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Abstract: This paper investigates the existence and location of solutions for a Neumann problem
driven by a (p, q) Laplacian operator and with a reaction term that depends not only on the solution
and its gradient but also incorporates an intrinsic operator, which is its main novelty. This paper can
be seen as the study of a quasilinear Neumann problem involving an elaborated perturbation with
a Nemytskij operator. The approach proceeds through a version of the sub/supersolution method,
exploiting an invariance property regarding the sub/supersolution ordered interval with respect to
the intrinsic operator. An example illustrates the applicability of our result.
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1. Introduction

Our objective is to study the following quasilinear elliptic problem with a Neumann
boundary condition: find u : Ω → R such that−∆pu − µ∆qu + |u|p−2u = f (x, B(u),∇(B(u))) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(1)

where Ω is a bounded domain in RN with C1 boundary ∂Ω and outer unit normal ν to
∂Ω. In the statement of problem (1), there is a real parameter µ for which we suppose
that µ ≥ 0. The equation is driven by the (p, q)-type Laplacian operator −∆pu − µ∆qu,
which is perturbed with the power term |u|p−2u. We assume that 1 < q < p < +∞. The
reaction term in the equation is described by a Carathéodory function f : Ω ×R×RN → R,
meaning that f (·, s, ξ) is measurable for all (s, ξ) ∈ R×RN and that f (x, ·, ·) is continuous
for almost all x ∈ Ω), which is composed with an intrinsic operator B : W1,p(Ω) → W1,p(Ω)
in Sobolev space W1,p(Ω), subject to certain hypotheses (see conditions (H1) and (H2) in
Section 2).

For the sake of clarity, we recall that the negative p−Laplacian −∆p : W1,p(Ω) →
W−1,p′(Ω) and the negative q−Laplacian −∆q : W1,p(Ω) → W−1,p′(Ω) are defined, respec-
tively, by 〈

−∆pu, v
〉
=

∫
Ω
|∇u(x)|p−2∇u(x) · ∇v(x)dx for all u, v ∈ W1,p(Ω),

and 〈
−∆qu, v

〉
=

∫
Ω
|∇u(x)|q−2∇u(x) · ∇v(x)dx for all u, v ∈ W1,q(Ω).

We refer to [1,2] for the background related to the p-Laplacian operator. We note that the
operator −∆p − µ∆q is well defined in the space W1,p(Ω). This is true because Ω ⊂ RN
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is bounded and p > q, so W1,p(Ω) is continuously embedded in W1,q(Ω), as can be seen
through Hölder’s inequality. Consequently, due to the continuity of −∆p and −∆q, we have
the continuous operator −∆p − µ∆q : W1,p(Ω) → W−1,p′(Ω). Two cases are extremely
important. If µ = 0, we obtain the negative p−Laplacian, while if µ = 1, we obtain
the negative (p, q)−Laplacian. These two cases are essentially different. Notice that the
negative (p, q)−Laplacian −∆p − ∆q is a non-homogeneous operator, whereas the negative
p−Laplacian is a homogeneous operator of order p − 1.

The main feature of the present work is that the reaction term of the equation in
(1)—that is, f (x, B(u),∇(B(u)))—is subject to the combined effects of both convection
and the intrinsic operator. Taking into account that the right-hand side of the equation
depends on the solution u, on its gradient ∇u, and on the intrinsic operator B, the problem
does not possess a variational structure, so the variational methods are not applicable.
Comprehensive information about variational methods can be found in [3–5].

The key contribution of this work consists of handling the intrinsic operator
B : W1,p(Ω) → W1,p(Ω) within the sub/supersolution method for the Neumann prob-
lem (1). This fact represents a novel development in the field of non-linear elliptic boundary
value problems. Problems involving such an intrinsic operator B have until now been
considered in [6] in the context of Dirichlet boundary condition and for Dirichlet problems
driven by a competing operator in [7]. If the intrinsic operator B is the identity map,
problem (1) reduces to a quasilinear elliptic equation with a convection term. It exhibits full
dependence on the solution and its gradient. For various problems involving convection,
we refer to [8–10]).

In order to study problem (1), we build a non-variational approach based on a
sub,supersolution method adapted to the presence of the intrinsic operator. The method of
sub/supersolution for quasilinear elliptic problems with a Neumann boundary condition
with a convection term has been implemented in [9]. In the case of the Robin boundary
condition, this has been accomplished in [10]. A detailed treatment in the broad sense of the
sub/supersolution method combined with set-valued analysis is developed in [1]. In this
respect, we aim to show that given a subsolution u and a supersolution u, appropriately
defined for problem (1), that satisfy the pointwise order u ≤ u almost everywhere in
Ω, there exists a weak solution u ∈ W1,p(Ω) to problem (1) with the location property
u ≤ u ≤ u almost everywhere in Ω. Notice that the location u ≤ u ≤ u provides a priori
estimates for the weak solution u. The main difficulty to be overcome pertains to how to
handle the intrinsic operator B in the framework of sub/supersolution. We resolve this
difficulty by requiring the invariance of the ordered interval

[u, u] := {u ∈ W1,p(Ω) : u(x) ≤ u(x) ≤ u(x) a.e. in Ω}

with respect to the intrinsic operator B (see hypothesis (H1)). A relevant tool in the proof
of the main result is an auxiliary perturbed problem formulated by means of a truncation
operator and a cut-off function corresponding to the ordered interval [u, u]. The existence
of a weak solution to the auxiliary problem is shown by applying the following abstract
result on the surjectivity of pseudomonotone operators. A systematic presentation of the
theory of monotone and pseudomonotone operators is given in [1,11,12].

Theorem 1 ([1] Theorem 2.99). Let X be a real, reflexive Banach space, and let A : X → X∗ be a
bounded, coercive, and pseudomonotone operator. Then, for every b ∈ X∗, the equation Ax = b has
at least one solution x ∈ X.

Finally, making use of comparison arguments, we show that the solution u ∈ W1,p(Ω)
of the auxiliary problem is, in fact, a solution to the original problem (1), satisfying the
location property u ∈ [u, u].

An example of problem (1) containing the explicit description of an intrinsic operator
that satisfies all the required conditions demonstrates the applicability of our result.
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2. Preliminaries and Hypotheses

The functional space associated to problem (1) with a Neumann boundary condition
is the Sobolev space W1,p(Ω) endowed with the norm

∥u∥ =
(
∥∇u∥p

Lp(Ω)
+ ∥u∥p

Lp(Ω)

) 1
p , (2)

where ∥ · ∥Lp(Ω) denotes the usual norm of the Banach space Lp(Ω). The duality pairing
between W1,p(Ω) and its dual (W1,p(Ω))∗ will be denoted by ⟨·, ·⟩. We refer to [13] for the
background regarding Sobolev spaces.

In the sequel, in order to simplify the presentation, we suppose that N > p; thus, the
Sobolev critical exponent is p∗ = Np

N−p . The case N ≤ p is easier and we omit it.
We first record some important properties of the operator −∆p − µ∆q.

Proposition 1 (see [1] Section 2.3.2). The operator −∆p − µ∆q : W1,p(Ω) → W−1,p′(Ω) with
1 < q < p < +∞ and µ ≥ 0 is continuous, strictly monotone (so pseudomonotone), and satisfies
the (S+)-property; that is, any sequence {un} ⊂ W1,p(Ω) for which un ⇀ u in W1,p(Ω) and

lim sup
n→∞

〈
−∆pun − µ∆qun, un − u

〉
≤ 0 (3)

fulfills un → u in W1,p(Ω).

A solution to problem (1) is understood in the weak sense. Namely, a weak solution to
problem (1) is any u ∈ W1,p(Ω) such that f (x, B(u),∇(B(u)))v ∈ L1(Ω) and∫

Ω
|∇u(x)|p−2∇u(x) · ∇v(x)dx + µ

∫
Ω
|∇u(x)|q−2∇u(x) · ∇v(x)dx +

∫
Ω
|u|p−2uvdx

=
∫

Ω
f (x, B(u),∇(B(u)))vdx

for all v ∈ W1,p(Ω). We introduce the fundamental notions of subsolution and supersolu-
tion for problem (1).

A supersolution to problem (1) is any u ∈ W1,p(Ω) such that f (x, B(u),∇(B(u)))v ∈
L1(Ω) and∫

Ω
|∇u(x)|p−2∇u(x) · ∇v(x)dx + µ

∫
Ω
|∇u(x)|q−2∇u(x) · ∇v(x)dx +

∫
Ω
|u|p−2uvdx

≥
∫

Ω
f (x, B(u),∇(B(u)))vdx

for all v ∈ W1,p(Ω), with v ≥ 0 a.e. in Ω.
A subsolution to problem (1) is any u ∈ W1,p(Ω) such that f (x, B(u),∇(B(u)))v ∈

L1(Ω) and∫
Ω
|∇u(x)|p−2∇u(x) · ∇v(x)dx + µ

∫
Ω
|∇u(x)|q−2∇u(x) · ∇v(x) +

∫
Ω
|u|p−2uvdx

≤
∫

Ω
f (x, B(u),∇(B(u)))vdx

for all v ∈ W1,p(Ω), with v ≥ 0 a.e. in Ω. It is clear that a weak solution u ∈ W1,p(Ω) to
problem (1) is simultaneously a subsolution and supersolution.

For a given real number r ∈]1,+∞[, set r′ :=
r

r − 1
(the Hölder conjugate of r).

We proceed to formulate the assumptions on the Carathéodory function f : Ω ×R×
RN → R and the intrinsic operator B : W1,p(Ω) → W1,p(Ω). We assume that there exist a
subsolution u ∈ W1,p(Ω) and a supersolution u ∈ W1,p(Ω) of problem (1) with u ≤ u a.e.
in Ω for which the following conditions hold:
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(H0)There exist a function σ ∈ Lr′(Ω) with r ∈ ]1, p∗[ and constants a > 0 and β ∈ [0, p
(p∗)′ [

such that

| f (x, s, ξ)| ≤ σ(x) + a|ξ|β for a.e. x ∈ Ω, ∀s ∈ [u(x), u(x)], ∀ξ ∈ RN .

(H1)The map B : W1,p(Ω) → W1,p(Ω) is continuous and fulfils

u ≤ B(v) ≤ u

a.e. in Ω and for all u ≤ v ≤ u almost everywhere.
(H2)There exist positive constants K1 and K2 such that

∥B(u)∥ ≤ K1∥u∥+ K2 a.e., ∀u ∈ W1,p(Ω).

We note that under assumption (H0), the integrals in the definitions of subsolution u
and supersolution u exist. This can be easily checked by means of Hölder’s inequality. We
also point out that under the assumption (H2), the map B is bounded in the sense that it
maps bounded sets into bounded sets.

Consider the Nemytskij type operator N f ,B : [u, u] → (W1,p(Ω))∗ defined with f and
B, as above, by〈

N f ,Bu, v
〉
=

∫
Ω

f (x, B(u),∇(B(u)))vdx, ∀u ∈ [u, u], ∀v ∈ W1,p(Ω).

This is well defined on the ordered interval[u, u] by virtue of hypotheses (H0) and (H1)
and in conjunction with Hölder’s inequality. The properties of various Nemytskij operators
are discussed in [4].

An important tool in our approach is the truncation operator T : W1,p(Ω) → W1,p(Ω)
associated with the ordered interval [u, u], which is defined by

Tu(x) =


u(x) if u(x) > u(x),
u(x) if u(x) ≤ u(x) ≤ u(x),
u(x) if u(x) < u(x)

(4)

almost everywhere in Ω, for all u ∈ W1,p(Ω). On the basis of (4), it is straightforward to
verify that the operator T : W1,p(Ω) → W1,p(Ω) is continuous and bounded in the sense
that it maps bounded sets into bounded sets. Using the maps f and B, we introduce the
composed operator N f ,B : W1,p(Ω) → (W1,p(Ω))∗ by

N f ,B = N f ,B ◦ T. (5)

Explicitly, this is expressed as〈
N f ,Bu, v

〉
=

∫
Ω

f (x, B(Tu),∇(B(Tu)))vdx, ∀u, v ∈ W1,p(Ω).

In addition, we also need the cut-off function π : Ω ×R → R associated with the ordered
interval [u, u], defined as

π(x, s) =


(s − u(x))

β
p−β if s > u(x),

0 if u(x) ≤ s ≤ u(x),

−(u(x)− s)
β

p−β if s < u(x),

(6)

with the constant β in hypothesis (H0). The function π in (6) has the growth

|π(x, s)| ≤ c|s|
β

p−β + ϱ(x) for a.e. x ∈ Ω, all s ∈ R, (7)
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with a constant c > 0 and a function ϱ ∈ L
p∗(p−β)

β (Ω). Furthermore, from (6), we can infer
the estimates ∫

Ω
π(x, u(x))u(x) dx ≥ r1∥u∥

p
p−β

L
p

p−β (Ω)

− r2 for all u ∈ W1,p(Ω) (8)

and∫
Ω
|π(x, u(x))||v(x)| dx ≤ r3∥u∥

β
p−β

L
p

p−β (Ω)

∥v∥
L

p
p−β (Ω)

+ r4∥v∥
L

p
p−β (Ω)

for all u, v ∈ W1,p(Ω), (9)

with positive constants r1, r2, r3, and r4 (for more details, see [9]).
The Nemytskij operator Π : W1,p(Ω) → (W1,p(Ω))∗ corresponding to the function

π : Ω ×R → R in (6) acts as

⟨Π(u), v⟩ =
∫

Ω
π(x, u)vdx, ∀u, v ∈ W1,p(Ω). (10)

Since β < p
(p∗)′ , by (7) and the Rellich–Kondrachov compact embedding theorem, it follows

that the map Π : W1,p(Ω) → (W1,p(Ω))∗ is completely continuous. This is the consequence
of the fact that p∗(p−β)

β > (p∗)′ if, and only if, β < p
(p∗)′ .

3. Perturbed Problem

In order to find a solution to the Neumann problem (1) within the ordered interval
[u, u] determined by a subsolution u and a supersolution u, we perturb problem (1) using
the Nemytskij operator Π : W1,p(Ω) → (W1,p(Ω))∗ corresponding to the cut-off function
π : Ω ×R → R defined in (6), as well as the truncation operator T : W1,p(Ω) → W1,p(Ω)
and a parameter λ > 0. More precisely, we focus on the auxiliary Neumann problem−∆pu − µ∆qu + |u|p−2u + λΠ(u) = N f ,B(u) in Ω,

∂u
∂v

= 0 on ∂Ω.
(11)

Here, Formulae (5) and (10) are utilized. In line with what has been said above, a weak
solution to problem (11) is a function u ∈ W1,p(Ω) such that f (x, B(u),∇(B(u)))v ∈ L1(Ω)
and∫

Ω
|∇u(x)|p−2∇u(x) · ∇v(x)dx + µ

∫
Ω
|∇u(x)|q−2∇u(x) · ∇v(x)dx +

∫
Ω
|u|p−2uvdx

+ λ
∫

Ω
π(x, u)vdx =

∫
Ω

f (x, B(Tu),∇(B(Tu)))vdx

for all v ∈ W1,p(Ω).
Next, we prove that the solvability of problem (11) can be guaranteed, provided that

λ > 0 is sufficiently large.

Theorem 2. Assume that u and u are a subsolution and a supersolution of problem (1), respectively,
with u ≤ u a.e. in Ω such that hypotheses (H0)− (H2) are fulfilled. Then, there exists λ0 > 0
such that for every λ ≥ λ0, there exists a solution to the auxiliary problem (11).

Proof. For each λ > 0, we introduce the non-linear operator Aλ : W1,p(Ω) → (W1,p(Ω))∗,
defined by

Aλ = −∆p − µ∆q + E + λΠ −N f ,B, (12)

where E : W1,p(Ω) → (W1,p(Ω))∗ is defined as

⟨E(u), v⟩ =
∫

Ω
|u|p−2uvdx, ∀u, v ∈ W1,p(Ω).
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It is known from [1] (Lemma 2.111) that the maps −∆p − µ∆q and E are bounded.
Using (9), it readily follows the boundedness of the map Π (see [9]). By hypotheses
(H0)− (H2), we derive the boundedness of the operator N f ,B. Therefore, the operator Aλ

is bounded.
Now, we prove that the non-linear operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ in (12) is

pseudomonotone. To this end, let a sequence {un} ⊂ W1,p(Ω) satisfy

un ⇀ u in W1,p(Ω) (13)

and

lim sup
n→∞

⟨Aλun, un − u⟩ ≤ 0. (14)

We aim to show that

lim inf
n→∞

⟨Aλun, un − v⟩ ≥ ⟨Aλu, u − v⟩, ∀v ∈ W1,p(Ω). (15)

By Hölder’s inequality (13) and Rellich–Kondrachov compact embedding theorem we
obtain ∫

Ω
σ|un − u| dx ≤ ∥σ∥Lr′ (Ω)∥un − u∥Lr(Ω) → 0 as n → +∞ (16)

and ∫
Ω
|un|p−1|un − u| dx ≤ ∥un∥Lp′ (Ω)

∥un − u∥Lp(Ω) → 0 as n → +∞. (17)

Hölder’s inequality implies∫
Ω
|∇(B(Tun))|β|un − u|dx ≤ ∥∇(B(Tun))∥β

Lp(Ω)
∥un − u∥

L
p

p−β (Ω)
.

Taking into account (13), Rellich–Kondrachov compact embedding theorem, and the in-
equality p

p−β < p∗ (thanks to the assumption β < p
(p∗)′ in (H0)), the preceding esti-

mate yields

lim
n→∞

∫
Ω
|∇(B(Tun))|β|un − u| dx = 0. (18)

Through the definition of the truncation operator T : W1,p(Ω) → W1,p(Ω) in (4), combined
with (H0), (H1), (16), and (18), we find that

lim
n→∞

∫
Ω

f (x, B(Tun),∇(B(Tun)))(un − u) dx = 0. (19)

In addition, from (9), the inequality p
p−β < .p∗ and the Rellich=-Kondrachov compact

embedding theorem, we obtain

lim
n→∞

∫
Ω

π(x, un)(un − u) dx = 0. (20)

Gathering (12), (14), (17), (19), and (20), we arrive at (3).
We carry on the proof by referring to the (S+)−property of the operator −∆p − µ∆q

given in Proposition 1, which ensures the strong convergence un → u in W1,p(Ω). In view
of the expression of Aλ in (12), it follows that (15) holds true, whence the operator Aλ is
pseudomonotone.

Now , e claim that operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is coercive; that is,

lim
∥u∥→+∞

⟨Aλu, u⟩
∥u∥ = +∞. (21)
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By virtue of (4), it holds that u ≤ Tu ≤ u a.e. in Ω for every u ∈ W1,p(Ω); whereas by (H1),
we have u ≤ B(Tu) ≤ u a.e. in Ω. Consequently, we are allowed to address hypothesis
(H0) with s = B(Tu)(x) for a.e. x ∈ Ω. Here, the invariance property of the ordered
interval [u, u], as postulated in (H1) for the operator B, is essential in our argument. Then,
(H0), Hölder’s and Young’s inequalities, (H2), the Sobolev embedding theorem, and (2)
enable us to infer for each ε > 0 that∣∣∣∣∫Ω

f (x, B(Tu),∇(B(Tu)))udx
∣∣∣∣ ≤ ∫

Ω

(
σ|u|+ a|∇(B(Tu))|β|u|

)
dx

≤ ∥σ∥Lr′ (Ω)∥u∥Lr(Ω) + ε∥∇(B(Tu))∥p
Lp(Ω)

+ c(ε)∥u∥
p

p−β

L
p

p−β (Ω)

≤ ε(K1∥Tu∥+ K2)
p + c(ε)∥u∥

p
p−β

L
p

p−β (Ω)

+ c0∥u∥

≤ 2p−1Kp
1 ε∥u∥p + c(ε)∥u∥

p
p−β

L
p

p−β (Ω)

+ c0∥u∥+ d(ε), (22)

with positive constants c(ε), d(ε) (depending on ε), and c0.
Then (8), (12), and (22) result in

⟨Aλu, u⟩ ≥ (1 − 2p−1Kp
1 ε)∥u∥p + (λr1 − c(ε))∥u∥

p
p−β

L
p

p−β (Ω)

− d∥u∥ − λr2 − d(ε). (23)

Choose ε < 1
2p−1Kp

1
, and after that, once that ε is fixed, λ > c(ε)

r1
. We see that (23) implies (21)

because p > 1, which amounts to saying that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗

is coercive.
Since the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is bounded, pseudomonotone, and

coercive, we are able to apply Theorem 1, ensuring the existence of u ∈ W1,p(Ω) such
that Aλu = 0. Therefore, u is a (weak) solution to perturbed problem (11), and the proof
is completed.

4. Main Result

We are in a now position to state our main result with respect to the Neumann
problem (P).

Theorem 3. Let a subsolution u and a supersolution u of the Neumann problem (1) be u ≤ u a.e.
in Ω, such that hypotheses (H0)− (H2) are fulfilled. Then, problem (11) possesses a weak solution
u ∈ W1,p(Ω) with u ∈ [u, u].

Proof. By Theorem 2, there exists a solution u ∈ W1,p(Ω) to the perturbed problem (11),
provided that λ > 0 is sufficiently large. We fix such an admissible λ > 0.

We claim that u is a weak solution of the original Neumann problem (1). To prove
this assertion, we use a comparison argument comparing u with the subsolution u and the
supersolution u.

We are going to prove that u ∈ [u, u]. Let us show that u ≤ u a.e. in Ω. To this end, we
act with v = (u − u)+ := max{u − u, 0} ∈ W1,p(Ω) as a test function in the supersolution
u definition of the Neumann problem (1) and in the definition of the weak solution u for
the perturbed problem (11). This gives∫

Ω
|∇u|p−2∇u · ∇(u − u)+dx + µ

∫
Ω
|∇u|q−2∇u · ∇(u − u)+dx +

∫
Ω
|u|p−2u(u − u)+dx

≥
∫

Ω
f (x, B(u),∇(B(u)))(u − u)+dx (24)

and
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∫
Ω
|∇u|p−2∇u · ∇(u − u)+dx + µ

∫
Ω
|∇u|q−2∇u · ∇(u − u)+dx +

∫
Ω
|u|p−2u(u − u)+dx

+ λ
∫

Ω
π(x, u)(u − u)+dx =

∫
Ω

f (x, B(Tu),∇(B(Tu)))(u − u)+dx. (25)

From (24), (25), and (4), and since µ ≥ 0, we derive∫
Ω

(
|∇u|p−2∇u − |∇u|p−2∇u

)
∇(u − u)+ dx

+µ
∫

Ω

(
|∇u|q−2∇u − |∇u|q−2∇u

)
∇(u − u)+ dx

+
∫

Ω

(
|u|p−2u − |u|p−2u

)
(u − u)+ dx + λ

∫
Ω

π(x, u)(u − u)+ dx (26)

≤
∫

Ω
( f (x, B(Tu),∇(B(Tu)))− f (x, B(u),∇(B(u))))(u − u)+ dx

=
∫
{u>u}

( f (x, B(u),∇(B(u)))− f (x, B(u),∇(B(u))))(u − u) dx = 0.

Thanks to the monotonicity under the integrals, we also have∫
Ω

(
|∇u|p−2∇u − |∇u|p−2∇u

)
∇(u − u)+ dx =

∫
{u>u}

(
|∇u|p−2∇u − |∇u|p−2∇u

)
∇(u − u) ≥ 0,

∫
Ω

(
|∇u|q−2∇u − |∇u|q−2∇u

)
∇(u − u)+ dx =

∫
{u>u}

(
|∇u|q−2∇u − |∇u|q−2∇u

)
∇(u − u) ≥ 0,

∫
Ω
(|u|p−2u − |u|p−2u)(u − u)+ dx =

∫
{u>u}

(|u|p−2u − |u|p−2u)(u − u) dx ≥ 0.

Then, according to (6), inequality (26) leads to∫
{u>u}

(u − u)
p

p−β dx =
∫

Ω
π(x, u)(u − u)+ dx ≤ 0,

which confirms that u ≤ u a.e in Ω.
The proof of the inequality u ≤ u a.e. in Ω proceeds along a similar comparison

argument, involving, in this case, the functions u and u. In this way, the enclosure property
u ∈ [u, u] is established.

Now, exploiting the already-shown inclusion u ∈ [u, u], we find from (4) and (6) that
Tu = u and Π(u) = 0. Consequently, the fact that u solves problem (11) indicates that u is
a solution of the original problem (1), which concludes the proof.

5. An Example

Given 1 < q < p < +∞ and µ ≥ 0, we formulate the following problem−∆pu − µ∆qu + |u|p−2u =
(
|h(u)|p−2h(u) + g(h(u))

)(
1 + |h′(u)|β|∇u|β

)
in Ω,

∂u
∂ν

= 0 on ∂Ω,
(27)

with a Lipschitz continuous function h : R → R; a continuous function g : R → R; and a
constant β ∈

[
0, p

(p∗)′

[
. Here, the notation h′ stands for the derivative of h that exists almost

everywhere. We assume that there exist constants c1, c2 ∈ R with 0 < c1 < c2 such that
c1 ≤ h(t) ≤ c2 if c1 ≤ t ≤ c2 and g(h(c1)) = g(h(c2)) = 0.

Set u = c1 and u = c2, which are elements of W1,p(Ω). Let B : W1,p(Ω) → W1,p(Ω)
be defined by Bu = h ◦ u for all u ∈ W1,p(Ω). Since h : R → R is Lipschitz-continuous,
it turns out that h ◦ u ∈ W1,p(Ω) whenever u ∈ W1,p(Ω); so, the map B is well defined
and continuous. If u ∈ W1,p(Ω) satisfies c1 ≤ u ≤ c2 almost everywhere in Ω, we have
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c1 ≤ Bu ≤ c2 a.e. in Ω. Furthermore, from (2) and the chain rule for Sobolev functions, and
since h is Lipschitz-continuous, the derivative h′ is bounded, and we obtain

∥Bu∥ = ∥h ◦ u∥ =
(
∥h′(u)∇u∥p

Lp(Ω)
+ ∥h ◦ u∥p

Lp(Ω)

) 1
p ≤ M(∥u∥+ 1)

for all u ∈ W1,p(Ω), with a constant M > 0.
Define f : R×RN → R by

f (s, ξ) =
(
|s|p−2s + g(s)

)(
1 + |ξ|β

)
for all (s, ξ) ∈ R×RN .

It follows that | f (s, ξ)| ≤ c(1 + |ξ|β) for all s ∈ [c1, c2] and ξ ∈ RN , with a constant c > 0.
The conditions imposed on the functions g and h ensure

cp−1
1 ≤ h(c1)

p−1 = |h(c1)|p−2h(c1) + g(h(c1))

and
cp−1

2 ≥ h(c2)
p−1 = |h(c2)|p−2h(c2) + g(h(c2)).

We deduce that u = c1 is a subsolution and u = c2 is a supersolution for problem (27).
Therefore all the assumptions of Theorem 3 are fulfilled. Accordingly, we can infer that
problem (27) admits at least one positive solution u ∈ W1,p(Ω) that satisfies the a priori
estimate c1 ≤ u(x) ≤ c2 for almost all x ∈ Ω.

Remark 1. Arguing as in [9] (Theorem 5.1), we can strengthen the assumptions, allowing us to
establish the existence of multiple solutions to problem (27).

Remark 2. The central point of our work is to provide a clear result guaranteeing that the method
of sub/supersolution works in the case of a non-linear Neumann problem incorporating an intrinsic
operator, as described in (27). We have demonstrated with our application that Theorem 3 can
be effectively used, and our hypotheses are verifiable. Many other examples of possible intrinsic
operators can be considered. For instance, in the case of a Dirichlet problem, we indicated in [6] two
other examples of relevant intrinsic operators: a truncation operator (for example, the positive part
of a Sobolev function) and the composition of the inverse (−∆p)−1 with a superposition map. These
examples can be adapted to a Neumann problem. Another major example of an intrinsic operator
that we plan to deal with is a convolution product, observing that hypotheses (H0)− (H2) are
consistent with its action.
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