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Abstract: Graham and Pollack in 1971 presented applications of eigenvalues of the distance matrix
in addressing problems in data communication systems. Spectral graph theory employs tools from
linear algebra to retrieve the properties of a graph from the spectrum of graph-theoretic matrices. The
study of graphs with “few eigenvalues” is a contemporary problem in spectral graph theory. This
paper studies graphs with few distinct distance eigenvalues. After mentioning the classification of
graphs with one and two distinct distance eigenvalues, we mainly focus on graphs with three distinct
distance eigenvalues. Characterizing graphs with three distinct distance eigenvalues is “highly”
non-trivial. In this paper, we classify all trees whose distance matrix has precisely three distinct
eigenvalues. Our proof is different from earlier existing proof of the result as our proof is extendable
to other similar families such as unicyclic and bicyclic graphs. The main tools which we employ
include interlacing and equitable partitions. We also list all the connected graphs on ν ≤ 6 vertices
and compute their distance spectra. Importantly, all these graphs on ν ≤ 6 vertices are determined
from their distance spectra. We deliver a distance cospectral pair of order 7, thus making it a distance
cospectral pair of the smallest order. This paper is concluded with some future directions.

Keywords: graph; distance matrix; distance eigenvalues; interlacing; few eigenvalues

MSC: 05C12; 05C50

1. Introduction

All graphs in this article are undirected, finite, connected, and simple.
Spectral graph theory [1] employs tools from linear algebra to retrieve the properties of

a graph from the spectrum of graph-theoretic matrices such as the adjacency, the distance,
and the Laplacians, among others. In 1970, Doob [2] suggested the study of graphs with
a few eigenvalues and proposed, at most, five. A connected regular graph with, at most,
three distinct eigenvalues is known to be strongly regular; see, for example [3] for a
survey on strongly regular graphs. Connected non-regular graphs with three distinct
eigenvalues have been studied by, for example, De Caen, Van Dam and Spence [4], Bridges
and Mena [5], Muzychuk and Klin [6], and Van Dam [7].Connected regular graphs with
four distinct eigenvalues were studied by Van Dam [8], Van Dam and Spence [9] and
Huang and Huang [10], among others. Cioabă et al. [11] (resp. Cioabă et al. [12]) studied
connected graphs with, at most, two eigenvalues not equal to 1 and −1 (resp. 0 and
−2). Haemers and Omidi [13] studied generalized adjacency matrices and characterized
the graphs admitting two generalized adjacency eigenvalues. In this paper, we study
graphs with three distinct generalized adjacency eigenvalues. For applications of graphical
and, in general, mathematical models in machine learning and energy research, we refer
to [14–17].
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In case of connected graphs, the distance matrix [18] generalizes the adjacency matrix
naturally as it delivers more information about pairs of vertices. Graham and Pollack [19],
in 1971, put forward a relationship between the problem of addressing in systems of data
communications and the number of negative eigenvalues of the distance matrix. In 1978,
Graham and Lovász [20] precisely determined the characteristic polynomial of the distance
matrix of a graph by providing explicit formulas for its coefficients. Merris [21] used the
interlacing theorem to study properties of the distance eigenvalues of trees and their line
graphs. The survey by Aouchiche and Hansen [22] covers the known results on the distance
matrix and its spectrum till 2014.

The cospectrality of graphs with respect to the distance matrix has received researchers’
attention recently. Lin et al. [23] showed that complete bipartite graphs are determined
by their distance spectra and conjectured the same for complete multipartite graphs. Jin
and Zhang [24] provided a proof for this conjecture. Heysse [25] proposed a method
of constructing distance cospectral graphs. Aouchiche and Hansen [26] generated the
distance, Laplacian distance, and signless Laplacian distance spectra of all the graphs up to
10 vertices and identified the ones which are distance cospectral. Zhang [27] investigated
graphs with, at most, three distance eigenvalues, of which two are different from −1 and
−2. Moreover, he identified all distance cospectral graphs among this class and showed
the remaining can uniquely be determined from their distance spectra. Pokorný et al. [28]
showed that non-trivial non-isomorphic trees are never distance integral. They also identify
distance integral graphs among the class of complete split graphs.

Research on the study of graphs with few different eigenvalues corresponding to the
distance matrix has been initiated recently. Lin et al. [23] classified graphs having three
different distance eigenvalues and non-integral distance spectral radius. Aalipour et al. [29]
constructed examples of non-regular graphs having a small number of different eigenvalues,
showing that not all graphs with few distinct eigenvalues for the distance matrix are regular.
Zhang et al. [30] proved some extremal results on the distance spectrum of graphs. They
also delivered the first proof for the classification of trees with three distinct distance
eigenvalues. In addition, Aalipour et al. [29] precisely determined the spectrum of the
distance matrix of all the distance-regular graphs whose positive inertia is exactly one.
For each 2 ≤ k ≤ 11, Atik and Panigrahi [31] constructed infinite families of graphs with
diameter of at least k and precisely k distinct distance eigenvalues. Lu et al. [32] classified
graphs with exactly two distance eigenvalues different from −1 and −3.

In continuation of the study of graphs whose distance matrix has few distinct eigenval-
ues, in this note, we characterize trees having precisely three different distance eigenvalues.
This paper studies the contemporary problem of “few eigenvalues” for the distance matrix
of trees. The classification of general graphs with three distinct distance eigenvalues is
highly non-trivial. In light of this, we solve this problem for the case of trees. Our proof
is extendable to other families of graphs such as unicyclic and bicyclic graphs. The main
result of this study is as follows:

Theorem 1. Let T be a tree on ν ≥ 2 vertices. Then, T has three distinct distance eigenvalues if
and only if T is a star graph.

The organization of the note goes like this: In Section 2, we define all the necessary
terminologies and present preliminary results needed in the subsequent section. Section 3
then provides a proof to Theorem 1.

2. Preliminaries

For standard notations and terminologies, the reader is referred to the standard graph
theory textbook by West [33].
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Let Γ = (VΓ, EΓ) be a ν-vertex graph with VΓ as its vertex set and EΓ ⊆ (VΓ
2 ) as its edge

set. The adjacency matrix A = AΓ of a graph Γ is defined as

(A)xy =

{
1, xy ∈ E;
0, Otherwise.

Similarly, the distance matrix D = D(Γ) of an ν-vertex graph Γ is defined as vertices of Γ
and defined as

(D)xy =

{
k, d(x, y) = k;
0, x = y.

Let θ0 ≥ . . . ≥ θt (resp. µ0 ≥ . . . ≥ µt) be the eigenvalues of A (resp. D) called A-
eigenvalues (resp. D-eigenvalues) of Γ. Note that both of the adjacency and distance
matrices are nonnegative irreducible real symmetric matrices.

Next, we present some tools from linear algebra which we use later on. The following
is the so-called Perron–Frobenius Theorem.

Theorem 2. ([1], Theorem 2.2.1) Let M be a nonnegative irreducible matrix of order ν × ν. Let
ρ(M) be the largest eigenvalue of M such that Mx = ρx. Then,

(i) Both geometric and algebraic multiplicity of ρ(M) is one. Moreover, x is a strictly positive
real vector.

(ii) For each eigenvalue θ of M, we have ρ ≥ |θ|. If M is primitive, then ρ = |θ| implies ρ = θ.
(iii) Assume M1 is a nonnegative ν × ν real matrix such that M − M1 is nonnegative. Then,

ρ(M) ≥ ρ(M1) with ρ(M) = ρ(M1) if and only if M = M1.

The following is the so-called Cauchy Interlacing Theorem of real symmetric matrices.

Theorem 3. ([34], Theorem 9.3.3) Let M be an m × m principle submatrix of an ν × ν real
symmetric matrix N. Assume that θi(N) (1 ≤ i ≤ ν) (resp. µi(M) (1 ≤ i ≤ m) be a non-
increasing sequence of the eigenvalues of N (resp. M). Then,

θν−m+i(N) ≤ µi(M) ≤ θi(N) for i = 1, 2, . . . , m.

Let χA(x) be the characteristic polynomial of a matrix A. The proof of the following
result is a merely a modification of [34], Theorem 9.1.1.

Theorem 4. ([34], Theorem 9.1.1) Assume π is an equitable partition for a Hermitian matrix M.
Let Q be the quotient matrix of M corresponding to π. Then, we have χQ(x) | χM(x).

In 1971, Graham and Pollack [19] calculated the determinant of D(T) of a ν-vertex tree
T as follows:

Theorem 5. ([19]) If D = D(T) is the distance matrix of a ν-vertex tree T, where ν ≥ 2. Then,

det(D) = (−1)ν−1(ν − 1)2ν−2.

Let A be a real symmetric matrix. Then, the eigenvalues of A are all real. Assume
ν+(A) (resp. ν−(A)) is the number of positive (resp. negative) eigenvalues of A. If ν0(A)
is the dimension of the null space of A i.e., the number of zero eigenvalues of A, then,
(ν+(A), ν0(A), ν−(A)) is said to be the inertia of the matrix A.

Theorem 5 immediately implies that the inertia of D(T) of a ν-vertex tree T is inde-
pendent of the structural of T, i.e., only depends on ν.

Corollary 1. ([19]) Let D = D(T) be the distance matrix of a ν-vertex tree T, where ν ≥ 2. Then,
the inertia of D is (1, 0, ν − 1).
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3. Main Results

For a graph Γ, let δΓ(D) be the number of distinct distance eigenvalues of Γ. Note that
the distance matrix D is an irreducible nonnegative integer symmetric (and thus Hermitian)
matrix. Thus, if D has one distinct eigenvalue µ, then, its minimal polynomial m(x) = x− µ.
This implies that D = µI, and since the main diagonal of D is zero, we obtain that µ = 0
and D = 0. This shows that Γ is an isolated vertex, as Γ is connected. Thus, we have the
following lemma.

Lemma 1. Let Γ be a connected graph. Then, δΓ(D) = 1 if and only if Γ = K1.

Stevanović and Indulal [35] calculated the distance spectra of the combination of
two regular graphs and, as its application, computed the distance spectra of the complete
bipartite graphs. Here, we provide a different proof of this result using equitable partitions
of the distance matrix.

Lemma 2. Let Ks,t be the complete bipartite graph. Then, the distance spectrum of Ks,t is as follows:{
[s + t − 2 +

√
s2 − st + t2]1, [−2]s+t−2, [s + t − 2 −

√
s2 − st + t2]1

}
.

Proof. Consider the equitable partition π = {V1, V2}, where V1 and V2 are the partite sets
of Ks,t. The quotient matrix Q of π is

Q =

(
2(s − 1) t

s 2(t − 1)

)
.

The eigenvalues of Q are s+ t− 2±
√

s2 − st + t2. By Theorem 4, these are also the distance
eigenvalues of Ks,t each with multiplicity 1. By Lemma 3.4 in [23], Ks,t has three distinct
eigenvalues. By using the trace of the distance matrix of Ks,t, we obtain that −2 with
multiplicity s + t − 2 is the other distinct distance eigenvalue of Ks,t.

Indulal [36] characterized graphs with two distinct distance eigenvalues. We provide
a short proof of this characterization.

Lemma 3. ([36]) A graph Γ has δΓ(D) = 2 if and only if Γ = Kν, ν ≥ 2.

Proof. If Γ = Kν, then D(Γ) = A(Γ) where A(Γ) is the adjacency matrix of Γ. Thus, Γ has
two distinct distance eigenvalues i.e., ν − 1 and −1.

For the converse, assume that Γ has two distinct distance eigenvalues, say, µ0 > µ1.
Let mi be the multiplicity of µi. By Theorem 2, m1 = 1, and thus, m2 = ν − 1. We show
that Γ does not contain K1,2 as an induced subgraph. On the contrary, we assume that it is
true. Let P be the principle submatrix of D(Γ) induced by K1,2. Then, by Theorem 3, we
obtain that P has only two distinct distance eigenvalues. However, by Lemma 2, D(K1,2)
has precisely three distinct distance eigenvalues. This implies that K1,2 is not an induced
subgraph of Γ. And thus, D(Γ) = 1 and Γ = Kν, ν ≥ 2.

The problem of characterizing graphs with three distinct distance eigenvalues is,
in fact, very hard. This problem was solved for trees by Zhang and Lin [30] in 2023. Here,
we deliver an alternative proof which is extendable to other families of graphs such as
unicyclic and bicyclic graphs.

Proof of Theorem 1. The ‘only if part’ of the statement follows from Lemma 2 by consider-
ing either s = 1 or t = 1.

For the ‘if part’ of the statement, we assume T to be a tree with three distinct distance
eigenvalues. Let D (resp. D) be the diameter (resp. distance matrix) of T. Since T is
non-complete, we obtain that T is non-regular. Let µ0 > µ1 > µ2 be the distinct eigenvalues
of T with respective multiplicities m0, m1, m2. By the Perron–Frobenius Theorem 2, we
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have m0 = 1. Moreover, by Corollary 1, we have µ0 > 0 and µ1 < 0. Let x > 0 be the
Perron–Frobenius eigenvector of D, then

(J − I)x ≤ Dx ≤ D(J − I)x,

and Dx = D(J − I)x if and only if D = 1. This implies that µ0 ≤ D(ν − 1). We discuss the
following two possible cases:

Case 1 . µ0 is not an integer.

Since µ0 is simple and non-integral, one of µi (1 ≤ i ≤ 2) is also simple. Let
{µ, µ′} = {µ1, µ2}, and assume µ is the simple eigenvalue. This implies that µ′ ∈ Z
and has multiplicity ν − 2. Since (D) = 0, we obtain that µ0 + µ1 = −µ′(ν − 2). Note that
rank(D − µ′ I) = 2. Moreover, K1,2 is an induced subgraph of T as it is non-regular and
non-complete. This implies that

rank
(

D(K1,2)− µ′ I
)
≤ 2,

where D(K1,2) is a principle submatrix of D(T). Therefore, by interlacing, µ′ ∈ {1 ±
√

3,−2}
since SpecD(K1,2) = {1 ±

√
3,−2}. However, since µ′ ∈ Z, we obtain that µ′ = −2. By

Theorem 2.6 from [23], T is a complete multipartite graph. Since T is a non-regular graph
having three distinct distance eigenvalues, by Lemma 3.4 from [23], T = Ks,t, s, t ≥ 2
is complete bipartite. By Lemma 2 and Corollary 1, we obtain that µ1 = s + t − 2 −√

s2 − st + t2 < 0 and µ2 = s + t − 2 +
√

s2 − st + t2 > 0. By solving these inequalities, we
obtain that either s = 1 or t = 1. This implies that T is the star graph.

Case 2. µ0 is an integer.

In this case, we may assume that mi ≥ 2 for i = 1, 2. Based on mi, we consider the
following subcases.

Subcase 2.1. Assume that m1 ̸= m2.

In this case, the corresponding distance eigenvalues µ1 and µ2 are integral such that
µ1 ≥ 0 and µ2 ≤ −2. If µ2 = −2, then, by Theorem 2.6 from [23], T is a complete multipar-
tite graph. Since T is a non-regular graph having three distinct distance eigenvalues, by
Lemma 3.4 from [23], T = Ks,t, s, t ≥ 2 is complete bipartite. By Lemma 2 and Corollary 1,
we obtain that µ1 = s + t − 2 −

√
s2 − st + t2 < 0 and µ2 = s + t − 2 +

√
s2 − st + t2 > 0.

By solving these inequalities, we obtain that either s = 1 or t = 1. This implies that T is a
star graph.

Thus, we have µ1 ≥ 0 and µ2 ≤ −3. By Corollary 1, this is not possible, as the graph is
a tree.

Subcase 2.2. Assume that m1 = m2 ≥ 2.

Then, m1 = m2 = m = 1
2 (ν − 1), and hence, ν = 2m + 1 is odd. Note that (D) = 0

implies that
ν

∑
i=1

µi = 0. This gives us

µ0 +
1
2
(ν − 1)(µ1 + µ2) = 0. (1)

As µ1 + µ2 ∈ Z−, we obtain µ0 = c 1
2 (ν − 1), where c is a positive integer by Equation (1).

Since T is non-complete, there exist vertices x, y, and z in T such that x ∼ y ∼ z. Note that
the set S = {x, y, z} induces a path of length two in T. This implies that, by interlacing,
we obtain −1 < µ1 < 0, as SpecD(K1,2) = {1 ±

√
3,−2}. Moreover, since ν is odd and

m1 = m2 = m = 1
2 (ν − 1), by Theorem 5, we obtain

22m = −(µ1µ2)
m(µ1 + µ2). (2)

By Equation (2), we obtain that µ1µ2 ∈ {1, 2, 4} as µ1 + µ2 ∈ Z−. Next, we discuss all these
possibilities one by one:
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Subsubcase 2.2.1. µ1µ2 = 4.

By Equation (2), we obtain that µ1 + µ2 = −1, which is not possible as µ1 > −1 and
µ2 ≤ −2.

Subsubcase 2.2.2. µ1µ2 = 1.

In this case, by Equation (2), we obtain µ1 + µ2 = −22m. As a consequence of Theo-
rem 5, one could show that T has

⌈D
2
⌉

distinct distance eigenvalues. Using this fact with
µ0 ≤ D(ν − 1), we find that µ0 ≤ D(ν − 1) ≤ 12m. By using µ0 ≤ 12m and Theorem 2,
we obtain

12m ≥ |µ2| > 22m − 1

This implies that m ≤ 3 and, thus, ν ≤ 7. Tables 1 and 2 present all the trees on ν ≤ 7
vertices and their distance spectra. It is easy to check that this case is not possible.

Subsubcase 2.2.3. µ1µ2 = 2.

In this case, we obtain that µ1 + µ2 = −2m. By using a similar argument as in Subcase
2.1, we find that, in this case, we have m ≤ 6. Note that µ1 and µ2 are the roots of

x2 − (µ1 + µ2)x + µ1µ2 = 0. (3)

From (3), we obtain µ1, µ2 = −2m±
√

22m−8
2 . For m ≤ 6, the number 22m − 8 is not a perfect

square. Thus, µi (i = 1, 2) is not integral which is a contradiction to the fact that all µi’s are
integral. This shows that µ0 is not integral which completes the proof.

Table 1. Trees on ν ≤ 7 vertices and their distance spectra.

ν Tree Distance Spectrum

2 {[1]1, [−1]1}

3 {[2.7320]1, [−0.7320]1, [−2]1}

4 {[4.6457]1, [−0.6457]1, [−2]2, }

4 {[5.1623]1, [−0.5858]1, [−1.1623]1, [−3.41421]1, }

5 {[6.60555]1, [−0.60555]1, [−2]3}

5 {[7.45929]1, [−0.51198]1, [−1.0846]1, [−2]1, [−3.8627]1}

5 {[8.2882]1, [−0.5578]1, [−0.7639]1, [−1.7304]1, [−5.2361]1}

6 {[8.5826]1, [−0.5826]1, [−2]4}

6 {[9.6702]1, [−0.4727]1[−1.0566]1, [−2]2, [−4.1409]1}

6 {[11.0588]1, [−0.5114]1, [−0.67301]1, [−1.7026]1[−2]1, [−6.1717]1}
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Table 1. Cont.

ν Tree Distance Spectrum

6 {[10]1, [−0.4384]1, [−1]1, [−2]2, [−4.5615]1}

6 {[10.7424]1, [−0.4754]1, [−0.7639]1, [−1.3363]1, [−5.2360]1}

6 {[12.1093]1, [−0.5358]1, [−0.6798]1, [−1]1, [−2.4295]1, [−7.4641]1}

7 {[10.5678]1, [−0.5678]1, [−2]5}

7 {[11.8281]1, [−0.4488]1, [−1.0423]1, [−2]3, [−4.3368]1}

7 {[13.6353]1, [−0.4703]1, [−0.6481]1, [−1.6923]1, [−2]2, [−6.8245]1}

7 {[12.3945]1, [−0.3973]1, [−0.9692]1, [−2]3, [−5.02789]1}

Table 2. Trees on ν ≤ 7 vertices and their distance spectra.

ν Tree Distance Spectrum

7 {[14.1759]1, [−0.5073]1, [−0.5359]1, [−1.6687]1, [−2]2, [−7.464]1}

7 {[13.0698]1, [−0.4307]1, [−0.7639]1, [−1.2626]1, [−2]1, [−3.3764]1, [−5.2360]1}

7 {[15.4048]1, [−0.4943]1, [−0.62420]1, [−0.9174]1, [−2]1, [−2.4757]1, [−8.8932]1}

7 {[14.863]1, [−0.4749]1, [−0.6461]1, [−0.9171]1, [−1.7796]1, [−3.3529]1, [−7.6929]1}

7 {[13.6346]1, [−0.43245]1, [−0.6651]1, [−1.3089]1, [−2]1, [−3.0055]1, [−6.223]1}

7 {[14.2969]1, [−0.4559]1, [−0.76393]2, [−1.8410]1, [−5.2361]2}

7 {[16.6253]1, [−0.52720]1, [−0.6159]1, [−0.8405]1, [−1.2862]1, [−3.2576]1, [−10.0978]1}
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4. Distance Spectra of Small Graphs

In this section, we deliver all the connected graphs (excluding trees) on ν ≤ 6 vertices
and their distance spectra. For trees, we refer to Tables 1 and 2. Tables 3–16 comprise
these data. Note that these data are generated by using nauty-geng generators on Sage [37]
software. The first column depicts their unique graph6 string. Researchers may use these
data for their research on spectral graph theory of the distance matrix.

There are some interesting observations which we make based on the data in Tables 3–16.
Before we elaborate these observations, we note some necessary definitions. Two non-
isomorphic connected graphs Γ and Ω are said to be distance cospectral (or distance cospectral
mates), if both Γ and Ω have the same multiset of distance eigenvalues. A graph Γ is said to
be determined from its distance spectrum, if it has no distance cospectral mates.

From Tables 1–16, we notice that all the connected graphs on ν ≤ 6 vertices are
determined from their distance spectra. We also deliver a distance cospectral pair on ν = 7
vertices, making a distance cospectral pair of the smallest possible order. Figure 1 depicts
that distance cospectral pair on ν = 7 vertices.

Figure 1. A distance cospectral pair of smallest order.

Table 3. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

Bw 3 {[2]1, [−1]2}

CV 4 {[4.0996]1, [−0.7165]1, [−1]1, [−2.3832]1}

C] 4 {[4.0]1, [0.0]1, [−2.0]2, }

C^ 4 {[3.5616]1, [−0.5616]1, [−1.0]1, [−2.0]1, }

C~ 4 {[3.0]1, [−1.0]3}



Axioms 2024, 13, 494 9 of 24

Table 4. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

DC{ 5 {[6.1764]1, [−0.6378]1, [−1.0]1, [−2.0]1, [−2.5387]1}

DEw 5 {[6.5381]1, [0.0]1, [−1.0534]1, [−2.0]1, [−3.4847]1}

DEk 5 {[6.6375]1, [−0.5858]1, [−0.8365]1, [−1.801]1, [−3.4142]1}

DE{ 5 {[5.7596]1, [−0.558]1, [−0.7667]1, [−2.0]1, [−2.4348]1}

DFw 5 {[5.6458]1, [0.3542]1, [−2.0]3}

DF{ 5 {[5.3723]1, [−0.3723]1, [−1.0]1, [−2.0]2}

DQw 5 {[7.0086]1, [−0.5686]1, [−1.0]1, [−1.1774]1, [−4.2626]1}

DQ{ 5 {[5.7016]1, [−0.7016]1, [−1.0]2, [3.0]1}
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Table 5. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

DUW 5 {[6.0]1, [−0.382]2, [−0.618]2}

DUw 5 {[5.6351]1, [0.0]1, [−0.9125]1, [−2.0]1, [−2.7226]1}

DU{ 5 {[5.2926]1, [−0.382]1, [−0.7217]1, [−1.5709]1, [−2.618]1}

DTW 5 {[6.2161]1, [−0.4521]1, [−1.0]1, [−1.1971]1, [−3.5669]1}

DT{ 5 {[5.3441]1, [−0.7105]1, [−1.0]2, [−2.6336]1}

DV{ 5 {[4.9018]1, [−0.5122]1, [−1.0]2, [−2.3896]1}

D}w 5 {[[5.2239]1, [0.1606]1, [−1.0]1, [−2.0]1, [−2.3844]1}

D}{ 5 {[4.8284]1, [0.0]1, [−0.8284]1, [−2.0]2}

D^{ 5 {[4.4495]1, [−0.4495]1, [−1.0]2, [−2.0]1}
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Table 6. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

D~{ 5 {[4.0]1, [−1.0]4}

E?bw 6 {[8.2297]1, [−0.6009]1, [−1.0]1, [−2.0]2, [−2.6288]1}

E?ro 6 {[8.899]1, [0.0]1, [−0.899]1, [−2.0]2, [−4.0]1}

E?qw 6 {[8.9909]1, [−0.512]1, [−0.8175]1, [−1.7801]1, [−2.0]1, [−3.8813]1}

E?rw 6 {[7.8888]1, [−0.5542]1, [−0.6926]1, [−2.0]2, [−2.642]1}

E?zO 6 {[9.6569]1, [0.0]1, [−0.7639]1, [−1.6569]1, [−2.0]1, [−5.2361]1}

E?zo 6 {[8.1468]1, [0.4057]1, [−1.0308]1, [−2.0]2, [−3.5217]1}

E?zW 6 {[8.2882]1, [−0.5578]1, [−0.5858]1, [−1.7304]1, [−2.0]1, [−3.4142]1}

E?zw 6 {[7.5673]1, [−0.358]1, [−0.7507]1, [−2.0]2, [−2.4586]1}

E?~o 6 {[7.4641]1, [0.5359]1, [−2.0]4}
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Table 7. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

E?~w 6 {[7.2749]1, [−0.2749]1, [−1.0]1, [−2.0]3}

ECRo 6 {[9.3154]1, [−0.5023]1, [−1.0]1, [−1.0865]1, [−2.3224]1, [−4.4042]1}

ECRw 6 {[7.8526]1, [−0.6303]1, [−1.0]2, [−2.2223]1, [−3.0]1}

ECr_ 6 {[9.2606]1, [0.0]1, [−1.0]1, [−1.0898]1, [−3.1708]1, [−4.0]1}

ECpo 6 {[8.8219]1, [−0.3559]1, [−0.382]1, [−1.2995]1, [−2.618]1, [−4.1664]1}

ECqg 6 {[9.3852]1, [−0.5858]2, [−1.3852]1, [−3.4142]2}

ECro 6 {[8.1822]1, [0.0]1, [−0.8303]1, [−1.3401]1, [−2.5075]1, [−3.5042]1}

ECrg 6 {[8.6632]1, [−0.4351]1, [−0.7665]1, [−1.1966]1, [−2.3862]1, [−3.8789]1}

ECrw 6 {[7.5222]1, [−0.382]1, [−0.6395]1, [−1.4565]1, [−2.4261]1, [−2.618]1}

ECZ_ 6 {[9.9713]1, [0.0]1, [−0.6685]1, [−1.7199]1, [−2.0]1, [−5.5829]1}
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Table 8. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

ECZO 6 {[10.668]1, [−0.5501]1, [−0.7462]1, [−1.0]1, [−1.8096]1, [−6.562]1}

ECZG 6 {[10.0548]1, [−0.552]1, [−0.6878]1, [−1.1178]1, [−2.2283]1, [−5.4689]1}

ECYW 6 {[9.6088]1, [−0.4931]1, [−1.0]1, [−1.0924]1, [−2.0]1, [−5.0233]1}

ECZo 6 {[8.497]1, [0.0]1, [−1.0]1, [−1.0613]1, [−2.0]1, [−4.4357]1}

ECZg 6 {[8.9694]1, [−0.4807]1, [−0.6851]1, [−1.1687]1, [−2.0]1, [−4.6349]1}

ECZW 6 {[8.5936]1, [−0.5686]1, [−0.8339]1, [−1.0]1, [−1.8778]1, [−4.3134]1}

ECZw 6 {[7.4864]1, [−0.5574]1, [−0.7551]1, [−1.0]1, [−2.0]1, [−3.1739]1}

ECfo 6 {[8.6378]1, [−0.4043]1, [−1.0]1, [−1.1116]1, [−2.0]1, [−4.1219]1}
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Table 9. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

ECfw 6 {[7.5546]1, [−0.6347]1, [−1.0]2, [−2.0]1, [−2.9199]1}

ECxo 6 {[7.6952]1, [0.0932]1, [−0.382]1, [−2.0]1, [−2.618]1, [−2.7884]1}

ECzo 6 {[7.4058]1, [0.3642]1, [−0.9064]1, [−2.0]2, [−2.8636]1}

ECzg 6 {[8.3569]1, [−0.2733]1, [−1.0]1, [−1.0985]1, [−2.0]1, [−3.985]1}

ECzW 6 {[7.9151]1, [−0.3566]1, [−0.6712]1, [−1.1846]1, [−2.1064]1, [−3.5963]1}

ECxw 6 {[7.4417]1, [0.0]1, [−0.5595]1, [−2.0]2, [−2.8823]1}

ECzw 6 {[7.1742]1, [−0.1943]1, [−0.6764]1, [−1.5289]1, [−2.0]1, [−2.7745]1}

ECvo 6 {[7.837]1, [0.1708]1, [−1.0]1, [−1.0545]1, [−2.377]1, [−3.5763]1}

ECuw 6 {[7.9777]1, [−0.5858]1, [−0.8093]1, [−1.0]1, [−2.1683]1, [−3.4142]1}

ECvw 6 {[7.2057]1, [−0.5121]1, [−0.763]1, [−1.0]1, [−2.2667]1, [−2.6639]1}
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Table 10. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EC~o 6 {[7.0959]1, [0.4439]1, [−1.0]1, [−2.0]2, [−2.5398]1}

EC~w 6 {[6.8858]1, [−0.3426]1, [−1.0]2, [−2.0]1, [−2.5432]1}

EEr_ 6 {[8.5704]1, [0.3566]1, [−1.0]1, [−2.0]2, [−3.927]1}

EEro 6 {[7.8759]1, [0.1611]1, [−0.7551]1, [−1.7972]1, [−2.0]1, [−3.4847]1}

EErw 6 {[7.1648]1, [0.0]1, [−0.6718]1, [−2.0]2, [−2.4929]1}

EEh_ 6 {[9.0]1, [0.0]2, [−1.0]1, [−4.0]2}

EEj_ 6 {[8.4244]1, [0.0]2, [−1.4244]1, [−3.0]1, [−4.0]1}

EEio 6 {[8.5543]1, [0.0]1, [−0.6439]1, [−1.7422]1, [−2.0]1, [−4.1682]1}

EEho 6 {[8.0741]1, [−0.3258]1, [−0.382]1, [−0.8858]1, [−2.618]1, [−3.8625]1}
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Table 11. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EEiW 6 {[9.4244]1, [−0.4244]1, [−0.7639]1, [−1.0]1, [−2.0]1, [−5.2361]1}

EEhW 6 {[8.5237]1, [0.0]1, [−0.8401]1, [−1.1598]1, [−2.2582]1, [−4.2656]1}

EEjo 6 {[7.8043]1, [0.0]1, [−0.6535]1, [−1.0921]1, [−2.2817]1, [−3.7771]1}

EEjW 6 {[8.2723]1, [−0.3698]1, [−0.601]1, [−1.1477]1, [−1.8894]1, [−4.2644]1}

EEhw 6 {[7.4002]1, [0.0]1, [−0.8467]1, [−1.0]1, [−2.5535]1, [−3.0]1}

EEjw 6 {[7.1287]1, [−0.279]1, [−0.7025]1, [−1.0]1, [−2.1472]1, [−3.0]1}

EEz_ 6 {[7.772]1, [0.5616]1, [−0.772]1, [−2.0]2, [−3.5616]1}

EEzO 6 {[8.2037]1, [0.1607]1, [−1.0]1, [−1.0566]1, [−2.0]1, [−4.3078]1}

EEzo 6 {[7.0425]1, [0.4744]1, [−0.76]1, [−2.0]2, [−2.7569]1}

EEzg 6 {[7.5169]1, [0.2038]1, [−1.0]1, [−1.0737]1, [−2.0]1, [−3.6471]1}



Axioms 2024, 13, 494 17 of 24

Table 12. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EEzw 6 {[6.7884]1, [0.1022]1, [−0.7201]1, [−1.4974]1, [−2.0]1, [−2.6732]1}

EEvo 6 {[7.5455]1, [0.0]1, [−0.7465]1, [−1.176]1, [−2.0]1, [−3.6229]1}

EEuw 6 {[7.6235]1, [−0.4235]1, [−0.8097]1, [−1.0]1, [−1.8233]1, [−3.567]1}

EEvw 6 {[6.8601]1, [−0.4485]1, [−0.7263]1, [−1.0]1, [−2.0]1, [−2.6853]1}

EEno 6 {[7.0835]1, [0.1639]1, [−0.5993]1, [−1.5688]1, [−2.3433]1, [−2.7361]1}

EElw 6 {[7.1231]1, [−0.382]1, [−0.382]1, [−1.1231]1, [−2.618]1, [−2.618]1}

EEnw 6 {[6.8289]1, [−0.382]1, [−0.5882]1, [−1.0]1, [−2.2407]1, [−2.618]1}

EEnw 6 {[6.8289]1, [−0.382]1, [−0.5882]1, [−1.0]1, [−2.2407]1, [−2.618]1}

EE~w 6 {[6.5109]1, [−0.3512]1, [−0.7158]1, [−1.0]1, [−2.0]1, [−2.4439]1}
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Table 13. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EFz_ 6 {[7.0]1, [1.0]1, [−2.0]4}

EFzo 6 {[6.6961]1, [0.6888]1, [−1.0]1, [−2.0]2, [−2.3849]1}

EFzW 6 {[6.744]1, [0.3631]1, [−0.6703]1, [−2.0]2, [−2.4368]1}

EFzw 6 {[6.4188]1, [0.3868]1, [−0.8056]1, [−2.0]3}

EF~w 6 {[6.1623]1, [−0.1623]1, [−1.0]2, [−2.0]2}

EQj_ 6 {[9.6964]1, [−0.4484]1, [−0.7224]1, [−1.0]1, [−1.7703]1, [−5.7553]1}

EQjO 6 {[9.1962]1, [−0.5505]1, [−1.0]2, [−1.1962]1, [−5.4495]1}

EQjo 6 {[8.217]1, [−0.4384]1, [−1.0]2, [−1.217]1, [−4.5616]1}

EQjg 6 {[8.6279]1, [−0.5617]1, [−1.0]2, [−1.1831]1, [−4.883]1}
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Table 14. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EQjw 6 {[7.1246]1, [−0.6959]1, [−1.0]3, [−3.4287]1}

EQZo 6 {[7.772]1, [0.0]1, [−0.772]1, [−1.0]1, [−2.0]1, [−4.0]1}

EQzo 6 {[7.0418]1, [0.1621]1, [−0.912]1, [−1.0]1, [−2.1204]1, [−3.1715]1}

EQzg 6 {[7.9676]1, [−0.4017]1, [−1.0]1, [−1.223]1, [−4.3429]1}

EQzW 6 {[7.5165]1, [−0.3389]1, [−0.4679]1, [−1.1776]1, [−1.6527]1, [−3.8794]1}

EQyw 6 {[7.0747]1, [0.0]1, [−0.8868]1, [−1.0]1, [−2.0]1, [−3.1879]1}

EQzw 6 {[6.783]1, [−0.3274]1, [−0.711]1, [−1.0]1, [−1.6232]1, [−3.1214]1}

EQ~o 6 {[6.7016]1, [0.2984]1, [−1.0]2, [−2.0]1, [−3.0]1}

EQ~w 6 {[6.4641]1, [−0.4641]1, [−1.0]3, [−3.0]1}

EUZ_ 6 {[7.3594]1, [0.1919]1, [−0.382]1, [−1.8043]1, [−2.618]1, [−2.7471]1}

EUZO 6 {[7.3554]1, [−0.2166]1, [−0.382]1, [−1.0]1, [−2.618]1, [−3.1388]1}
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Table 15. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EUZo 6 {[7.0372]1, [0.0]1, [−0.382]1, [−1.2036]1, [−2.618]1, [−2.8336]1}

EUZw 6 {[6.7417]1, [−0.382]1, [−0.382]1, [−0.7417]1, [−2.618]1, [−2.618]1}

EUxo 6 {[7.0]1, [0.0]2, [−2.0]2, [−3.0]1}

EUzo 6 {[6.6953]1, [0.247]1, [−0.4698]1, [−1.445]1, [−2.2255]1, [−2.8019]1}

EUzW 6 {[6.7363]1, [0.0]1, [−0.4464]1, [−1.3637]1, [−2.0]1, [−2.9263]1}

EUzw 6 {[6.4114]1, [0.0]1, [−0.687]1, [−1.0]1, [−2.0]1, [−2.7244]1}

EU~w 6 {[6.1012]1, [−0.382]1, [−0.5175]1, [−1.0]1, [−1.5837]1, [−2.618]1}

ETzo 6 {[6.7321]1, [0.187]1, [−0.8992]1, [−1.0]1, [−2.1674]1, [−2.8525]1}

ETzg 6 {[7.2426]1, [−0.2679]1, [−1.0]2, [−1.2426]1, [−3.7321]1}
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Table 16. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

ETzw 6 {[6.4523]1, [−0.2263]1, [−0.7212]1, [−1.0]1, [−1.6828]1, [−2.8221]1}

ETno 6 {[7.2675]1, [−0.3691]1, [−1.0]2, [−1.2143]1, [−3.6841]1}

ETnw 6 {[6.5242]1, [−0.7074]1, [−1.0]3, [−2.8168]1}

ET~w 6 {[6.1425]1, [−0.4913]1, [−1.0]3, [−2.6512]1}

EV~w 6 {[5.7566]1, [−0.3629]1, [−1.0]3, [−2.3937]1}

E]zo 6 {[6.3647]1, [0.2007]1, [−0.382]1, [−1.5654]1, [−2.0]1, [−2.618]1}

E]zg 6 {[6.4017]1, [0.2368]1, [−1.0]2, [−2.0]1, [−2.6385]1}

E]yw 6 {[6.3589]1, [0.4142]1, [−1.0]2, [−2.3589]1, [−2.4142]1}

E]zw 6 {[6.0479]1, [0.1676]1, [−0.8252]1, [−1.0]1, [−2.0]1, [−2.3904]1}
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Table 16. Cont.

Graph6 String ν Graph Distance Spectrum

E]~o 6 {[6.0]1, [0.0]2, [−2.0]3}

E]~w 6 {[5.7016]1, [0.0]1, [−0.7016]1, [−1.0]1, [−2.0]2}

E^~w 6 {[5.3723]1, [−0.3723]1, [−1.0]3, [−2.0]1}

E^~w 6 {[5.3723]1, [−0.3723]1, [−1.0]3, [−2.0]1}

E~~w 6 {[5.0]1, [−1.0]5}

5. Conclusions

The “few eigenvalues” problem is one of the contemporary problems in spectral graph
theory. This paper investigates certain mathematical characteristics of the distance matrix
of trees. In particular, this paper studies the “few eigenvalues” problem regarding the
distance matrix. The main result of this paper classifies all the trees having precisely three
distinct eigenvalues of their distance matrix. Our proof is different from the one delivered
by Zhang and Lin [30]. Our proof employs interlacing and equitable partitions and can
be extended to other families such as unicyclic and bicyclic graphs. We also list all the
connected graphs on ν ≤ 6 vertices and compute their distance spectra. Some important
observations on distance cospectrality are made based on these numerical data.

Based on these remarks, we propose the following open problems for future studies:

Problem 1. Characterize all unicyclic graphs having precisely three distinct distance eigenvalues.

Problem 2. Solve Problem 1 for the case of bicyclic graphs.

Problem 3. Construct an infinite family of non-regular non-bipartite graphs with exactly three
distance eigenvalues.
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12. Cioabă, S.M.; Haemers, W.H.; Vermette, J.R. The graphs with all but two eigenvalues equal to −2 or 0. Des. Codes Cryptogr. 2017,

84, 153–163. [CrossRef]
13. Haemers, W.H.; Omidi, G.R. Universal adjacency matrix with two eigenvalues. Linear Algebra Its Appl. 2011, 435, 2520–2529.

[CrossRef]
14. Chang, L.; Wu, Z.; Ghadimi, N. A new biomass-based hybrid energy system integrated with a flue gas condensation process and

energy storage option: An effort to mitigate environmental hazards. Process Saf. Environ. Prot. 2023, 177, 959–975. [CrossRef]
15. Ghiasi, M.; Niknam, T.; Wang, Z.; Mehrandezh, M.; Dehghani, M.; Ghadimi, N. A comprehensive review of cyber-attacks and

defense mechanisms for improving security in smart grid energy systems: Past, present and future. Electr. Power Syst. Res. 2023,
215, 108975. [CrossRef]

16. Liu, H.; Ghadimi, N. Hybrid convolutional neural network and flexible dwarf Mongoose optimization algorithm for strong
kidney stone diagnosis. Biomed. Signal Process. Control 2024, 91, 106024. [CrossRef]

17. Zhang, J.; Khayatnezhad, M., Ghadimi, N. Optimal model evaluation of the proton exchange membrane fuel cells based on deep
learning and modified African vulture optimization algorithm. Energy Sources A 2022, 44, 287–305. [CrossRef]

18. Hakimi, S.L.; Yau, S.S. Distance matrix of a graph and its realizability. Quart. Appl. Math. 1964, 22, 305–317. [CrossRef]
19. Graham, R.L.; Pollack, H.O. On the addressing problem for loop switching. Bell Syst. Tech. J. 1971, 50, 2495–2519. [CrossRef]
20. Graham, R.L.; Lovász, L. Distance matrix polynomials of trees. Adv. Math. 1978, 29, 60–88. [CrossRef]
21. Merris, R.; The distance spectrum of a tree. J. Graph Theory 1990, 14, 365–369. [CrossRef]
22. Aouchiche, M.; Hansen, P. Distance spectra of graphs: A survey. Linear Algebra Its Appl. 2014, 458, 301–386. [CrossRef]
23. Lin, H.; Hong, Y.; Wang, J.; Shu, J. On the distance spectrum of graphs. Linear Algebra Its Appl. 2013, 439, 1662–1669. [CrossRef]
24. Jin, Y.-L.; Zhang, X.-D. Complete multipartite graphs are determined by their distance spectra. Linear Algebra Its Appl. 2014, 448,

285–291. [CrossRef]
25. Heysse, K. A construction of distance cospectral graphs. Linear Algebra Its Appl. 2017, 535, 195–212. [CrossRef]
26. Aouchiche, M.; Hansen, P. Cospectrality of graphs with respect to distance matrices. Appl. Math. Comput. 2018, 325, 309–321.

[CrossRef]
27. Zhang, X. Graphs with few distinct D-eigenvalues determined by their D-spectra. Linear Algebra Its Appl. 2021, 628, 42–55.

[CrossRef]
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