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1. Introduction

Sampling is the process of representing a continuous-time signal from a discrete set
of measurements, namely the samples. The classical sampling theory focuses mainly on
samples that are taken from a signal at some specified instances. A typical example is the
Whittaker–Shannon–Kotel’nikov sampling theorem [1] which has been extended in various
ways (see [2,3] and references therein).

A more general method of sampling is to consider a signal f in an arbitrary separable
Hilbert space H, and take measurements (i.e., generalized samples) as inner products of
f with a set of vectors {vj}j∈J , which span a subspace V called the sampling space. With
these samples, we reconstruct f using a set of vectors {wk}k∈K, which span a subspace
W called the reconstruction space. Since any signal lying outside W cannot be perfectly
reconstructed, our goal is to obtain a meaningful approximation for each input signal of H.
A natural approach is to assume the ‘consistency’ which means that an input signal and
its approximated signal both yield the same measurements; that is, they look the same to
observers through acquisition devices.

The idea of consistent sampling was first introduced by Unser and Aldroubi [4] in a
shift-invariant subspace of L2(R) with single pre- and single post- filters. In [5–8], Eldar et
al. studied the consistency in an abstract Hilbert space H with H = W ⊕V⊥, under which
a unique consistent sampling operator exists. Later, Hirabayashi and Unser [9] studied the
consistent sampling in a finite-dimensional Hilbert space H = W + V⊥ where W ∩ V⊥

is not necessarily {0}. Further, Arias and Conde [10] extended the concept of consistency
to ‘quasi-consistency’, which requires only that the samples of the approximated signal
are as close as possible to the original samples in ℓ2 sense. Kwon and Lee [11] gave
complete characterizations of the quasi-consistency and provided an iterative algorithm
to compute the quasi-consistent approximations. Another related work is by Adcock,
Hansen, and Poon [12], who analyzed the optimality of consistent sampling using the
finite section method [13]. Recently, Arias and Gonzalez [14] studied the problem of
reconstructing a vector in a Hilbert space from its samples by means of a weighted least
square approximation.
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In this work, we study consistent or quasi-consistent approximations that have optimal
properties, such as possessing the minimum norm or being closest to the original signal.
We also provide an example to illustrate our results.

2. Preliminaries

For any countable index set I, let ℓ2(I) be the set of all complex-valued sequences
c = {c(i)}i∈I with ∥c∥2 := ∑i∈I |c(i)|2 < ∞. The canonical basis of ℓ2(I) is given by {eI

i }i∈I ,
where eI

i (n) = δi,n for i, n ∈ I.
For any closed subspaces A and B of a separable Hilbert space H, we define the sum

of A and B by
A+ B := {a + b | a ∈ A, b ∈ B}

which may not be closed if H is infinite-dimensional. If A∩ B = {0}, then A+ B is also
denoted by A⊕B and is referred to as the direct sum of A and B. In particular, if H = A⊕B
we say that H is the (internal) direct sum of A and B [15].

For any closed subspaces A and B of H with H = A⊕ B, let PA,B : H → A be the
oblique projection onto A along B defined by PA,B(h) = a for h = a + b, where a ∈ A and
b ∈ B. In particular, PA,A⊥ := PA is the orthogonal projection onto A.

A sequence {ϕn}n∈I in H is a frame of H if there are constants B ≥ A > 0, such that
we have the following:

A∥ f ∥2 ≤ ∑
n∈I

|⟨ f , ϕn⟩|2 ≤ B∥ f ∥2, f ∈ H.

Let V and W be two closed subspaces of H. Given a frame {wn}n∈I of W , a dual frame
of {wn}n∈I is a frame {w̃n}n∈I of W satisfying

f = ∑
n∈I

⟨ f , w̃n⟩wn, f ∈ W .

When H = W ⊕V⊥, a frame {vn}n∈I of V is called an oblique dual frame of {wn}n∈I on V if

f = ∑
n∈I

⟨ f , vn⟩wn, f ∈ W ,

or equivalently (cf. Lemma 3.1 in [16])

f = ∑
n∈I

⟨ f , wn⟩ vn, f ∈ V .

For further details on oblique dual frames, see [16,17] and references therein.
For any two Hilbert spaces, H and K, let L(H,K) denote the set of all bounded linear

operators from H into K, and L(H) := L(H,H). For any T ∈ L(H,K), let ran(T) and
ker(T) be the range and the kernel of T, respectively. When ran(T) is closed, T† denotes
the Moore–Penrose pseudo-inverse of T ([18]).

3. Generalized Consistent Sampling

We consider a generalized consistent sampling problem in a separable Hilbert space
H. Let {vj ̸= 0}j∈J be a set of sampling vectors in H, which forms a frame of the sampling
space V := span{vj}j∈J with synthesis operator S : ℓ2(J) → V given by S(c) = ∑j∈J cj vj
for c = {cj}j∈J ∈ ℓ2(J). Similarly, let {wk ̸= 0}k∈K be a set of reconstruction vectors in
H, which forms a frame of the reconstruction space W := span{wk}k∈K with synthesis
operator T : ℓ2(K) → W given by T(d) = ∑k∈K dk wk for d = {dk}k∈K ∈ ℓ2(K). For
any signal f in H, we take generalized samples S∗( f ) = {⟨ f , vj⟩}j∈J of f and we seek
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its approximation P̃( f ) of f . Specifically, we seek an operator P̃ : H → W satisfying
the following:

(stability) P̃ ∈ L(H,W); (1)

P̃( f ) = 0 if S∗( f ) = 0,

i.e., ker(S∗) ⊆ ker(P̃); (2)

(consistency) P̃ is consistent,

i.e., S∗(P̃ f ) = S∗( f ) for any f ∈ H. (3)

We call P̃ satisfying (1)–(3) a consistent sampling operator, and denote the set of all such
operators by C(W ,V). It follows from ([11], Lemma 2.1) (see also [18,19]) that (1) and (2)
hold if and only if P̃ = TQS∗ for some Q ∈ L(ℓ2(J), ℓ2(K)). We call Q a consistent filter if
P̃ = TQS∗ satisfies (3), and denote the set of all such filters by F (W ,V). Then

F (W ,V) = {Q ∈ L(ℓ2(J), ℓ2(K)) | S∗TQS∗ = S∗}

and
C(W ,V) = {TQS∗ | S∗TQS∗ = S∗} = T F (W ,V) S∗.

Throughout the paper, we will always assume that W + V⊥ is closed (equivalently,
and ran(S∗T) is closed so that (S∗T)† exists). Let Ũ := T(S∗T)†S∗ ∈ L(H,W).

Theorem 1. C(W ,V) ̸= ∅ if and only if H = W + V⊥. In this case,

C(W ,V) = {Ũ + TPker(S∗T)YS∗ |Y ∈ L(ℓ2(J), ℓ2(K))}
= {PL,V⊥ | L ∈ L},

where L := {L | L is a closed complementary subspace of W ∩V⊥ in W}.

Proof. See Theorem 3.1 in [10] and Theorem 3.2 in [11].

When H = W + V⊥, the consistent approximation PL,V⊥( f ) of f , with some L ∈ L,
can be expressed using oblique dual frames as follows:

Proposition 1. Assume that H = W + V⊥ and let L ∈ L and {un}n∈I a frame of L with
synthesis operator U. Then PL,V⊥ = U(S∗U)†S∗ and, moreover, we have the following.

(a) {ṽn := S(U∗S)†(eI
n) | n ∈ I} is an oblique dual frame of {un}n∈I on V (with synthesis

operator S(U∗S)†), where {eI
n}n∈I denotes the canonical basis for ℓ2(I).

(b) {ũj := U(S∗U)†(eJ
j ) | j ∈ J} is an oblique dual frame of {vj}j∈J on L (with synthesis

operator U(S∗U)†), where {eJ
j }j∈J denotes the canonical basis for ℓ2(J).

(c) For any f ∈ H,
PL,V⊥( f ) = ∑

n∈I
⟨ f , ṽn⟩ un = ∑

j∈J
⟨ f , vj⟩ ũj

where b = {⟨ f , ṽn⟩}n∈I and c = S∗( f ) = {⟨ f , vj⟩}j∈J have the minimum norm properties:

∥b∥ ≤ ∥b̃∥ for any b̃ = {b̃(n)}n∈I with f = ∑n∈I b̃(n) un,

∥c∥ ≤ ∥c̃∥ for any c̃ = {c̃(j)}j∈J with f = ∑j∈J c̃(j) ũj.

Proof. See Proposition 3.2 in [7] and Proposition 5.1 in [8].

A generalization of the consistency is the ‘quasi-consistency’ introduced by Arias
and Conde [10]. Recall that an operator P̃ satisfies (1) and (2) if and only if P̃ = TQS∗

for some Q ∈ L(ℓ2(J), ℓ2(K)). An operator P̃ = TQS∗ with Q ∈ L(ℓ2(J), ℓ2(K)) is called a
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quasi-consistent sampling operator if ∥S∗ P̃( f )− S∗( f )∥ is as small as possible for every f ∈ H;
that is, for all Q1 ∈ L(ℓ2(J), ℓ2(K)) and all f ∈ H,

∥S∗TQS∗( f )− S∗( f )∥ ≤ ∥S∗TQ1S∗( f )− S∗( f )∥. (4)

When P̃ = TQS∗ is a quasi-consistent sampling operator, we call Q a quasi-consistent
filter. We denote by QC(W ,V) the set of all quasi-consistent sampling operators and
by QF (W ,V) the set of all quasi-consistent filters, so that QC(W ,V) = T QF (W ,V) S∗.
It is easily seen that QF (W ,V) = F (W ,V) (⇒ QC(W ,V) = C(W ,V)) if and only if
H = W + V⊥.

Note that S∗T = 0 implies QC(W ,V) = {TQS∗ | Q ∈ L(ℓ2(J), ℓ2(K))}, a situation
that is not interesting. Therefore, we will assume that S∗T ̸≡ 0. Then we have the following:

QC(W ,V) = {TQS∗ | Q ∈ L(ℓ2(J), ℓ2(K)), S∗TQS∗ = Pran(S∗T)S
∗}

= {Ũ + TPker(S∗T)YS∗ |Y ∈ L(ℓ2(J), ℓ2(K))},

where Ũ := T(S∗T)†S∗ ∈ L(H,W) (see Theorem 5.1 in [10], Proposition 4.2 in [11]).

Proposition 2 (Theorem 4.10 in [11]). There exists a one-to-one correspondence between QC(W ,V)
and L× L(H⊥

0 ,W ∩V⊥), where H0 := W + V⊥.

Now we consider the sets of consistent or quasi-consistent approximations of f . For
any f ∈ H, we define

C(W ,V)( f ) := {P̃( f ) | P̃ ∈ C(W ,V)},

QC(W ,V)( f ) := {P̃( f ) | P̃ ∈ QC(W ,V)},

C( f ) := { f̃ ∈ W | S∗( f̃ ) = S∗( f )},

QC( f ) := { f̃ ∈ W | S∗( f̃ ) = Pran(S∗T)S
∗( f )}.

Clearly, we have C(W ,V)( f ) ⊆ C( f ), and Ũ( f ) ∈ QC(W ,V)( f ) ⊆ QC( f ). Note that
C(W ,V)( f ) ̸= ∅ if and only if H = W +V⊥, in which case, C(W ,V)( f ) = QC(W ,V)( f ) ⊆
C( f ) = QC( f ).

Proposition 3. Let f ∈ H.

(a) If C( f ) is nonempty, then it is a closed affine subspace of H. Moreover, C( f ) = f̃C +W ∩V⊥

for any f̃C ∈ C( f ).
(b) The set QC( f ) = Ũ( f ) +W ∩ V⊥ is a closed affine subspaces of H. Moreover, we have

QC( f ) = f̃QC +W ∩V⊥ for any f̃QC ∈ QC( f ).

Proof. (a) It suffices to show that if f̃C ∈ C( f ), then C( f ) = f̃C +W ∩ V⊥. Assume that
f̃C ∈ C( f ). Then S∗( f̃C) = S∗( f ) so that C( f ) = { f̃ ∈ W | S∗( f̃ ) = S∗( f̃C)} = C( f̃C).
If g ∈ C( f ) = C( f̃C), then h := g − f̃C ∈ W ∩ V⊥ since both g and f̃C belong in W and
S∗(g− f̃C) = 0. Then, g = f̃C + h ∈ ( f̃C +W∩V⊥), which shows that C( f ) ⊆ f̃C +W∩V⊥.
Conversely, if g = f̃C + h for some h ∈ W ∩ V⊥, then g ∈ W and S∗(g) = S∗( f̃C + h) =
S∗( f̃C) so that g ∈ C( f̃C) = C( f ). Therefore, we conclude that C( f ) = f̃C +W ∩V⊥.
(b) The proof is similar to (a), except that QC( f ) is always nonempty. This is because
Ũ( f ) ∈ QC(W ,V)( f ) ⊆ QC( f ).

Our first main result is the following.

Theorem 2. The following are equivalent.

(a) f ∈ W + V⊥;
(b) C( f ) ̸= ∅.



Axioms 2024, 13, 489 5 of 11

(c) C( f ) = QC( f );

Moreover, if f ∈ V⊥, then C(W,V)( f ) is either ∅ or {0}, QC(W,V)( f ) = {0}, and C( f ) =
QC( f ) = W ∩V⊥; if f ∈ (W + V⊥)\V⊥, then C(W,V)( f ) ⊆ C( f ) = QC( f ) = QC(W,V)( f ).

Proof. (a) ⇒ (c): Let f = g + h ∈ W + V⊥, where g = T(d) ∈ W , d ∈ ℓ2(K), and h ∈ V⊥.
Then Pran(S∗T)S∗( f ) = Pran(S∗T)S∗(T(d) + h) = S∗T(d) = S∗(T(d) + h) = S∗( f ), which
yields that C( f ) = QC( f ).
(c) ⇒ (b): Assume that C( f ) = QC( f ). Then Ũ( f ) ∈ QC( f ) = C( f ) and, therefore,
C( f ) ̸= ∅.
(b) ⇒ (a): Assume that f̃ ∈ C( f ). Then since S∗( f̃ ) = S∗( f ), we have h := f − f̃ ∈
ker(S∗) = V⊥. Therefore, f = f̃ + h ∈ W + V⊥.

Now, let f ∈ W + V⊥, so that C(W , V)( f ), QC(W ,V)( f ) ⊆ C( f ) = QC( f ) by (c).
First, assume that f ∈ V⊥ = ker(S∗). Then, C( f ) = QC( f ) = { f̃ ∈ W | S∗( f̃ ) = 0} =
W ∩ V⊥. Note that P̃( f ) = 0 for any P̃ = TQS∗ with Q ∈ L(ℓ2(J), ℓ2(K)). Therefore, if
C(W ,V) is nonempty, i.e., H = W + V⊥, then C(W ,V)( f ) = {0}; if C(W ,V) is empty,
then by definition C(W ,V)( f ) = ∅. Since QC(W ,V) (∋ Ũ) is always nonempty, we have
QC(W ,V)( f ) = {0}.

Finally, assume that f ∈ (W + V⊥)\V⊥. Then S∗Ũ( f ) = Pran(S∗T)S∗( f ) = S∗( f ) ̸= 0
shows that Ũ( f ) /∈ V⊥. Let f̃ ∈ QC( f ), which can be expressed as f̃ = Ũ( f ) + h with
h ∈ W ∩ V⊥, due to the fact that QC( f ) = Ũ( f ) +W ∩ V⊥. Then Ũ( f ) /∈ V⊥ yields
f̃ = Ũ( f ) + h ∈ W\(W ∩V⊥) and, therefore, exists L ∈ L containing f̃ . Noticing that

P̃ :=
{

PL,V⊥ on W + V⊥

Ũ on (W + V⊥)⊥

belongs in QC(W ,V) (see Proposition 2 and its proof given in [11]), we write P̃ = TQS∗

and compute f̃ = PL,V⊥( f̃ ) = P̃( f̃ ) = P̃(Ũ( f ) + h) = P̃Ũ( f ) = TQS∗Ũ( f ) = TQS∗( f ) =
P̃( f ) ∈ QC(W ,V)( f ). Therefore, QC( f ) ⊆ QC(W ,V)( f ). Since QC(W ,V)( f ) ⊆ QC( f )
by definition, we conclude that QC( f ) = QC(W ,V)( f ). This completes the proof.

Let L0 := W ∩ (W ∩ V⊥)⊥(∈ L) be the orthogonal complementary subspace of
W ∩V⊥ in W . Note that if W ∩V⊥ = {0}, then L0 = W is the unique element of L.

Proposition 4. We have PL0Ũ = PL0,ker(Ũ) ∈ QC(W ,V) and PL0Ũ|W+V⊥ = PL0,V⊥ . If

H = W + V⊥, then PL0Ũ = F†PV = PL0,V⊥ ∈ C(W ,V) where F := I − PV⊥PW .

Proof. See Proposition 3.8, Theorem 3.10, and Lemma 4.11 in [11].

Among the quasi-consistent approximations of f , we can identify some special ones
that have optimal properties.

Theorem 3. Let f ∈ H. Then,

argmin
f̃∈QC( f )

∥ f − f̃ ∥ = PL0Ũ( f ) + PW∩V⊥( f ),

argmin
f̃∈QC( f )

∥ f̃ ∥ = PL0Ũ( f ).



Axioms 2024, 13, 489 6 of 11

Proof. Note that since QC( f ) = Ũ( f ) +W ∩V⊥, every element f̃ in QC( f ) can be written
as f̃ = Ũ( f ) + h for some h ∈ W ∩ V⊥. Observe that

∥ f − f̃ ∥2 = ∥ f − Ũ( f )− h∥2

= ∥PW∩V⊥( f − Ũ( f )) + P(W∩V⊥)⊥( f − Ũ( f ))− h∥2

= ∥PW∩V⊥( f − Ũ( f ))− h∥2 + ∥P(W∩V⊥)⊥( f − Ũ( f ))∥2

≥ ∥P(W∩V⊥)⊥( f − Ũ( f ))∥2,

where equality is achieved if and only if h = PW∩V⊥( f − Ũ( f )), i.e., f̃ = Ũ( f )+ PW∩V⊥( f −
Ũ( f )). Since P(W∩V⊥)⊥Ũ = PL0Ũ, we obtain that argmin f̃∈QC( f ) ∥ f − f̃ ∥ = PL0Ũ( f ) +
PW∩V⊥( f ). Similarly, observe that

∥ f̃ ∥2 = ∥Ũ( f ) + h∥2

= ∥PW∩V⊥Ũ( f ) + P(W∩V⊥)⊥Ũ( f ) + h∥2

= ∥PW∩V⊥Ũ( f ) + h∥2 + ∥P(W∩V⊥)⊥Ũ( f )∥2

≥ ∥P(W∩V⊥)⊥Ũ( f )∥2,

where equality is achieved if and only if h = −PW∩V⊥Ũ( f ), i.e., f̃ = Ũ( f )− PW∩V⊥Ũ( f ) =
PL0Ũ( f ). Therefore, argmin f̃∈QC( f ) ∥ f̃ ∥ = Ũ( f ) = PL0Ũ( f ).

Note that if f ∈ W + V⊥, then the set QC( f ) coincides with C( f ) by Theorem 2
and moreover, PL0Ũ( f ) = PL0,V⊥( f ) by Proposition 4. As a consequence, we obtain
the following.

Corollary 1 (cf. Proposition 3.1 in [10]). Let f ∈ W + V⊥. Then

argmin
f̃∈C( f )

∥ f − f̃ ∥ = PL0,V⊥( f ) + PW∩V⊥( f ),

argmin
f̃∈C( f )

∥ f̃ ∥ = PL0,V⊥( f ).

Remark 1. (i) It should be noted that C(W ,V)( f ) ̸= C( f ) for a generic f ∈ H. Theorem
3.2 in [10] asserts that if H = W + V⊥, then C(W ,V)( f ) = F†PV ( f ) +W ∩ V⊥ with F :=
I − PV⊥PW , which is not exactly accurate. A correct statement is that if H = W + V⊥, then
C(W ,V)( f ) ⊆ C( f ) = F†PV ( f ) +W ∩V⊥.
(ii) It was shown in ([5], Theorem 1) that if H = W + V⊥ is of finite dimension, then C( f ) =
F†PV ( f ) +W ∩ V⊥ with F = I − PV⊥PW . The authors of [10] noticed that this is true even
if H is infinite dimensional (see Theorem 3.2 in [10]), and showed that if H = W + V⊥, then
argmin f̃∈C( f ) ∥ f − f̃ ∥ = F†PV ( f ) + PW∩V⊥( f ) (see Proposition 3.1 in [10]). Since F†PV ( f ) =
PL0,V⊥( f ) by Proposition 4, this follows from the first part of Corollary 1. Note that we have replaced
C(W ,V)( f ) with C( f ) in the original statements of [10], as discussed in (i).

Let us now illustrate our results with some examples. In the finite-dimensional case,
we consider the band-limited sampling of time-limited vectors (cf. [6,11]).

Example 1. Let J0, J, K, and N be positive integers such that J = 2J0 + 1 < N and K < N,
and let H = CN be the space of N-dimensional vectors x = {x(n)}N−1

n=0 with x(n) ∈ C for all
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n = 0, . . . , N−1. Define the sampling vectors {vj}J−1
j=0 by vj(n) = e2πi(j−J0)n/N for 0 ≤ n < N,

and the reconstruction vectors {wk}K−1
k=0 by wk(n) = δk,n for 0 ≤ n < N. Then it is easily seen that

VJ := span{vj}J−1
j=0 = {x ∈ CN | x̂(n) = 0 for J0 < n < N − J0},

WK := span{wk}K−1
k=0 = {x ∈ CN | x(n) = 0 for n ≥ K} (∼= CK),

where x̂(·) denotes the N point DFT (discrete Fourier transform) of x. Note that WK consists
of time-limited sequences while VJ consists of band-limited sequences. The synthesis operators
S : CJ → VJ of {vj}J−1

j=0 and T : CK → WK of {wk}K−1
k=0 are given by S(c) = ∑J−1

j=1 cj vj and

T(d) = ∑K−1
k=1 dk wk respectively.

For any x ∈ H, its measurements c = {cj}J−1
j=0 = S∗(x) are given by

cj = ⟨x, vj⟩ =
N−1

∑
n=0

x(n)vj(n) =
N−1

∑
n=0

x(n) e−2πi(j−J0)n/N

= x̂[((j − J0))N ], 0 ≤ j < J,

where ((·))N denotes the residue modulo N. That is, the measurements c = S∗(x) are precisely the
J low-pass DFT coefficients of the N point DFT of x. Therefore, a consistent approximation x̃ of x in
WK has the same low-pass DFT coefficients as x.

Note that for 0 ≤ j < J and 0 ≤ k < K, we have the following:

⟨wk, vj⟩ =
N−1

∑
n=0

wk(n)vj(n) = vj(k) = (e−2πi/N)jk(e2πi J0/N)k.

Therefore, the input–output cross-correlation matrix (or the generalized Gram matrix) B =
[⟨wk, vj⟩]0≤j<J, 0≤k<K ∈ CJ×K is given by

B =


1 1 1 · · · 1
1 z z2 · · · zK−1

1 z2 z4 · · · z2(K−1)

...
...

...
. . .

...
1 zJ−1 z2(J−1) · · · z(J−1)(K−1)

D,

where z := e−2πi/N , d := e2πi J0/N and D = diag(1, d1, · · · , dK−1). Note that B ∈ CJ×K always
has full rank. In general, we have from ([11], Lemma 2.4) that

B is injective ⇔ WK ∩ V⊥
J = {0},

B is surjective ⇔ H = WK + V⊥
J ,

but since B has full rank, the size of B immediately determines the injectivity/surjectivity of B and
the corresponding conditions.

We will focus on the under-determined case (J < K), where the number of measurements
is strictly less than the number of reconstruction vectors. In this case, B is surjective but not injective;
correspondingly, we have H = WK + V⊥

J and WK ∩ V⊥
J ̸= {0}. Then,

L = {L | L is a closed complementary subspace of WK ∩ V⊥
J in WK} has infinite cardinal-

ity, so there exist infinitely many consistent sampling operators {PL,V⊥
J
| L ∈ L}. Note that if

we fix a subspace L ∈ L, then every element x in L (⊊ WK) can be exactly recovered from its
measurements c = S∗(x). Unfortunately, this does not apply to every element x in H. For a generic
element x in H, we seek its (quasi-) consistent approximations in the subspace WK based on its



Axioms 2024, 13, 489 8 of 11

measurements c = S∗(x). In fact, all such approximations are collected in the sets C(WK,VJ)(x),
QC(WK,VJ)(x), C(x), and QC(x). Since H = WK + V⊥

J , we have from Theorem 2 that

C(WK,VJ)(x) = QC(WK,VJ)(x)

=

{
{0} if x ∈ V⊥

J
PL0,V⊥

J
(x) +WK ∩ V⊥

J if x /∈ V⊥
J ,

and
C(x) = QC(x) = PL0,V⊥

J
(x) +WK ∩ V⊥

J ,

where L0 := WK ∩ (WK ∩ V⊥
J )⊥ ∈ L. In particular, the set C(x) = PL0,V⊥

J
(x) +WK ∩ V⊥

J

contains all possible candidates for consistent approximations of x in WK. Among these candidates,
Corollary 1 identifies those with optimal properties:

argmin
x̃∈C(x)

∥x − x̃∥ = PL0,V⊥
J
(x) + PWK∩V⊥

J
(x),

argmin
x̃∈C(x)

∥x̃∥ = PL0,V⊥
J
(x).

The determined case (J = K) and over-determined case (J > K) are rather obvious, so we refer
interested readers to ([11], Example 4.19) for further details.

For an example in the infinite dimensional case, we consider complex exponential
systems. For a discrete set Λ ⊂ R, we define E(Λ) := {e2πiλ(·) : λ ∈ Λ}, which consists of
complex exponential functions with frequencies from Λ.

Example 2. It is well known that E(Z) is an orthonormal basis for H := L2[0, 1]. Let {vj}j∈J =
E(2Z+1) ∪ E(4Z+2) be the sampling vectors and let {wk}k∈K = E(2Z) be the reconstruction
vectors, so that

V := span{vj}j∈J = span
(
E(2Z+1) ∪ E(8Z+4)

)
,

W := span{wk}k∈K = span
(
E(4Z)

)
.

For any f ∈ H = L2[0, 1], its measurements are given by

S∗( f ) =
{
⟨ f , e2πin(·)⟩L2[0,1]

}
n∈(2Z+1)∪(8Z+4)

=

{∫ 1

0
f (x)e−2πinx dx

∣∣∣ n ∈ (2Z+1) ∪ (8Z+4)
}

which are in fact the Fourier coefficients of f for n ∈ (2Z+1) ∪ (8Z+4). Clearly, these coefficients
are not sufficient for the exact recovery of f ∈ H in general, and we aim to approximate f in the
reconstruction space W using the coefficients. That is, we seek some approximations of f in W
based on the measurements S∗( f ), namely the consistent approximations, which produce the same
measurements or the quasi-consistent approximations, which minimize the measurement error
in the sense of (4). All such approximations are collected in the sets C(W ,V)( f ), QC(W ,V)( f ),
C( f ), and QC( f ).

Note that

V⊥ =
(

span
(
E(2Z+1) ∪ E(8Z+4)

))⊥
= span

(
E(4Z+2) ∪ E(8Z)

)
,

W ∩V⊥ = span
(
E(4Z)

)
∩ span

(
E(4Z+2) ∪ E(8Z)

)
= span

(
E(8Z)

)
,

W + V⊥ = span
(
E(4Z)

)
+ span

(
E(4Z+2) ∪ E(8Z)

)
= span

(
E(2Z)

)
,

H = L2[0, 1] = span(E(Z)).
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Since H ̸= W + V⊥, we have C(W ,V) = ∅ and, thus, C(W ,V)( f ) = ∅ for all f ∈ H.
Moreover, Theorem 2 shows the following:

• if f ∈ W + V⊥ = span
(
E(2Z)

)
, then ∅ ̸= C( f ) = QC( f );

• if f ∈ V⊥ = span
(
E(4Z+2)∪E(8Z)

)
, then QC(W ,V)( f ) = {0}, and C( f ) = QC( f ) =

W ∩V⊥ = span
(
E(8Z)

)
;

• if f ∈ (W + V⊥)\V⊥ = span
(
E(2Z)

)
\span

(
E(4Z+2) ∪ E(8Z)

)
, in particular, if f ∈

span
(
E(8Z+4)

)
, then C( f ) = QC( f ) = QC(W ,V)( f ).

Further, Corollary 1 shows that if f ∈ W + V⊥ = span
(
E(2Z)

)
, then

argmin
f̃∈C( f )

∥ f − f̃ ∥ = PL0,V⊥( f ) + PW∩V⊥( f ),

argmin
f̃∈C( f )

∥ f̃ ∥ = PL0,V⊥( f ),

where L0 := W ∩ (W ∩V⊥)⊥ = span
(
E(4Z)

)
∩
(

span
(
E(8Z)

))⊥
= span

(
E(8Z+4)

)
. This

means that if
f (x) = ∑

k∈2Z
ck e2πikx for some {ck}k∈2Z ∈ ℓ2(2Z), (5)

then
PL0,V⊥( f ) = ∑

k∈8Z+4
ck e2πikx and PW∩V⊥( f ) = ∑

k∈8Z
ck e2πikx,

and therefore,

argmin
f̃∈C( f )

∥ f − f̃ ∥ = ∑
k∈4Z

ck e2πik(·),

argmin
f̃∈C( f )

∥ f̃ ∥ = ∑
k∈8Z+4

ck e2πik(·).

Comparison with Related Work

In the early papers on consistent sampling, the authors studied the consistency under
the assumption H = W ⊕ V⊥, meaning that H = W + V⊥ and W ∩ V⊥ = 0 [4,6,7]. In
this setting, there exists a unique consistent sampling operator PW ,V⊥ , which is the oblique
projection onto W along V⊥. Motivated by applications in wavelets, the cases where W is
a shift-invariant space of H = L2(R) were extensively studied in [20–23].

Hirabayashi and Unser ([9]) investigated the consistent sampling in a finite-dimensional
Hilbert space H where H = W + V⊥ but W ∩V⊥ is not necessarily trivial. They showed
that if W ∩V⊥ ̸= {0}, then there exist infinitely many consistent sampling operators, which
are the oblique projections PL,V⊥ , with L belonging to L = {L | L is a closed complementary
subspace of W ∩V⊥ in W}.

Arias and Conde ([10]) extended the problem to the general situation where H ⊋
W + V⊥ in which case consistent sampling operators do not exist. Generalizing the
consistency, they formalized the concept of quasi-consistency and obtained some character-
izations for QC(W ,V) and QC( f ). The quasi-consistency was then studied extensively by
Kwon and Lee [11]. They obtained complete characterizations of the quasi-consistency (see
Theorems 4.5 and 4.10 in [11]). They also showed that the quasi-consistency can be inter-
preted geometrically in terms of oblique projections and provided an iterative algorithm to
compute the quasi-consistent approximations (see Theorem 4.16 and Corollary 4.17 in [11]).

This paper extends and builds upon the results of [11]. Proposition 3 shows that C( f )
and QC( f ) are certain closed affine subspaces of H. Theorem 2 shows that f ∈ W + V⊥ if
and only if C( f ) ̸= ∅ if and only if C( f ) = QC( f ). Additionally, Theorem 3 and Corollary 1
identify some quasi-consistent approximations of f that possess optimal properties.
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4. Conclusions

In this paper, we studied generalized consistent sampling and reconstruction processes
in an abstract separable Hilbert space. Using an operator–theoretical approach, we derived
quasi-consistent and consistent approximations with optimal properties. In particular, we
identified those that have the minimum norm and those that are closest to the original
vector. The obtained results are illustrated with several examples.
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