tools from commutative algebra. Finally, we conclude
with some remarks about a relation of this subject with the Apéry set of a subset of an
affine semigroup.

2. Cofinite Submonoids of an Affine Semigroup

The first aim of this section is to provide a characterization, for a submonoid S of an
affine semigroup C, to have finite complement in it. After giving a definition for this kind
of monoids and showing that they are also affine semigroups, we introduce some useful
tools to prove the mentioned characterization.

Definition 1. Let C ⊆ Nd be an affine semigroup. A submonoid S of C is called C-cofinite if
the set C \ S is finite.

For the next result, we recall that a term order ⪯ (or monomial order) on Nd is a total
order such that 0 ⪯ v for all v ∈ Nd and if v ⪯ w, then the inequality v + u ⪯ w + u holds
for all u ∈ Nd (see Chapter 2, §2 of [14], also, for some concrete examples of term orders).
We use the notation v ≺ w for v ⪯ w and v ̸= w.

Proposition 1. Let C ⊆ Nd be an affine semigroup and S ⊆ C be a C-cofinite submonoid. Then, S
is finitely generated.
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Proof. Let C \ S = {h1 ≺ · · · ≺ hr} for some term order ⪯, with C = ⟨g1, g2, . . . , gn⟩.
We show that h1 is a minimal generator of C. In fact, we suppose that h1 = a + b with
a, b ∈ C \ {0}. In particular, h1 ̸= a and h1 ̸= b. If h1 ≺ a, then h1 ≺ h1 + b ≺ a + b,
which contradicts h1 = a + b. Hence, a ≺ h1 and, by a similar argument, b ≺ h1. As a
consequence, by the minimality of h1 we have a, b ∈ S, obtaining h1 ∈ S, a contradiction.
So, h1 is a minimal generator of C and we can suppose h1 = g1. We can argue that
C \ {h1} = ⟨g2, . . . , gn, g2 + h1, . . . , gn + h1, 2h1, 3h1⟩. We can use the same argument to
show that h2 is a minimal generator of C \ {h1} and so on, until we provide a finite set of
generators of C \ {h1, . . . , hr}.

Let C = ⟨g1, g2, . . . , gn⟩ ⊆ Nd be an affine semigroup. We denote by e1, . . . , en the
standard basis vectors of the vector space Rn; in particular, Nn = ⟨e1, . . . , en⟩ as a monoid.
We consider the following map:

fC : Nn −→ C,
n

∑
i=1

aiei 7−→
n

∑
i=1

aigi.

Then, fC is a monoid epimorphism. We observe that, if a ∈ C, then f−1
C (a) is the set of

factorizations of a as combination of vectors in the set {g1, g2, . . . , gn}.

Lemma 1. Let C = ⟨g1, g2, . . . , gn⟩ ⊆ Nd be an affine semigroup. We suppose S is a submonoid of
C. Then,

1. C \ S is a finite set if and only if Nn \ f−1
C (S) is a finite set.

2. C \ S = { fC(h) | h ∈ Nn \ f−1
C (S)}.

Proof. We denote T = f−1
C (S). We observe that T is a submonoid of Nn. Moreover, since

fC is a surjective function, we have Nn \ T = f−1
C (C) \ f−1

C (S) = f−1
C (C \ S). From this

equality, we easily obtain that |C \ S| ≤ |Nn \ T|. Therefore, if T is Nn-cofinite, then C \ S is
a finite set. Moreover, for all x ∈ C, the set f−1

C (x) = {h ∈ Nn | fC(h) = x} is finite. In fact,
each element of an affine semigroup has a finite number of factorizations. In particular, if
C \ S is finite, then Nn \ T =

⋃
x∈C\S f−1

C (x) is finite. So, claim (1) is proved. Furthermore,
by Nn \ T = f−1

C (C \ S), since fC is surjective, we have fC(N \ T) = fC( f−1
C (C \ S)) = C \ S.

In particular, we obtain claim (2).

We remind that a characterization for a submonoid T ⊆ Nn to be Nn-cofinite is
provided in [12] (Theorem 2.8). For completeness, we state the result here, since it will be
useful later.

Theorem 1 ([12]). Let A ⊆ Nn. Then, ⟨A⟩ is Nn-cofinite if and only if the set A fulfills each one
of the following conditions:

1. For all i ∈ {1, . . . , n} there exist a(i)1 ei, a(i)2 ei, . . . , a(i)si ei ∈ A, with si ∈ N \ {0}, a(i)j ∈

N \ {0}, such that gcd(a(i)1 , a(i)2 , . . . , a(i)si ) = 1.

2. For each i, j ∈ {1, . . . , n}, with i ̸= j, there exists n(j)
i ∈ N such that ei + n(j)

i ej ∈ A.

Next, we provide the mentioned characterization for a submonoid S ⊆ C to be C-cofinite.

Theorem 2. Let C = ⟨g1, g2, . . . , gn⟩ ⊆ Nd be an affine semigroup and S ⊆ C be a submonoid.
Then, S is C-cofinite if and only if the following two conditions are verified:

1. For all i ∈ {1, . . . , n}, the set Si = {λ ∈ N | λgi ∈ S} is a numerical semigroup.

2. For each i, j ∈ {1, . . . , n}, with i ̸= j, there exists n(j)
i ∈ N such that gi + n(j)

i gj ∈ S.

Proof. Necessity. It is not difficult to see that the set Si is a monoid for all i ∈ {1, . . . , n}. If
the first condition is not verified, then there exists i such that the set {λ ∈ N | λgi /∈ S} ⊆
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C \ S is not finite. If the second condition is not verified, then, for some i, j, with i ̸= j, we
have that gi + µgj /∈ S for all µ ∈ N.

Sufficiency . We assume that Si = ⟨λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
si ⟩ is a numerical semigroup for all

i ∈ {1, . . . , n}. In particular, ⟨λ(i)
1 gi, λ

(i)
2 gi, . . . , λ

(i)
si gi⟩ ⊆ S and gcd(λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
si ) = 1,

for each i ∈ {1, . . . , n}. Moreover, for all i, j ∈ {1, . . . , n}, with i ̸= j, we can consider n(j)
i =

min{n ∈ N | gi +ngj ∈ S}. For each i ∈ {1, . . . , n}, we set Gi = {λ
(i)
1 ei, λ

(i)
2 ei, . . . , λ

(i)
si ei} ⊆

Nn. Let G =
(
∪n

i=1Gi
)
∪ {ei + n(j)

i ej | i ̸= j} ⊆ Nn. The set G satisfies the conditions of
Theorem 1, so ⟨G⟩ is Nn-cofinite. We consider the monoid T = f−1

C (S) ⊆ Nn. We observe
that, if x ∈ G, then fC(x) ∈ S, that is, G ⊆ T. In particular, ⟨G⟩ ⊆ T and, as a consequence,
Nn \ T ⊆ Nn \ ⟨G⟩. Therefore, T is Nn-cofinite and, by Lemma 1, C \ S is finite.

Let S and C be affine semigroups, S ⊆ C. We recall that, for C = CS, a characterization
so that |CS \ S| < ∞ has been provided in [13] (Theorem 9) and, in the same paper, the
authors provide a procedure to compute CS \ S.

Theorem 2, in this form, can be viewed as a generalization of Theorem 1. The main
difference is the following: in the case C = Nd (and the same can be trivially considered
in the case C ∼= Nr for some positive integer r), the elements satisfying the two conditions
of Theorem 1 belong to every set of generators of S. In particular, they belong to the
minimal set of generators of S. In the case C ⊊ Nd (and C ≇ Nr for all positive integer r),
instead, we have to look for these elements in the whole semigroup S. It is not possible, in
general, to consider only a set of the generators of S: see, for instance, Examples 1 and 2
below, where the elements 3g1, g1 + 2g3 belong to S but they do not belong to its set of
minimal generators.

Now, we want to suggest a possible way to verify computationally the two conditions
of Theorem 2. We assume C = ⟨g1, . . . , gn⟩ and suppose S = ⟨n1, n2, . . . , nt⟩. So, we focus
on the following:

1. For all i ∈ {1, . . . , n}, the set Si = {λ ∈ N | λgi ∈ S} is a numerical semigroup.

2. For each i, j ∈ {1, . . . , n}, i ̸= j, there exists n(j)
i ∈ N such that gi + n(j)

i gj ∈ S.

Condition 1. Let i ∈ {1, . . . , n}. We observe that

{λ ∈ N | λgi ∈ S} =

{
λ ∈ N |

t

∑
j=1

λjnj + λ(−gi) = 0, for some λ1, . . . , λn ∈ N
}

.

Let A(i) = [n1, n2, . . . , nt,−gi] be the matrix whose columns are the elements of the
finite set of generators of S and the column vector related to −gi ∈ Zd. So A(i) has t + 1
columns and entries in Z. We identify every element x ∈ Nt+1 with its column vector and
consider the Diophantine linear system A(i)x = 0. It is easy to see that

{λ ∈ N | λgi ∈ S} = {xt+1 | A(i)x = 0 with x = (x1, . . . , xt, xt+1) ∈ Nt+1}.

Let Mi ⊆ Nt+1 be the set of non-negative integer solutions of the homogeneous Dio-
phantine linear system A(i)x = 0. It is known that Mi is an affine semigroup in Nt+1 (see for
instance [15] (Section 1)), so there exists a finite set Bi ⊆ Nt+1, such that Mi = ⟨Bi⟩. Hence,
Si = ⟨{xt+1 ∈ N | (x1, . . . , xt, xt+1) ∈ Bi}⟩. It is possible to perform these computations
in the computer algebra software GAP [16] with the package numericalsgps [17]. It is also
recommended to use the package NormalizInterface (that is an interface in GAP for the
software Normaliz, see [18,19]), in order to speed up the computation time.

Example 1. We consider the affine semigroups C = ⟨(1, 1), (1, 2), (2, 1), (3, 1)⟩ and
S = C \ {(1, 1), (3, 2), (2, 3)} = ⟨(1, 2), (2, 1), (2, 2), (3, 1), (3, 5)⟩. Let us compute a finite
set of generators of S1 = {λ ∈ N | λg1 ∈ S}, where g1 = (1, 1). We need to find the
non-negative integer solutions of the linear Diophantine system Ax = 0, where A has
column vectors (1, 2), (2, 1), (2, 2), (3, 1), (3, 5), (−1,−1).
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gap> LoadPackage(‘‘num’’);;
gap> NumSgpsUseNormaliz();;
gap> A:=[[1,2],[2,1],[2,2],[3,1],[3,5],[-1,-1]];;
gap> n:=Length(A);;
gap> A:=TransposedMat(A);
[ [ 1, 2, 2, 3, 3, -1 ], [ 2, 1, 2, 1, 5, -1 ] ]
gap> sol:=HilbertBasisOfSystemOfHomogeneousEquations(A,[]);
[ [ 0, 0, 0, 1, 1, 6 ], [ 0, 0, 1, 0, 0, 2 ], [ 0, 2, 0, 0, 1, 7 ],

[ 1, 1, 0, 0, 0, 3 ], [ 2, 0, 0, 1, 0, 5 ] ]
gap> B:=List(sol,i->i[n]);
[ 6, 2, 7, 3, 5 ]
gap> Gcd(B);
1
gap> MinimalGenerators(NumericalSemigroup(B));
[ 2, 3 ]

Therefore, the previous computations allow to check that S1 = ⟨2, 3⟩.

In order to verify the first condition of Theorem 2 for elements related to an extreme
ray g of C having the greatest common divisor of its coordinates equal to 1, it suffices to
perform an easier check on a finite set of generators of S, as stated by the following result.

Proposition 2. Let C = ⟨g1, g2, . . . , gr, gr+1, gr+2, . . . , gr+m⟩ ⊆ Nd be an affine semigroup such
that cone(C) = cone({g1, . . . , gr}). We assume that gi /∈ cone({g1, . . . , gr} \ {gi}) for some
i ∈ {1, . . . , r} and that the greatest common divisor of the coordinates of gi is 1. We suppose that
S ⊆ C is a submonoid and denote by A the minimal set of generators of S. We consider the monoid
Si = {λ ∈ N | λgi ∈ S} ⊆ N and let {λ

(i)
1 , λ

(i)
2 , . . . , λ

(i)
si } be the minimal set of generators of Si.

Then, {λ
(i)
1 gi, λ

(i)
2 gi, . . . , λ

(i)
si gi} ⊆ A.

Proof. Let ℓ ∈ {1, . . . , si}. We want to prove that λ
(i)
ℓ gi ∈ A. First of all, we observe

that, if λ
(i)
ℓ gi = ∑r

j=1 β jgj with β j ∈ Q≥0, then β j = 0 for all j ̸= i. In fact, if there ex-

ists k ∈ {1, . . . , r} \ {i} such that βk ̸= 0, then βi < λ
(i)
ℓ . In particular, (λ(i)

ℓ − βi)gi =

∑r
j=1,j ̸=i β jgj, from which we easily obtain that gi ∈ cone({g1, . . . , gr} \ {gi}), a contradic-

tion. So, the only possibility is βi = λ and β j = 0 for all j ∈ {1, . . . , r} \ {i}.

We know that λ
(i)
ℓ gi ∈ ⟨A⟩ = S and suppose that λ

(i)
ℓ gi /∈ A. Hence, λ

(i)
ℓ gi = ∑a∈A µaa

for some µa ∈ N such that ∑a∈A µa > 1. For every a ∈ A, we have a ∈ C. In particular,
a ∈ cone({g1, . . . , gr}). For a ∈ A, we assume a = ∑r

j=1 γ(a,j)gj with γ(a,j) ∈ Q≥0 for each

j ∈ {1, . . . , r}. As a consequence, λ
(i)
ℓ gi = ∑a∈A µaa = ∑r

j=1(∑a∈A µaγ(a,j))gj. By the dis-
cussion at the beginning of the proof, we have ∑a∈A µaγ(a,j) = 0 for all j ∈ {1, . . . , r} \ {i}.
So, for all j ∈ {1, . . . , r} \ {i}, since µaγ(a,j) ≥ 0, the only possibility is µaγ(a,j) = 0. In
particular, if µa ̸= 0, we have γ(a,j) = 0 for all j ∈ {1, . . . , r} \ {i}. Then, for all a ∈ A with
µa ̸= 0, we have a = γ(a,i)gi for some γ(a,i) ∈ Q≥0 \ {0}. Since gi, a ∈ Nd, the hypothe-
sis that the greatest common divisor of the coordinates of gi is 1 forces γ(a,i) ∈ N \ {0}.

Therefore, for all a ∈ A with µa ̸= 0, we have γ(a,i) ∈ Si = ⟨λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
si ⟩. Let

b ∈ A such that µb ̸= 0, and we assume that γ(b,i) = ∑si
j=1 αjλ

(i)
j , αj ∈ N. Then, we

can write λ
(i)
ℓ gi = ∑a∈A,a ̸=b µaa + µb

(
∑si

j=1,j ̸=ℓ αjλ
(i)
j gi

)
+ µbαℓλ

(i)
ℓ gi. Since µb > 0

and ∑a∈A µa > 1, the only possibility is αℓ = 0. In particular, we can argue that,
for all a ∈ A, with µa ̸= 0, γ(a,i) ∈ ⟨{λ

(i)
1 , λ

(i)
2 , . . . , λ

(i)
si } \ {λ

(i)
ℓ }⟩. As a consequence,

λ
(i)
ℓ gi ∈ ⟨{γ(a,i)gi | a ∈ A, µa ̸= 0}⟩ ⊆ ⟨{λ

(i)
1 gi, λ

(i)
2 , . . . , λ

(i)
si gi} \ {λ

(i)
ℓ gi}⟩. Hence,
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λ
(i)
ℓ ∈ ⟨{λ

(i)
1 λ

(i)
2 , . . . , λ

(i)
si } \ {λ

(i)
ℓ }⟩, but this contradicts the fact that Si is minimally gener-

ated by {λ
(i)
1 gi, λ

(i)
2 gi, . . . , λ

(i)
si gi}. So, we can conclude that λ

(i)
ℓ gi ∈ A.

Condition 2. Firstly, we observe that, in the outlined framework, for the second condition
of Theorem 2, we can point out that, if gi ∈ S for some i ∈ {1, . . . , n}, for what concerns the
elements of the form gi + n(j)

i gj, we can consider n(j)
i = 0 for all j ∈ {1, . . . , n} \ {i}. So, we

assume that gi /∈ S. For j ∈ {1, . . . , n} \ {i}, we consider that

{k ∈ N | gi + kgj ∈ S} =

{
k ∈ N | gi =

t

∑
j=1

λjnj + k(−gj), for some λ1, . . . , λt ∈ N
}

.

So, in this case, we need to find all non-negative integer factorizations of gi in the
monoid ⟨n1, . . . , nt,−gj⟩ ⊆ Zt+1 and take, for each factorization, the coefficient of −gj.
In particular, this problem is related to finding the non-negative integer solutions of a
non-homogeneous Diophantine linear system of equations, that is, using the notation
introduced in Condition (1), we have

{k ∈ N | gi + kgj ∈ S} = {xt+1 | A(j)x = gi with x = (x1, . . . , xt, xt+1) ∈ Nt+1}.

We recall that, if Rij is the set of non-negative integer solutions of A(j)x = gi and Vij is
the set of minimal elements of Rij, with respect to the natural partial order in Nt+1, then
the set Vij is finite and Rij =

⋃
y∈Vij

(y + Mj), where Mj is the set of non-negative integer

solutions of the homogeneous Diophantine linear system A(j)x = 0 (see for instance [20]
(Theorem 5.2)). In particular, min{k ∈ N | gi + kgj ∈ S} = min{xt+1 | (x1, . . . , xt, xt+1) ∈
Vij}. The following example shows how to perform such a computation with GAP, using
numericalsgps and NormalizInterface.

Example 2. We consider the semigroups C and S as in Example 1. We focus on the
element such as g1 + n(3)

1 g3. In order to compute {k ∈ N | g1 + kg3 ∈ S}, with
g1 = (1, 1) and g3 = (2, 1), we need to find the minimal factorizations of (1, 1) with
respect to the set {(1, 2), (2, 1), (2, 2), (3, 1), (3, 5), (−2, −1)}. That is, we need to find the
set V13 introduced before.

gap> LoadPackage(‘‘num’’);;
gap> NumSgpsUseNormaliz();;
gap> A:=[[1,2],[2,1],[2,2],[3,1],[3,5],[-2,-1]];;
gap> n:=Length(A);;
gap> F:=FactorizationsVectorWRTList([1,1], A);
[ [ 0, 0, 0, 6, 1, 10 ], [ 0, 0, 1, 1, 0, 2 ], [ 1, 0, 0, 2, 0, 3 ] ]
gap> List(F,i->i[n]);
[ 10, 2, 3 ]

The computations above show that V13 = {(0, 0, 0, 6, 1, 10), (0, 0, 1, 1, 0, 2), (1, 0, 0, 2, 0, 3)}. The
package manual of numericalagps explains that, if v is a list of non-negative integers and ls
is a list of lists of non-negative integers, then the function FactorizationsVectorWRTList(
v, ls ) returns the set of factorizations of v in terms of the elements of ls. Actually, when
NormalizInterface is used, that function also works in the case where ls has vectors with
negative coordinates. In fact, by the code of that function, using NormalizInterface, the
function computes exactly the minimal elements (with respect to the natural partial order)
of the set of non-negative integer solutions of the system ls*x=v, in the case that the system
admits solutions (each list of integers is considered here as a column vector). So, in this
case, min{k ∈ N | g1 + kg3 ∈ S} = 2 and we can consider n(3)

1 = 2, that is, g1 + 2g3 ∈ S.
Now, we can describe a procedure to check if C \ S is finite and, if so, to compute its

elements. By Lemma 1, a direct way is to focus on the monoid f−1
C (S). In particular, we

start by finding a set of generators of f−1
C (S).
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We assume that C = ⟨g1, g2, . . . , gn⟩ and S = ⟨n1, n2, . . . , nt⟩. We observe that an element
of the form ∑n

i=1 xiei belongs to f−1
C (S) if and only if there exist λ1, . . . , λt ∈ N such that

∑n
i=1 xigi = ∑t

j=1 λjnj. We consider the matrix A(C,S) = [g1, g2, . . . , gn,−n1,−n2, . . . ,−nt],
obtained by identifying every integer vector with a column vector. Then, the elements
of f−1

C (S) can be obtained from the non-negative integer solutions of the homogeneous
Diophantine linear system A(C,S)x = 0, that is,

f−1
C (S) = {(x1, . . . , xn) ∈ Nd | A(C,S)x = 0 with x = (x1, . . . , xn, xn+1, . . . , xn+t) ∈ Nn+t}.

Let M(C,S) ⊆ Nn+t be the set of non-negative integer solutions of the homogeneous
Diophantine linear system A(C,S)x = 0. The set M(C,S) is an affine semigroup in Nn+t

(see [15] (Section 1)). So, there exists a finite set B(C,S) ⊆ Nn+t, such that M(C,S) = ⟨B(C,S)⟩.
Hence, f−1

C (S) = ⟨{(x1, . . . , xn) ∈ Nn | (x1, . . . , xn, xn+1, . . . , xn+t) ∈ B(C,S)}⟩. These
computations can be performed using the computer algebra software GAP with the packages
numericalsgps and NormalizInterface.

Now, by Lemma 1, we need to check if Nn \ f−1
C (S) is finite and, if so, compute

its elements. By the previous arguments, we obtained a finite set B ⊆ Nn such that
f−1
C (S) = ⟨B⟩. So, we can test if Nn \ f−1

C (S) is finite by Theorem 1. Once we check it is
finite, in order to compute the set Nn \ f−1

C (S), we can consider the procedure described
in [21] (it can be performed using GAP with the package numericalsgps). Finally, we obtain
the set C \ S considering all elements fC(h), for every h ∈ Nn \ f−1

C (S).

Algorithm 1. Let C = ⟨g1, g2, . . . , gn⟩ ⊆ Nd be an affine semigroup and S a submonoid of C. We
suppose that S = ⟨n1, n2, . . . , nt⟩. In order to compute C \ S, we can consider the following steps:

1. Consider the matrix A(C,S) = [g1, g2, . . . , gn,−n1,−n2, . . . ,−nt], where each element is
identified as a column vector.

2. Compute a finite set B(C,S) ⊆ Nn+t, such that ⟨B(C,S)⟩ is the set of non-negative integer
solutions of the homogeneous Diophantine linear system A(C,S)x = 0.

3. Set B = {(x1, . . . , xn) ∈ Nn | (x1, . . . , xn, xn+1, . . . , xn+t) ∈ B(C,S)}.
4. Check if the set B satisfies the conditions of Theorem 1, that is, check if ⟨B⟩ is Nn-cofinite.
5. If ⟨B⟩ is not Nn-cofinite, then S is not C-cofinite.
6. If ⟨B⟩ is Nn-cofinite, compute H = Nn \ ⟨B⟩.
7. Compute C \ S = { fC(h) | h ∈ H}.

Example 3. We consider the affine semigroups C = ⟨(1, 1), (1, 2), (2, 1), (3, 1)⟩ and S =
C \ {(1, 1), (3, 2), (2, 3)} = ⟨(1, 2), (2, 1), (2, 2), (3, 1), (3, 5)⟩ (as in the previous examples).
In the following, we show how it is possible to perform Algorithm 1 using the computer
algebra software GAP, with the packages numericalsgps and NormalizInterface.

gap> LoadPackage(‘‘num’’);;
gap> NumSgpsUseNormaliz();;
gap> C:=[[1,1],[1,2],[2,1],[3,1]];
gap> n:=Length(C);
4
[ [ 1, 1 ], [ 1, 2 ], [ 2, 1 ], [ 3, 1 ] ]
gap> S:=[[1,2],[2,1],[2,2],[3,1],[3,5]];
[ [ 1, 2 ], [ 2, 1 ], [ 2, 2 ], [ 3, 1 ], [ 3, 5 ] ]
gap> A:=Concatenation(C,-S);
[ [ 1, 1 ], [ 1, 2 ], [ 2, 1 ], [ 3, 1 ], [ -1, -2 ], [ -2, -1 ],
[ -2, -2 ], [ -3, -1 ], [ -3, -5 ] ]
gap> A:=TransposedMat(A);
[ [ 1, 1, 2, 3, -1, -2, -2, -3, -3 ], [ 1, 2, 1, 1, -2, -1, -2, -1, -5 ] ]
gap> gap> sol:=HilbertBasisOfSystemOfHomogeneousEquations(A,[]);
[ [ 0, 0, 0, 1, 0, 0, 0, 1, 0 ], [ 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
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[ 0, 0, 4, 0, 0, 0, 1, 2, 0 ], [ 0, 0, 5, 0, 1, 0, 0, 3, 0 ],
[ 0, 0, 12, 0, 0, 0, 0, 7, 1 ], [ 0, 1, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 1, 0, 1, 0, 1, 1, 0, 0 ], [ 0, 1, 0, 3, 0, 5, 0, 0, 0 ],
[ 0, 1, 3, 0, 0, 0, 2, 1, 0 ], [ 0, 1, 7, 0, 0, 0, 0, 4, 1 ],
[ 0, 2, 2, 0, 0, 0, 0, 1, 1 ], [ 0, 2, 2, 0, 0, 0, 3, 0, 0 ],
[ 0, 3, 0, 2, 0, 3, 0, 0, 1 ], [ 0, 3, 1, 0, 0, 0, 1, 0, 1 ],
[ 0, 3, 1, 1, 0, 0, 4, 0, 0 ], [ 0, 4, 0, 1, 0, 0, 2, 0, 1 ],
[ 0, 4, 0, 2, 0, 0, 5, 0, 0 ], [ 0, 5, 0, 1, 0, 1, 0, 0, 2 ],
[ 0, 7, 1, 0, 0, 0, 0, 0, 3 ], [ 0, 8, 0, 1, 0, 0, 1, 0, 3 ],
[ 0, 12, 0, 1, 0, 0, 0, 0, 5 ], [ 1, 0, 0, 1, 0, 2, 0, 0, 0 ],
[ 1, 0, 2, 0, 0, 0, 1, 1, 0 ], [ 1, 0, 3, 0, 1, 0, 0, 2, 0 ],
[ 1, 0, 10, 0, 0, 0, 0, 6, 1 ], [ 1, 1, 1, 0, 0, 0, 2, 0, 0 ],
[ 1, 1, 5, 0, 0, 0, 0, 3, 1 ], [ 1, 2, 0, 0, 0, 0, 0, 0, 1 ],
[ 1, 2, 0, 1, 0, 0, 3, 0, 0 ], [ 2, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 2, 0, 1, 0, 1, 0, 0, 1, 0 ], [ 2, 0, 8, 0, 0, 0, 0, 5, 1 ],
[ 2, 1, 3, 0, 0, 0, 0, 2, 1 ], [ 3, 0, 0, 0, 1, 1, 0, 0, 0 ],
[ 3, 0, 6, 0, 0, 0, 0, 4, 1 ], [ 3, 1, 1, 0, 0, 0, 0, 1, 1 ],
[ 4, 0, 4, 0, 0, 0, 0, 3, 1 ], [ 4, 1, 0, 0, 0, 1, 0, 0, 1 ],
[ 5, 0, 0, 0, 2, 0, 0, 1, 0 ], [ 5, 0, 2, 0, 0, 0, 0, 2, 1 ],
[ 6, 0, 0, 0, 0, 0, 0, 1, 1 ], [ 7, 0, 0, 0, 0, 2, 0, 0, 1 ] ]

gap> B:=List(sol,i->i{[1..n]});
[ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 4, 0 ], [ 0, 0, 5, 0 ],

[ 0, 0, 12, 0 ], [ 0, 1, 0, 0 ], [ 0, 1, 0, 1 ], [ 0, 1, 0, 3 ],
[ 0, 1, 3, 0 ], [ 0, 1, 7, 0 ], [ 0, 2, 2, 0 ], [ 0, 2, 2, 0 ],
[ 0, 3, 0, 2 ], [ 0, 3, 1, 0 ], [ 0, 3, 1, 1 ], [ 0, 4, 0, 1 ],
[ 0, 4, 0, 2 ], [ 0, 5, 0, 1 ], [ 0, 7, 1, 0 ], [ 0, 8, 0, 1 ],
[ 0, 12, 0, 1 ], [ 1, 0, 0, 1 ], [ 1, 0, 2, 0 ], [ 1, 0, 3, 0 ],
[ 1, 0, 10, 0 ], [ 1, 1, 1, 0 ], [ 1, 1, 5, 0 ], [ 1, 2, 0, 0 ],
[ 1, 2, 0, 1 ], [ 2, 0, 0, 0 ], [ 2, 0, 1, 0 ], [ 2, 0, 8, 0 ],
[ 2, 1, 3, 0 ], [ 3, 0, 0, 0 ], [ 3, 0, 6, 0 ], [ 3, 1, 1, 0 ],
[ 4, 0, 4, 0 ], [ 4, 1, 0, 0 ], [ 5, 0, 0, 0 ], [ 5, 0, 2, 0 ],
[ 6, 0, 0, 0 ], [ 7, 0, 0, 0 ] ]

gap> T:=AffineSemigroup(B);
<Affine semigroup in 4 dimensional space, with 41 generators>
gap> MinimalGenerators(T);
[ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 0, 1 ],

[ 1, 0, 2, 0 ], [ 1, 1, 1, 0 ], [ 1, 2, 0, 0 ], [ 2, 0, 0, 0 ],
[ 3, 0, 0, 0 ] ]

gap> H:=Gaps(T);
[ [ 1, 0, 0, 0 ], [ 1, 0, 1, 0 ], [ 1, 1, 0, 0 ] ]
gap> Set(List(H,i->i*C));
[ [ 1, 1 ], [ 2, 3 ], [ 3, 2 ] ]

Therefore, the previous computations show that B(C,S) = {(0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,1),
(1,0,2,0), (1,1,1,0), (1,2,0,0), (2,0,0,0), (3,0,0,0)}, Nn \ f−1

C (S) = {(1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0)} and
C \ S = {(1, 1), (2, 3), (3, 2)}.

3. Cofinite Ideals of an Affine Semigroup

Let S ⊆ Nd be an affine semigroup. A set I is an ideal of S if I ⊆ S and I + S ⊆ I.
Every ideal I can be expressed as I = X + S, where X = Minimals≤S(I) and ≤S is the
partial order in Nd defined by x ≤S y if y − x ∈ S. In particular, the set X is called a set of
generators of I. Furthermore, the set X is finite (see for instance [22] (Proposition 2.7.4)),
that is, every ideal of an affine semigroup is finitely generated. We simply denote by ≤ the
order ≤Nn , that is, the natural partial order in Nn, n any positive integer.

Theorem 2 can be used to characterize when S \ I is finite, obtaining the following result.
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Theorem 3. Let S ⊆ Nd be an affine semigroup generated by {g1, . . . , gn} and I be an ideal of S.
Then, S \ I is a finite set if and only if, for all i ∈ {1, . . . , n}, there exists ki ∈ N \ {0} such that
kigi ∈ I.

Proof. We observe that I ∪ {0} is a submonoid of S, so we can use Theorem 2.
Necessity. If S \ I is finite, from condition (1) of Theorem 2 we have that the set

{λ ∈ N | λgi ∈ I} is a numerical semigroup for all i ∈ {1, . . . , n}; in particular, this set
contains nonzero integers. So, for all i ∈ {1, . . . , n}, there exists ki ∈ N \ {0} such that
kigi ∈ I.

Sufficiency. We suppose that, for all i ∈ {1, . . . , n}, there exists ki ∈ N \ {0} such
that kigi ∈ I. It suffices to check that I ∪ {0} satisfies both the conditions of Theorem 2.
Since kigi ∈ I, we obtain kigi + λgi ∈ I for all λ ∈ N; in particular, {λ ∈ N | λgi ∈
I} ⊇ N \ {1, . . . , ki − 1}, that is, the first condition is satisfied. The second condition holds
trivially by the definition of ideal, since, for all i, j ∈ {1, . . . , n}, with i ̸= j, we have
gi + k jgj ∈ I.

Algorithm 2. Let S ⊆ Nd be an affine semigroup generated by {g1, . . . , gn} and I be an ideal of S,
such that S \ I is a finite set. Then, it is possible to compute the set S \ I by the following two steps:

1. For all i ∈ {1, . . . , n}, we compute ki = min{k ∈ N | kgi ∈ I}. If, for some i ∈ {1, . . . , n},
we have {k ∈ N | kgi ∈ I} = ∅, then S \ I is not finite.

2. Let P = {(λ1, . . . , λn) ∈ Nn | λi < ki for all i ∈ {1, . . . , n}} (we observe that P is a finite set).
Then,

S \ I =

{
n

∑
i=1

λigi /∈ I | (λ1, . . . , λn) ∈ P

}
.

Remark 1. We observe that, for step (1) of Algorithm 2, it would suffice to find ki ∈ {k ∈ N |
kgi ∈ I}, not necessarily being the minimum. However, it is better to find ki as the minimum in
order to have P with smallest possible cardinality.

Let S ⊆ Nd be an affine semigroup generated by {g1, . . . , gn} and I be an ideal of
S and we assume I = X + S with X = {u1, . . . , ur} ⊂ S. For i ∈ {1 . . . , n}, in order to
compute the integer ki = min{k ∈ N | kgi ∈ I}, or to test if it exists, we consider that, for
k ∈ N, then kgi ∈ I if and only if there exists j ∈ {1, . . . , r} such that kgi = xj + ∑n

l=1 λlgl
with λl ∈ N for each l ∈ {1, . . . , n}. Equivalently, −uj = ∑l=1,l ̸=i λlgl + k(−gi). So, in
this case, we need to find all non-negative integer factorizations of −uj in the monoid
⟨{g1, . . . , gn} \ {gi} ∪ {−gi}⟩ ⊆ Zn and take, for each factorization, the coefficient of
−gi. This computation can be performed by GAP as in Example 2. Moreover, the package
numericalsgps also contains many routines to deal with ideals of an affine semigroup. For
instance, it is possible to test if an integer vector belongs to an ideal or not.

To test if S \ I is finite and, if so, to compute it, we can also consider the map fS :
Nn −→ S introduced in Section 2, as explained in the next result.

Proposition 3. Let S = ⟨g1, . . . , gn⟩ ⊆ Nd be an affine semigroup and I an ideal of S. Then, the
set f−1

S (I) is an ideal of Nn and the following holds:

1. S \ I is finite if and only if Nn \ f−1
S (I) is finite.

2. S \ I = { fS(x) | x ∈ Nn \ f−1
S (I)}.

Proof. It is not difficult to see that f−1
S (I) is an ideal of Nn. Moreover, since fS is a surjective

function, we have Nn \ f−1
S (I) = f−1

S (S) \ f−1
S (I) = f−1

S (S \ I). Therefore, claims (1) and
(2) can be proved using the same arguments of Lemma 1.

We denote M(I) = Minimals≤( f−1
S (I)). Then, f−1

S (I) = M(I) + Nn and M(I) is
a finite set. In particular, Nn \ f−1

S (I) = {x ∈ Nn | y ≰ x, for all y ∈ M(I)}. So, in
order to compute the set S \ I, it suffices to find the set M(I) and use equality (2) of
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Proposition 3. In [23] (Algorithm, 16), the authors show a procedure to compute the set
M(I) = Minimals≤( f−1

S (I)). We provide a different strategy to compute it.
Let S = ⟨g1, . . . , gn⟩ ⊆ Nd be an affine semigroup and I = X + S an ideal of S,

with X = {u1, . . . , ur}. We observe that, ∑n
i=1 aiei ∈ f−1

S (I) if and only if there exists
k ∈ {1, . . . , r} and λ1, . . . , λn ∈ N such that ∑n

i=1 aigi = uk + ∑n
i=1 λigi. Hence, we consider

the matrix A(S) = [g1, . . . , gn,−g1, . . . ,−gn]. For j ∈ {1, . . . , r}, let M(S,j) be the set of non-
negative integer solutions of the non-homogeneous Diophantine linear system A(S)x = uj.
Then, we have

f−1
S (I) =

r⋃
j=1

{
(x1, . . . , xn) ∈ Nn | (x1, . . . , xn, xn+1, . . . , x2n) ∈ M(S,j)

}
.

Let M′
(S) be the set of non-negative integer solutions of the homogeneous Diophantine

linear system A(S)x = 0 and V(S,j) = Minimals≤(M(S,j)) (≤ is the natural partial order
in N2n). In particular, we have M(S,j) =

⋃
y∈V(S,j)

(y + M′
(S)) (see [20] (Theorem 5.2)). Let

us denote V(I) =
⋃r

j=1 V(S,j). As a consequence, by the previous expression of f−1
S (I),

we obtain

M(I) = Minimals≤
({

(x1, . . . , xn) ∈ Nn | (x1, . . . , xn, xn+1, . . . , x2n) ∈ V(I)

})
.

For all j ∈ {1, . . . , r}, the set V(S,j) can be computed in GAP, using the packages
numericalsgps and NormalizInterface, as in Example 2. Once the set Minimals≤( f−1

S (I))
is obtained, the following algorithm allows to check if S \ I is finite and, if so, to compute
its elements.

Algorithm 3. Let S = ⟨g1, g2, . . . , gn⟩ ⊆ Nd be an affine semigroup and I = X + S an ideal of S,
X = {u1, . . . , ur}. To test if S \ I is finite and, if so, compute it; we can consider the following steps.

1. Consider the matrix A(S) = [g1, g2, . . . , gn,−g1,−g2, . . . ,−gn], where each element is
identified as a column vector.

2. For all j ∈ {1, . . . , r}, compute the (finite) set V(S,j) ⊆ N2n of minimal (with respect to
the natural partial order in N2n) non-negative integer solutions of the non-homogeneous
Diophantine linear system A(S)x = uj.

3. Set V(I) =
⋃r

j=1 V(S,j).

4. Set M(I) = Minimals≤
({

(x1, . . . , xn) ∈ Nn | (x1, . . . , xn, xn+1, . . . , x2n) ∈ V(I)

})
.

5. For all i ∈ {1, . . . , n}, check if there exists ki ∈ N such that kiei ∈ M(I). If, for some
i ∈ {1, . . . , n}, this condition does not hold, then S \ I is not finite.

6. If the previous condition holds, then compute Q = {x ∈ Nn | y ≰ x, for all y ∈ M(I)}.
7. Compute S \ I = { fS(x) | x ∈ Q}.

Considering the computation time, the main difference between Algorithms 2 and 3
concerns the computation of the set M(I), against the time spent to test, for each element
x = (x1, . . . , xn) ∈ P, if ∑n

i=1 xigi ∈ I.

3.1. An Approach Using Commutative Algebra

We assume that S = ⟨g1, . . . , gn⟩ ⊆ Nd and let K be a field. We consider the semigroup
ring K[S] = K[Ys | s ∈ S] = K[Yg1 , . . . , Ygn ], where, if s = (s1, . . . , sd) ∈ Nd, then
Ys = Ys1

1 Ys2
2 · · ·Ysd

d . If I = X + S, X = {u1, . . . , ur} ⊂ S, we define IK[S] = (Yu1 , . . . , Yur )
that is a monomial ideal of K[S].

Let S ⊆ Nd be an affine semigroup and I be an ideal of S. Then, h ∈ S \ I if and only if
Yh /∈ IK[S], that is, Yh is a monomial not belonging to IK[S]. In particular, S \ I is a finite set
if and only if the set {Yh ∈ K[S] | Yh /∈ IK[S]} is finite.

Let ui = ∑n
j=1 aijgj be a factorization of ui and we denote ai = (ai1, . . . , ain) ∈

Nn, for i ∈ {1, . . . , r}. We consider the polynomial ring K[Z1, . . . , Zn] and, as above, if
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t = (t1, . . . , tn) ∈ Nn, we denote Zt = Zt1
1 Zt2

2 · · · Ztn
n . We consider the following surjective

ring homomorphism:

ψ : K[Z1, . . . , Zn] −→ K[S] defined by Zi 7−→ Ygi .

We denote JS = ker(ψ) (called the defining ideal of S), and observe that ψ(Zai ) = Yui

for each i ∈ {1, . . . , r}. The map ψ induces the following ring isomorphism:

ψ̃ :
K[Z1, . . . , Zn]

JS
−→ K[S] defined by ψ̃( f + JS) 7−→ ψ( f ).

We observe that the set ψ̃−1(IK[S]) is an ideal of K[Z1,...,Zn ]
JS

. Moreover, we have the
following set equality:

ψ̃−1(IK[S]) =
JS + (Za1 , . . . , Zar )

JS
.

In fact, if f̃ = f + JS ∈ ψ̃−1(IK[S]), then ψ̃( f̃ ) ∈ IK[S]. In particular, there exist
h1, . . . , hr ∈ K[S] such that ψ̃( f̃ ) = ∑r

k=1 hkYuk = ψ̃(∑n
k=1 hkZak + JS) with hk + JS ∈

ψ̃−1(hk) for all k ∈ {1, . . . , r}. We denote h = ∑n
k=1 hkZak ; in particular, h ∈ (Za1 , . . . , Zar ).

Since ψ̃ is an isomorphism, we have f̃ = f + JS = h + JS, so f − h ∈ JS and, in particular,
f ∈ JS + (Za1 , . . . , Zar ). This means that f̃ = f + JS ∈ JS+(Za1 ,...,Zar )

JS
.

Conversely, if f + JS ∈ JS+(Za1 ,...,Zar )
JS

, then f = g + h where g ∈ JS and h = ∑n
k=1 hkZak ,

hk ∈ K[Z1, . . . , Zn] for each k ∈ {1, . . . , r}. Therefore, ψ̃( f + JS) = ψ( f ) = ψ(g) + ψ(h) =
ψ(h) = ψ(∑n

k=1 hkZak ) = ∑n
k=1 ψ(hk)Yuk ∈ IK[S], that is, f + JS ∈ ψ̃−1(IK[S]).

As a consequence of the previous set equality, we have the following isomorphism:

K[S]
IK[S]

∼=
(

K[Z1, . . . , Zn]

JS

)
⧸
(

JS + (Za1 , . . . , Zar )

JS

)
∼=

K[Z1, . . . , Zn]

JS + (Za1 , . . . , Zar )
.

The isomorphism above is described by the following map:

ψ :
K[Z1, . . . , Zn]

JS + (Za1 , . . . , Zar )
−→ K[S]

IK[S]
, f + (JS + (Za1 , . . . , Zar )) 7→ ψ( f ) + IK[S] (1)

In the following, if J is an ideal of a polynomial ring R and ⪯ is a monomial order on
R, we denote the initial ideal of J with respect to ⪯ by in⪯(J).

Lemma 2. In the framework introduced above, let PS = JS + (Za1 , . . . , Zar ) and ⪯ be a monomial
order on K[Z1, . . . , Zn]. Then, {Yh ∈ K[S] | Yh /∈ IK[S]} = {ψ(Zt) | Zt /∈ in⪯(PS)}.

Proof. Let ψ be the isomorphism above. In particular, if Zt is a monomial in K[Z1, . . . , Zn],
then ψ(Zt + PS) = ψ(Zt) + IK[S]. If Zt /∈ in⪯(PS), then, trivially, Zt /∈ PS. Since ψ is
injective, we obtain ψ(Zt) + IK[S] = ψ(Zt + PS) ̸= 0, that is, ψ(Zt) /∈ IK[S]. Conversely,
let Yh ∈ K[S] such that Yh /∈ IK[S]. This means that Yh + IK[S] ̸= 0 in K[S]/IK[S]. Since
h ∈ S, there exists t = ∑n

i=1 tiei ∈ Nn such that h = ∑n
i=1 tigi. Hence, for the monomial

Zt ∈ K[Z1, . . . , Zn], we have ψ(Zt) = Yh. We suppose that Zt ∈ in⪯(PS). Then, there
exists f ∈ K[Z1, . . . , Zn] such that Zt + f ∈ PS. So, Zt + f = g + ∑r

k=1 hkZak , g ∈ JS and
hk ∈ K[Z1, . . . , Zn]. Therefore, ψ(Zt) + ψ( f ) = ψ(g) + ∑r

k=1 ψ(hk)ψ(Zak ) = ∑r
k=1 ψ(hk)Yuk .

In particular, ψ(Zt) + ψ( f ) ∈ IK[S]. Since IK[S] is a monomial ideal and ψ(Zt) = Yh is a
monomial, we obtain Yh ∈ IK[S], a contradiction. So, we have Zt /∈ in⪯(PS).

We consider the set {Zt ∈ K[Z1, . . . , Zn] | Zt /∈ in⪯(PS)} and suppose that it is finite for
some monomial order on K[Z1, . . . , Zn]. This property is known as PS = JS + (Za1 , . . . , Zar )
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is a zero dimensional ideal of K[Z1, . . . , Zn]. A zero dimensional ideal is characterized by the
following known result (Theorem 6, Chapter 5, §3, [14]).

Theorem 4 ([14]). Let K be a field and I ⊆ K[X1, . . . , Xn] be an ideal of a polynomial ring. We fix
a monomial order ⪯ in K[X1, . . . , Xn]. Then, the following are equivalent:

(i) For each i ∈ {1, . . . , n}, there is some mi ≥ 0 such that Xmi ∈ in⪯(I).
(ii) Let G be a Gröbner basis for I. Then, for each i ∈ {1, . . . , n}, there is some mi ≥ 0 such that

Xmi = in⪯(g) for some g ∈ G.
(iii) The set {Xα | Xα /∈ in⪯(I)} is finite.
(iv) The K-vector space K[X1, . . . , Xn]/I is finite-dimensional.

Theorem 4 suggests another way to prove the characterization of cofinitness of an
ideal I in a monoid S, given in Theorem 3, and also a different procedure to compute S \ I.

Alternative Proof of Theorem 3. In the following, we denote PS = JS + (Za1 , . . . , Zar ),
with reference to the framework introduced in this section.

Necessity. Suppose that S \ I is finite. Then, the set {Yh ∈ K[S] | Yh /∈ IK[S]} is finite.
So, by Lemma 2, considering the ideal PS and ⪯ a monomial order on K[Z1, . . . , Zn], we
have that {ψ(Zt) | Zt /∈ in⪯(PS)} is a finite set. We show that the set {Zt ∈ K[Z1, . . . , Zn] |
Zt /∈ in⪯(PS)} is finite. If we suppose it is not finite, since {ψ(Zt) | Zt /∈ in⪯(PS)}
is finite, there exist Zt1 , Zt2 /∈ in⪯(PS)}, Zt1 ̸= Zt2 , such that ψ(Zt1) = ψ(Zt2). Hence,
Zt1 − Zt2 ∈ JS ⊆ PS and this implies Zt1 ∈ in⪯(PS) or Zt2 ∈ in⪯(PS), a contradiction.
Therefore, the set {Zt ∈ K[Z1, . . . , Zn] | Zt /∈ in⪯(PS)} is finite and by Theorem 4 we obtain
that for all i ∈ {1, . . . , n} there exists an integer ki ≥ 0 such that Zki

i ∈ in⪯(PS). Hence,
there exists fi ∈ K[Z1, . . . , Zn] such that Zki

i + fi ∈ PS. So, having in mind the isomorphism
in (1), we obtain ψ(Zki

i + fi) = Ykigi + ψ( fi) ∈ IK[S]. Since IK[S] is a monomial ideal and
Ykigi is a monomial, we obtain Ykigi ∈ IK[S], that is, kigi ∈ I. As a consequence, for all
i ∈ {1, . . . , n}, we have kigi ∈ I.

Sufficiency. For every i ∈ {1, . . . , n}, we suppose that there exists ki ∈ N \ {0} such
that kigi ∈ I. Then, Ykigi ∈ IK[S]. In particular, by the isomorphism in (1), we have

Zki
i ∈ PS. By Theorem 4, given a monomial order ⪯ on K[Z1, . . . , Zn], we obtain that

{Zt ∈ K[Z1, . . . , Zn] | Zt /∈ in⪯(PS)} is a finite a set. As a consequence, the set {ψ(Zt) |
Zt /∈ in⪯(PS)} is finite and, by Lemma 2, the set {Yh ∈ K[S] | Yh /∈ IK[S]} is finite. This
means that S \ I is finite.

Following the arguments developed in this section, we can reformulate Theorem 3
as follows.

Corollary 1. Let S ⊆ Nd be an affine semigroup, I an ideal of S. As before, let PS = JS +
(Za1 , . . . , Zar ) ⊆ K[Z1, . . . , Zn]. Then, S \ I is finite if and only if PS is a zero dimensional ideal
of K[Z1, . . . , Zn].

For a different procedure to compute S \ I, we recall that in the case when I ⊆
K[X1, . . . , Xn] is an ideal of a polynomial ring and ⪯ a monomial order in K[X1, . . . , Xn],
then the set {Xα | Xα /∈ in⪯(I)} is a basis of K[X1, . . . , Xn]/I as a K-vector space. In particu-
lar, one can use a computer algebra software, for instance Macaulay2 [24] or Singular [25],
to test if one of the equivalent conditions of Theorem 4 holds and, in such a case, to compute
the set {Xα | Xα /∈ in⪯(I)}.

So, if B is a basis of the K-vector space K[Z1, . . . , Zn]/PS, PS = JS + (Za1 , . . . , Zar ), then
S \ I = {h ∈ Nd | Yh = ψ(Zt), Zt ∈ B}.

Algorithm 4. Given S = ⟨g1, . . . , gn⟩ ⊆ Nd and an ideal I of S, with I = X + S and X =
{u1, . . . , ur} ⊂ S, in order to compute S \ I, we can consider the following steps:
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1. For each i ∈ {1, . . . , r}, compute a factorization ai of ui in S.
2. Set the polynomial rings R1 = K[Z1, . . . , Zn], R2 = K[Y1, . . . , Yd], with K a field, the map

ψ : R1 → R2 defined by Zi 7→ Ygi and compute the ideal JS = ker(ψ).
3. Set the ideal PS = JS + (Za1 , . . . , Zar ) and compute a Gröbner basis G of PS with respect to a

monomial order ⪯.
4. If G does not satisfy condition (ii) of Theorem 4, then S \ I is not finite and we can stop.

Otherwise, compute a basis B of the K-vector space K[Z1, . . . , Zn]/PS.
5. Compute S \ I = {h ∈ Nd | Yh = ψ(Zt), Zt ∈ B}.

We point out that a similarity between Algorithm 3 and Algorithm 4 is actually
hidden. That is, the exponent vectors of elements in the basis B of the K-vector space
K[Z1, . . . , Zn]/PS correspond to the vectors in Nn \ f−1

S (I). In particular, these elements are
obtained from a presentation of S (see [23] for more details) in the first algorithm, and from
the defining ideal IS of K[S] in the second algorithm. Considering the computation time,
the relevant difference concerns with the time spent to compute the set M(I) against the
computation of a Gröbner basis of the ideal PS.

3.2. A Remark on Apéry Sets

Let S ⊆ Nd be an affine semigroup and X ⊆ S. The Apéry set of S with respect to X is
defined as Ap(S, X) = {s ∈ S | s − x /∈ S for all x ∈ X}. This set is an important tool in the
context of affine semigroups. For instance, in the case when S is simplicial, it can be used to
verify the Cohen–Macaulay and Gorenstein conditions for the associated semigroup ring
(see [26]) and to compute the conductor (see [27]). We observe that Ap(S, X) = S \ (X + S),
so it is the complement in S of the ideal X + S. In particular, we can state the following:

Corollary 2. Let S ⊆ Nd be an affine semigroup minimally generated by the set {g1, . . . , gn}. If
X ⊂ S, then Ap(S, X) is finite if and only if, for all i ∈ {1, . . . , n}, there exists ki ∈ N \ {0} such
that kigi ∈ X + S.

As a consequence, if S = ⟨g1, g2, . . . , gr, gr+1, gr+2, . . . , gr+m⟩, where E = {g1, g2, . . . , gr}
is a set of extreme rays of S, then gj = ∑r

i=1 qigi, qi ∈ Q+, for all j ∈ {1, . . . , m}. It easily
follows that there exists k j ∈ N such that k jgj ∈ ⟨g1, g2, . . . , gr⟩ ⊂ S. Therefore, in the case
E is a set of extreme rays of S, the set Ap(S, E) is finite. Moreover, referring to the previous
arguments in Subsection 3.1, we can consider the ideal PS = JS + (Z1, . . . , Zr) and, if B is a
basis of the K-vector space K[Z1, . . . , Zn]/PS, then Ap(S, E) = {h ∈ Nd | Yh = ψ(Zt), Zt ∈
B}, obtaining the same result contained in [28] (Theorem 3.3).

Funding: The author acknowledges support from the Institute of Mathematics of the University of
Granada (IMAG), through the program of Visits of Young Talented Researchers and from Istituto
Nazionale di Alta Matematica (INDAM), through the program Concorso a n. 30 mensilità di borse di
studio per l’estero per l’a.a. 2022–2023.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: Motivation for this paper was inspired by some discussions had with P. A.
García-Sánchez during a period the author spent at the University of Granada. The author would
like to express their gratitude to him, for the hospitality and for his very helpful comments and
suggestions that have allowed to improve this work.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Rosales, J.C.; García-Sánchez, P.A. Finitely Generated Commutative Monoids; Nova Science Publishers, Inc.: New York, NY, USA, 1999.
2. Bruns, W.; Gubeladze, J. Polytopes, Rings, and K-Theory, Springer Monographs in Mathematics; Springer: Dordrecht, The Netherlands, 2009.
3. Assi, A.; D’Anna, M.; García-Sánchez, P.A. Numerical Semigroups and Applications, 2nd ed.; RSME Springer Series 3; Springer:

Cham, Switzerland, 2020.



Axioms 2024, 13, 488 14 of 14

4. Rosales, J.C.; García-Sánchez, P.A. Numerical semigroups, Developments in Mathematics, 20 ; Springer: New York, NY, USA, 2009.
5. Failla, G.; Peterson, C.; Utano, R. Algorithms and basic asymptotics for generalized numerical semigroups in Nd. Semigroup

Forum 2016, 92, 460–473. [CrossRef]
6. Bernardini, M.; Castellanos, A.S.; Tenório, W.; Tizziotti, G. On atoms of the set of generalized numerical semigroups with fixed

corner element. arXiv 2023, arXiv:2306.13506.
7. Li, S. On the number of generalized numerical semigroups. arXiv 2023, arXiv:2212.13740.
8. García-García, J.I.; Marín-Aragón, D.; Vigneron-Tenorio, A. An extension of Wilf’s conjecture to affine semigroups. Semigroup

Forum 2018, 96, 396–408. [CrossRef]
9. García-García, J.I. ; Ojeda, I.; Rosales, J.C.; Vigneron-Tenorio, A. On pseudo-Frobenius elements of submonoids of Nd. Collect.

Math. 2020, 71, 189–204. [CrossRef]
10. Bhardwaj, O.P.; Goel, K.; Sengupta, I. Affine semigroups of maximal projective dimension. Collect. Math. 2023, 74, 703–727.

[CrossRef]
11. García-García, J.I.; Marín-Aragón, D.; Sánchez-Loureiro, A.; Vigneron-Tenorio, A. Some properties of affine C-semigroups. Results

Math 2024, 79, 52. [CrossRef]
12. Cisto, C.; Failla, G.; Utano, R. On the generators of a generalized numerical semigroup. Analele Univ. Ovidius 2019, 27, 49–59.

[CrossRef]
13. Díaz-Ramírez, J.D.; García-García, J.I.; Marín-Aragón, D.; Vigneron-Tenorio, A. Characterizing affine C-semigroups. Ric. Mat.

2022, 71, 283–296. [CrossRef]
14. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms, 4th ed.; Springer: New York, NY, USA, 2015.
15. Rosales, J.C.; García-Sánchez, P.A. Nonnegative elements of subgroups of Zn. Linear Algebra Appl. 1998, 270, 351–357. [CrossRef]
16. The GAP Group. GAP–Groups, Algorithms, and Programming, Version 4.12.2. 2022. Available online: https://www.gap-system.org

(accessed on 24 June 2024).
17. Delgado, M.; García-Sánchez, P.A.; Morais, J. NumericalSgps, A Package for Numerical Semigroups, Version 1.3.1 dev (2023),

Refereed GAP Package. Available online: https://gap-packages.github.io/numericalsgps (accessed on 24 June 2024).
18. Bruns, W.; Ichim, B.; Römer, T.; Söger, C. The Normaliz Project, Version 3.2.0. Available online: http://www.home.uniosnabrueck.

de/wbruns/normaliz/ (accessed on 24 June 2024).
19. Gutsche, S.; Horn, M.; Söger, C. NormalizInterface—A GAP Package, Version 1.3.5, Refereed GAP Package. 2022. Available online:

https://gap-packages.github.io/NormalizInterface (accessed on 24 June 2024).
20. Pisón-Casares, P.; Vigneron-Tenorio, A. N-solutions to linear systems over Z. Linear Algebra Its Appl. 2004, 384, 135–154. [CrossRef]
21. Cisto, C.; Delgado, M.; García-Sánchez, P.A. Algorithms for generalized numerical semigroups. J. Algebra Appl. 2021, 20, 2150079.

[CrossRef]
22. Geroldinger, A.; Halter-Koch, F. Non–Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics;

Chapman & Hall/CRC: Boca Raton, FL, USA, 2006; Volume 278.
23. Rosales, J.C.; García-Sánchez, P.A.; García-García, J.I. Irreducible ideals of finitely generated commutative monoids. J. Algebra

2001, 238, 328–344. [CrossRef]
24. Grayson, D.; Stillman, M. Macaulay2, a Software System for Research in Algebraic Geometry. Available online: http://www2

.macaulay2.com (accessed on 24 June 2024).
25. Decker, W.; Greuel, G.M.; Pfister, G.; Schönemann, H. SINGULAR 4-3-2—A Computer Algebra System for Polynomial Computa-

tions. 2023. Available online: https://www.singular.uni-kl.de (accessed on 24 June 2024).
26. Rosales, J.C.; García-Sánchez, P.A. On Cohen-Macaulay and Gorenstein simplicial affine semigroups. Proc. Edinb. Math. Soc.

1998, 41, 517–537. [CrossRef]
27. Jafari, R.; Yaghmaei, M. Type and conductor of simplicial affine semigroups. J. Pure Appl. Algebra 2022, 226, 106844. [CrossRef]
28. Ojeda, I.; Vigneron-Tenorio, A. The short resolution of a semigroup algebra. Bull. Aust. Math. Soc 2017, 96, 400–411. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00233-015-9690-8
http://dx.doi.org/10.1007/s00233-017-9906-1
http://dx.doi.org/10.1007/s13348-019-00267-0
http://dx.doi.org/10.1007/s13348-022-00370-9
http://dx.doi.org/10.1007/s00025-023-02056-5
http://dx.doi.org/10.2478/auom-2019-0003
http://dx.doi.org/10.1007/s11587-022-00693-6
http://dx.doi.org/10.1016/S0024-3795(97)00309-1
https://www.gap-system.org
https://gap-packages.github.io/numericalsgps
http://www.home.uniosnabrueck.de/wbruns/normaliz/
http://www.home.uniosnabrueck.de/wbruns/normaliz/
https://gap-packages.github.io/NormalizInterface
http://dx.doi.org/10.1016/j.laa.2004.01.003
http://dx.doi.org/10.1142/S0219498821500791
http://dx.doi.org/10.1006/jabr.2000.8637
http://www2.macaulay2.com
http://www2.macaulay2.com
https://www.singular.uni-kl.de
http://dx.doi.org/10.1017/S0013091500019866
http://dx.doi.org/10.1016/j.jpaa.2021.106844
http://dx.doi.org/10.1017/S0004972717000612

	Introduction
	Cofinite Submonoids of an Affine Semigroup
	Cofinite Ideals of an Affine Semigroup
	An Approach Using Commutative Algebra
	A Remark on Apéry Sets

	References

