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Abstract: In the presence of Banach spaces, a novel iterative algorithm is presented in this study
using the Chatterjea–Suzuki–C (CSC) condition, and the convergence theorems are established. The
efficacy of the proposed algorithm is discussed analytically and numerically. We explain the solution
of the Caputo fractional differential problem using our main result and then provide the numerical
simulation to validate the results. Moreover, we use MATLAB R (2021a) to compare the obtained
numerical results using the new iterative algorithm with some efficient existing algorithms. The work
seems to contribute to the current advancement of fixed-point approximation iterative techniques in
Banach spaces.
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1. Introduction and Motivation

To approximate the value of a fixed point (a point that does not change under certain
conditions), various iterative algorithms have been introduced over time in the field of
fixed-point theory [1]. Fixed-point theory is a fundamental concept in mathematics with
significant applications. For example, by identifying fixed points [2], researchers can
gain insights into the behavior of iterative algorithms, which are commonly used in logic
programming [3], machine learning [4], and other artificial intelligence applications [5].
This provides a framework for understanding the convergence of these algorithms and
making predictions about their performance. Moreover, fixed-point theory is a crucial
tool for the geometry of figures [6–8] that is important in improving the performance
of modern systems and advancing the field of artificial intelligence by developing and
improving fractal antennas. The speed of convergence is an important factor when choosing
between different iterative algorithms for approximating fixed points. Once the existence
of a fixed point for a given mapping has been established, determining its value becomes
a challenging task. Therefore, some basic iterative algorithms are discussed in [9–11],
and further modifications concerning these fundamental algorithms have been developed
in [12–14]. By studying the literature [9–14], it can be observed that every modified iterative
algorithm has an improved degree of convergence compared to the previous one, and
authors proved their claims with the help of numerical examples. Furthermore, the Banach
contraction principle [15] provides a powerful tool for establishing the existence and
uniqueness of a fixed point, but it does not provide any direct method for computing
a fixed point itself. The Banach contraction theorem refers simply to Picard’s iterative
scheme [10] to find the approximation for the value of a fixed point. Therefore, the role
of iterative methods becomes more significant for this purpose. A related review of the
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literature demonstrates that the novel and generalized classes of Kannan-type contractions
are used to discuss new results in [16–18]. Generalized nonexpansive mappings on Banach
space are also discussed in [19–22]. Moreover, significant results are available in the
literature after extensive study of mappings with the Suzuki (C)-condition. Khatoon and
Uddin [23], Wairojjana [24], and Hasanen [25–27] also presented iterative algorithms in this
respect. More recently, solutions to non-linear problems have been found using iterative
schemes. For instance, an innovative iterative method was presented for determining an
approximate solution of a certain kind of fractional differential equation in [28].

Ullah and Arshad [22] presented the M-Iterative algorithm along with condition (C).
Furthermore, [22] contains a beautiful discussion about why each new iteration process is
preferred over a large class of the existing iterative algorithms. More recently, [29] used the
M-Iterative algorithm defined in [22] along with the Chatterjea–Suzuki–C condition and
established new results related to strong and weak convergence. Hence, according to the
above review of the literature, the following question arises, which is posed and answered
in this research.

Question: Is there any iterative scheme with a better rate of convergence compared to
the algorithm discussed in [29]?

To answer this question, we introduce a new three-step iterative algorithm, the
Z-Iterative algorithm, in this research. To present the efficiency of our proposed algo-
rithm, we plan this article as follows:

In Section 2, we go over the prerequisites and necessary terminology pertaining to
various iterations. Then, in Section 3, we demonstrated strong and weak convergence
results using the Z-iterative approach in the context of uniformly convex Banach spaces.
Using nonexpansive mapping enhanced with the Chatterjea–Suzuki–C condition, this
criterion is demonstrated. Theorems are another way in which these conditions are further
refined and proven. Section 4 offers an application to fractional differential equations. In
light of this, the suggested iteration technique’s Section 5 presents a range of numerical
outcomes by considering various parameter values. This section also compares these
numerical values using a class of existing iterations and the new proposed iteration. Tabular
and graphical illustrations are used to conduct time analysis for the number of iterations.
To demonstrate that the examined scheme is superior to the current ones, we also make a
numerical comparison of the Z-iterative algorithm’s convergence speed with some other
well-known schemes. Section 6 concludes and provides more discussion of these findings
and comparisons. Future directions for this work are also included in the last Section.

2. Preliminaries

Fundamental definitions and theorems that are necessary to demonstrate our new
findings are provided in this section. In the subsequent definitions, ℵ denotes a nonempty
subset of uniformly convex Banach space ℜ.

Definition 1 ([30,31]). A mapping τ : ℵ → ℵ is said to be a contraction if for all elements o, p ∈ ℵ
there exists α in [0, 1) such that

∥ τ(o)− τ(p) ∥≤ α ∥ o − p ∥ .

Definition 2. τ is a nonexpansive mapping over the uniformly convex Banach space ℜ if

∥ τ(o)− τ(p) ∥≤∥ o − p ∥ .

Definition 3. A point s0 ∈ ℵ is a fixed point of mapping τ if

s0 = τ(s0).

We denote the set of such fixed points of τ by Fτ .
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Definition 4. A mapping τ : ℵ → ℵ is said to be endowed with a condition (C) (or Suzuki
mapping) if the following inequality holds

1
2
∥ e − τ(e) ∥≤∥ e − y ∥⇒∥ τ(e)− τ(y) ∥≤∥ e − y ∥ . (1)

Definition 5. A mapping τ : ℵ → ℵ is said to satisfy Chatterjea–Suzuki–C condition if it satisfies
the following inclusion:

1
2
∥ e − τ(e) ∥≤∥ e − y ∥⇒∥ τ(e)− τ(y) ∥≤ 1

2
(∥ e − τ(y) ∥ + ∥ e − τ(y) ∥). (2)

Definition 6 ([32]). A mapping τ defined on a subset ℵ of a Banach space is a contraction on the
uniformly convex Banach space if and only if there is a function

ς : h̄ → h̄; ς(0) = 0, ς(u) > 0; ∀u ∈ [0, ∞)− {0}

such that

∥ e − τ(e) ∥≥ ς(d(e, Fτ)), (3)

where h̄ = [0, ∞) and e ∈ ℵ , ς(d(e, Fτ)) is the distance between o and Fτ .

Definition 7. Suppose ℵ ̸= ∅ is a closed and convex subset of ℜ. If {am} ⊆ ℜ is a bounded set,
then the following mapping is called the asymptotic radius of {am} corresponding to ℵ,

ς(ℵ, {am}) = inf{lim sup
m→∞

∥ am − a ∥ : a ∈ ℵ}.

Similarly, asymptotic center of sequence {am} corresponding to ℵ is defined by

A(ℵ, {am}) = {a ∈ ℵ : lim sup
m→∞

∥ am − a ∥ = ς(ℵ, {am})}.

Definition 8 ([33]). Opial’s condition holds in a Banach space ℜ if and only if a sequence
{am} ⊆ ℜ in ℜ converges in the weak sense to a0 ∈ ℵ, and

lim
n→∞

sup ∥ am − a0 ∥ < lim
m→∞

sup ∥ am − b ∥; ∀b ∈ ℜ− {a0}.

Remark 1 ([34]). If ℜ is a uniformly convex Banach space, then the set A(ℵ, {am}) contains one
element. Moreover, if ℵ is weakly convex and compact then A(ℵ, {am}) is a convex set. More
details can be seen in [35,36].

Proposition 1. For a nonempty closed subset ℵ of a Banach space, we have the following results in
the presence of self-mapping τ : ℵ → ℵ
(a) If τ is enhanced with Chatterjea–Suzuki–C condition and Fτ ̸= ∅ then

∥ τ(x)− a ∥≤∥ x − a ∥ ∀x ∈ ℵanda ∈ Fτ . (4)

(b) If τ is enhanced with the condition of Chatterjea–Suzuki–C, then Fτ is closed. Moreover, if ℜ is
strictly convex and ℵ is convex, then Fℵ is also convex.

(c) If τ is enhanced with the condition namely Chatterjea–Suzuki–C, then for any x, y ∈ ℵ.

∥ x − τ(y) ∥≤ 5 ∥ x − τ(x) ∥ + ∥ x − y ∥ .

(d) If τ is enhanced with Chatterjea–Suzuki–C condition, {am} is weakly convergent to a, and

lim
m→∞

∥ τ(am)− am ∥= 0
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then a ∈ Fτ provided that ℜ satisfies Opial’s condition.

The subsequent result is initiated by [37].

Lemma 1. For a real number e ≥ 0, consider {am} and {bm} in ℜ satisfying

lim
m→∞

sup ∥ am ∥ ≤ e,

lim
m→∞

sup ∥ bm ∥ ≤ e,

and

lim
m→∞

∥ (1 − km)am + kmbm ∥ = e; 0 < km < 1

then

lim
m→∞

sup ∥ am − bm ∥ = 0.

Iterative Algorithms

The most simple and basic among the existing iterative algorithms is the Picard [10]
iterative algorithm defined by am+1 = τ(am), which is commonly used to find approxi-
mations. In the following paragraph, we enlist some more advanced and recent iterative
algorithms that are used and compared with our new iteration in this study. Moreover,
σm, βm and γm denote sequences in (0, 1) for the following iteration schemes.

Agarwal et al. [12] defined the iterative algorithm as given by,
a1 ∈ ℵ
bm = (1 − σm)am + σmτ(am)

am+1 = (1 − βm)(am) + βmτ(bm)

am+1 = τ(bm).

(5)

Abbas and Nazir [13] defined the iterative algorithm as given by,
a1 ∈ ℵ
cm = (1 − σm)am + σmτ(am)

bm = (1 − βm)τ(am) + βmτ(cm)

am+1 = (1 − γm)τ(bm) + γmτ(cm).

(6)

Thakur et al. [14] defined the iterative algorithm as given by,
a1 ∈ ℵ
cm = (1 − σm)am + σmτ(am)

bm = (1 − βm)τ(cm) + βmτ(am)

am+1 = (1 − γm)τ(cm) + γmτ(bm).

(7)

M-iterative algorithm is defined in [22] (see, also [29])
a1 ∈ ℵ
cm = (1 − σm)am + σmτ(am)

bm = τ(cm)

am+1 = τ(bm).

(8)
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3. Main Results

In this section, we propose our new iterative algorithm and name it the Z-iterative
algorithm, defined as follows

a1 ∈ ℵ
cm = τ((1 − σm)am + σmτ(am))

bm = τ((1 − βm)cm + βmτ(cm))

am+1 = τ(bm),

(9)

where σm , βm are sequences in (0, 1). The main results are obtained using (9), which
demonstrates the efficiency of our proposed algorithm.

Lemma 2. Let ℜ be a uniformly convex Banach space and ℵ be a nonempty closed convex subset of
ℜ. Suppose τ : ℵ → ℵ is enhanced with the condition of Chatterjea–Suzuki–C along with Fτ ̸= ∅.
Moreover, if the sequence {am} is as defined in Equation (9) then limm→∞ ∥ am − r0 ∥ holds true
for each r0 ∈ Fτ .

Proof. Let r0 be an arbitrary element in Fτ then because of Proposition 1 (a), we obtain

∥ τ(x)− r0 ∥≤∥ x − r0 ∥ . (10)

Next, using the algorithm (9), we have

∥ cm − r0 ∥ = ∥ τ((1 − σm)am + σmτ(am))− r0 ∥ .

Then, making use of (10), we obtain

∥ cm − r0 ∥ ≤ ∥ (1 − σm)am + σmτ(am)− r0 ∥
≤ ∥ (1 − σm)am + σmr0 − σmr0 + σmτ(am)− r0 ∥
≤ ∥ (1 − σm)am − r0(1 − σm)− σmr0 + σmτ(am) ∥
≤ ∥ (1 − σm)(am − r0) + σm(τ(am)− r0) ∥

∥ cm − r0 ∥ ≤ (1 − σm) ∥ am − r0 ∥ +σm ∥ τ(am)− r0 ∥ . (11)

Now, using Chatterjea–Suzuki–C condition with τ(r0) = r0, we have

∥ τ(am)− r0 ∥ ≤ 1
2
(∥ am − τ(r0) ∥ + ∥ r0 − τ(am) ∥)

≤ 1
2
(∥ am + r0 − r0 − τ(r0) ∥ + ∥ r0 + am − am − τ(am) ∥)

≤ 1
2
(∥ (am − r0) + (r0 − τ(r0) ∥ + ∥ (r0 − am) + (am − τ(am)) ∥)

≤ 1
2
(∥ (am − r0) ∥ + ∥ (r0 − τ(r0) ∥ + ∥ (r0 − am) ∥ + ∥ (am − τ(am)) ∥)

≤ 1
2
(∥ (am − r0) ∥ + ∥ (am − r0) ∥ + ∥ τ(r0 − r0) ∥ + ∥ (τ(am − am)) ∥)

≤ 1
2
(2 ∥ (am − r0) ∥ + ∥ (r0 − r0) ∥ + ∥ (am − am) ∥)

≤ 1
2
(2 ∥ am − r0 ∥)

∥ τ(am)− r0 ∥ ≤ ∥ am − r0 ∥ .
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Using the above inequality in (11), we obtain

∥ cm − r0 ∥ ≤ (1 − σm) ∥ am − r0 ∥ +σ ∥ am − r0 ∥
≤ ∥ am − r0 ∥ (1 − σm + σm)

∥ cm − r0 ∥ ≤ ∥ am − r0 ∥ . (12)

Next, we have

∥ bm − r0 ∥ = ∥ τ((1 − βm)cm + βmτ(cm))− r0 ∥
≤ ∥ (1 − βm)cm + βmτ(cm)− r0 ∥
≤ ∥ (1 − βm)cm + βmr0 − βmr0 + βmτ(cm)− r0 ∥
≤ ∥ (1 − βm)(cm − r0) + βm(τ(cm))− r0 ∥)
≤ (1 − βm) ∥ cm − r0 ∥ +βm ∥ τ(cm)− r0 ∥ . (13)

By using Chatterjea–Suzuki–C condition with τ(r0) = r0, we obtain

∥ τ(cm)− r0 ∥ ≤ 1
2
(∥ cm − τ(r0) ∥ + ∥ r0 − τ(cm) ∥)

≤ 1
2
(∥ cm + r0 − r0 − τ(r0) ∥ + ∥ r0 + cm − cm − τ(cm) ∥)

≤ 1
2
(2 ∥ (cm − r0) ∥ + ∥ (r0 − r0) ∥ + ∥ (cm − cm) ∥)

≤ 1
2
(2 ∥ cm − r0 ∥)

≤ ∥ cm − r0 ∥ .

Next, by combining it with (13), we obtain

∥ bm − r0 ∥ ≤ (1 − βm) ∥ cm − r0 ∥ +βm ∥ cm − r0 ∥
≤ ∥ cm − r0 ∥ (1 − βm + βm)

∥ bm − r0 ∥ ≤ ∥ cm − r0 ∥ . (14)

Hence, we obtain

∥ am+1 − r0 ∥ = ∥ τ(bm)− r0 ∥≤∥ bm − r0 ∥ (15)

and using (14), we can write

∥ am+1 − r0 ∥ ≤ ∥ bm − r0 ∥≤∥ cm − r0 ∥ . (16)

Continuing in this way, from (12), (14), and (16), we conclude that

∥ am+1 − r0 ∥ ≤ ∥ bm − r0 ∥≤∥ cm − r0 ∥≤∥ am − r0 ∥,

which implies that

∥ am+1 − r0 ∥ ≤ ∥ am − r0 ∥ .

This shows that ∥ am − r0 ∥ is decreasing and bounded for each r0 ∈ Fτ . Hence,
limm→∞ ∥ am − r0 ∥ exists.

Theorem 1. Let ℜ,ℵ, τ, Fτ and {am} be the same as in Lemma 2, then Fτ ̸= ∅ if and only if the
sequence {am} is bounded and limm→∞ ∥ am − τ(am) ∥ = 0.
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Proof. Consider Fτ ̸= ∅ then from Lemma 2, we infer that limm→∞ ∥ am − r0 ∥ exists and
{am} is bounded. Assume that

lim
m→∞

∥ am − r0 ∥ = e (17)

and we want to show that
lim

m→∞
∥ am − r0 ∥ = 0.

Therefore, from (12), we have

∥ cm − r0 ∥≤∥ am − r0 ∥,

which implies that

lim
m→∞

sup ∥ cm − r0 ∥≤ lim
m→∞

sup ∥ am − r0 ∥

and combining it with (17), we obtain

lim
m→∞

sup ∥ cm − r0 ∥≤ lim
m→∞

sup ∥ am − r0 ∥≤ e. (18)

Since r0 ∈ Fτ , therefore using Proposition 1 (a), we obtain

∥ τ(am)− r0 ∥≤∥ am − r0 ∥,

which implies that

lim
m→∞

sup ∥ τ(am)− r0 ∥≤ lim
m→∞

sup ∥ am − r0 ∥≤ e. (19)

Then, using (16), we have

∥ am+1 − r0 ∥ ≤ ∥ cm − r0 ∥,

and combining it with (17), we obtain

e ≤ lim
m→∞

inf ∥ cm − r0 ∥ . (20)

Next, using (18) and (20), we obtain

lim
m→∞

∥ cm − r0 ∥= e.

Moreover,

e ≤ lim
m→∞

∥ cm − r0 ∥

= lim
m→∞

∥ τ((1 − σm)am + στ(am))− r0 ∥

≤ lim
m→∞

∥ (1 − σm)am + στ(am)− r0 ∥

≤ lim
m→∞

∥ (1 − σm)am + σmr0 − σmr0 + στ(am)− r0 ∥

≤ lim
m→∞

∥ (1 − σm)am − r0(1 − σm)− σmr0 + σmτ(am) ∥

≤ lim
m→∞

∥ (1 − σm)(am − r0) + σm(τ(am)− r0) ∥

≤ lim
m→∞

(1 − σm) ∥ am − r0 ∥ +σ ∥ τ(am)− r0 ∥

≤ lim
m→∞

(1 − σm) ∥ am − r0 ∥ +σ ∥ am − r0 ∥

≤ lim
m→∞

∥ am − r0 ∥ (1 − σm + σm)

e ≤ lim
m→∞

∥ am − r0 ∥
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Hence,

lim
m→∞

∥ (1 − σm)(am − r0) + σ(τ(am)− r0) ∥= e. (21)

Then using (17), (19), and (21) along with Lemma 1, we obtain

lim
m→∞

∥ am − r0 − τ(am) + r0 ∥= 0

lim
m→∞

∥ am − τ(am) ∥= 0.

Conversely, let {am} is bounded with

lim
m→∞

∥ am − τ(am) ∥= 0,

here we will show that Fτ ̸= ∅. Let r0 ∈ A(ℵ, {am}), then using definition (7)

A(τ(r0), {am}) = lim
m→∞

sup ∥ am − τr0 ∥

and using Proposition 1 (c), we obtain

≤ 5 lim
m→∞

sup ∥ am − τ(am) ∥ + ∥ am − r0 ∥

≤ 5 lim
m→∞

sup ∥ am − τ(am) ∥ + lim
m→∞

sup ∥ am − r0 ∥

≤ lim
m→∞

sup ∥ am − r0 ∥

= A(r0, {sm}).

Hence, τ(r0) ∈ A(ℵ, {am}). Since A(ℵ, {am}) contains singleton point, so r0 ∈ Fτ ,
i.e., Fτ ̸= ∅ and τ(r0) = r0.

Theorem 2. Suppose ℜ, Fτ , τ and {am} are the same as in Lemma 2 and ℵ is a weakly compact
and convex subset of ℜ then {am} has week convergence to a point in Fτ in the presence of ℜ with
the condition of Opial.

Proof. Lemma 2, implies that limm→∞ ∥ am − r0 ∥ exists and we want to show that {am}
has a unique weak subsequential limit in Fτ . Since ℵ is weakly compact, let a0 and a′0 be the
subsequential limits of subsequences {amt} and {ams} of {am}, respectively. By Theorem 1,
we have

lim
t→∞

∥ amt − τ(amt) ∥= 0; a0 ∈ Fτ

and

lim
s→∞

∥ ams − τ(ams) ∥= 0; a′0 ∈ Fτ .

At this step, we aim to show the uniqueness. Therefore, if a0 ̸= a′0 then by Opial’s condition,
we have

lim
m→∞

∥ am − a0 ∥ = lim
t→∞

∥ amt − a0 ∥< lim
t→∞

∥ amt − a′0 ∥

= lim
m→∞

∥ am − a′0 ∥= lim
m→∞

∥ ams − a′0 ∥

< lim
s→∞

∥ ams − a0 ∥= lim
m→∞

∥ am − a0 ∥,

which shows that
lim

m→∞
∥ am − a0 ∥< lim

m→∞
∥ am − a0 ∥ .
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This is not possible and leads to a contradiction. Hence, {am} converges weakly to a point
in Fτ .

Theorem 3. Suppose ℜ, Fτ , τ and {am} are the same as in Lemma 2 as well as ℵ is a weakly
compact and convex subset of ℜ then {am} converges strongly to a point in Fτ .

Proof. By Theorem (1), we have

lim
m→∞

∥ am − τ(am) ∥= 0,

and since ℵ is compact and {am} ∈ ℵ, so {am} has a subsequence {amt} for some z0 ∈ ℵ
such that

lim
t→∞

∥ amt − z0 ∥= 0.

Furthermore, because of Proposition 1 (c), we have

∥ amt − z0 ∥≤ 5 ∥ amt − τ(amt) ∥ + ∥ amt − z0 ∥,

which shows that amt → τ(z0) as t → ∞. This implies that τ(z0) = z0 i-e z0 ∈ Fτ and
limm→∞ ∥ am − a0 ∥ exists by Lemma 2. Hence {am} converges strongly to z0 ∈ Fτ .

Lemma 3. The sequence {am} has strong convergence to a point in Fτ with limm→∞ inf d(am, Fτ) = 0,
where ℜ,ℵ, Fτ, τ and {am} are assumed to have the same properties as in Lemma 2.

Proof. For all r0 ∈ Fτ , Lemma (2) suggests the existence of

lim
m→∞

∥ am − r0 ∥

and by assumption, it follows that

lim
m→∞

dist(am, Fτ) = 0.

According to Proposition 1 (b), the set Fτ is indeed closed in ℵ and then the remaining proof
closely follows from the proof of ([36], Theorem 2) and can be omitted.

This leads us to suggest another strong convergence theorem that does not require
assuming the compactness of the domain. This is an exciting advancement that expands
the applicability of the theorem.

Theorem 4. Let ℜ,ℵ, Fτ , τ and {am} be the same as in Lemma 2, then {am} converges strongly to
a point in Fτ whenever τ is a contraction on the uniformly convex Banach space.

Proof. From Theorem 1, we have

lim
m→∞

inf(am, Fam) = 0,

which implies that
lim

m→∞
inf(am, Fτ) = 0.

The successful proof of all the assumptions in Theorem 4 confirms that the sequence
essentially converges strongly in Fτ . This is a significant result that demonstrates the
reliability and effectiveness of the method.



Axioms 2024, 13, 502 10 of 18

4. Application to Caputo Fractional Differential Equation

This century has dealt with the extensive study of fractional differential equations
(FDEs) due to their interesting and important applications in different areas of science.
For example, fractional differential equations have been used in the modeling of complex
phenomena, such as fractals, anomalous diffusion, and non-local interactions. Its applica-
tions have also been found in finance, biology, image processing, etc. Overall, fractional
differential equations have proven to be a powerful tool in the modeling and analysis of
complex systems in various fields.

Different types of fractional derivatives are used in the literature according to the
model of the problem. We use Caputo-type fractional derivatives generally defined by

Dη φ(t) =
1

Γ(r − η)

∫ t

0
(t − s)r−η−1 φ(r)(s)ds,

where φ(t), t > 0 is a real valued function, η > 0 is the order of Caputo-type fractional
derivative, r is an integer, η ∈ (r − 1, r) and Dη φ(t) = CDη

0,t φ(t). New fixed-point results
are obtained using non-linear operators in [38], and functional-integral equations are solved
in [39,40]. Hence, many problems are challenging to solve using analytical techniques.
However, it is still possible to solve them by finding an approximation value through
alternative methods. Some researchers have used fixed-point techniques for nonexpansive
operators to solve fractional differential equations. For example, see [41].

Let Dη represent the Caputo fractional derivative of order η endowed with ω :
[0, 1]×R → R then we apply the Z-iterative algorithm (9) under the Chatterjea–Suzuki–C
for the following fractional differential equation{

Dη f (l) + ω(l, f (l)) = 0; 0 ≤ l ≤ 1, 1 < η < 2
f (0) = f (1) = 0.

(22)

Let ℑ be a collection of continuous functions that map the interval [1, 2] to R. The usual
maximum norm is used to determine the size of the functions in ℑ. The respective Green’s
function associated with the fractional differential Equation (22) is defined by

A(l, s) =


1

Γ(η) (l(1 − s)(η−1) − (l − s)(η−1)); 0 ≤ s ≤ l ≤ 1
(l(1−s)(η−1))

Γ(η) ; 0 ≤ l ≤ s ≤ 1
(23)

Now we proceed to formulate and prove the following theorem.

Theorem 5. Consider an operator τ : C[0, 1] → C[0, 1] defined by

τ( f (l)) =
∫ 1

0
A(l, s)ω(s, f (s))ds; ∀ f (l) ∈ C[0, 1].

If the following inclusion holds

|ω(s, f (s))− ω(s, g(s))| ≤ 1
2
(| f (s)− τ(g(s))|+ |g(s)− τ( f (s))|

then Z-iterative algorithm (9) approaches some solutions S of the fractional differential Equation (22)
in case limn→∞ inf d(an, S) = 0.

Proof. Since an element f of ℑ is the solution of the fractional differential Equation (22) if
and only if it is also the solution to the subsequent equation [29],

f (l) =
∫ 1

0
A(l, s)ω(s, f (s))ds.
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Now, for any f , g ∈ ℑ and 0 ≤ l ≤ 1, it follows that

∥τ f (l)− τg(l)∥ ≤ |
∫ 1

0
A(l, s)ω(s, f (s))ds −

∫ 1

0
A(l, s)ω(s, g(s))ds|

≤
∫ 1

0
A(l, s)|ω(s, f (s))− ω(s, g(s))|ds

≤
∫ 1

0
A(l, s)(

1
2
| f (s)− τ(g(s))|+ 1

2
|g(s)− τ( f (s))|)ds

≤ (
1
2
∥ f (s)− τ(g(s))∥+ 1

2
∥g(s)− τ( f (s))∥)(

∫ 1

0
A(l, s)ds)

≤ 1
2
∥ f (s)− τ(g(s))∥+ 1

2
∥g(s)− τ( f (s))∥

=
1
2
(∥ f (s)− τ(g(s))∥+ ∥g(s)− τ( f (s))∥).

Consequently, we obtain

∥τ( f )− τ(g)∥ ≤ 1
2
(∥ f − τ(g)∥+ ∥g − τ( f )∥).

Thus, τ meets the Chatterjea–Suzuki–C requirement. Based on Lemma 3, the sequence
produced by (9) approaches a stationary point of the mapping τ. This point is the solution
to the given fractional differential equation.

5. Numerical Simulation

In this section, we analyze that the convergence speed of the Z-iterative algorithm is better
than the modern algorithms discussed in [12–14,29] with the help of a numerical example.

Example 1. Let ℵ = [7, 13] be endowed with usual norm ∥.∥ and let τ : ℵ → ℵ be a function
defined by

τ(e) =
(

7 i f e = 13
e+7

2 , elsewhere

)
,

we will show that the following conditions hold:

1. Fτ ̸= ∅.
2. τ does not satisfy condition (C).
3. τ satisfies condition Chatterjea–Suzuki–C .

Proof. We discuss the above conditions one by one as follows:

1. Since Fτ = {7}, implies that τ possesses a single fixed point, and Fτ ̸= ∅.
2. If we take e = 11 and y = 12 then τ does not satisfies condition (C).
3. To prove the Chatterjea–Suzuki–C condition, we have 4 cases:

(Case-1) If e = 13 = y then, ∥τ(e)− τ(y)∥ = 0. Hence,

1
2
(∥(e − τ(y)∥+ ∥y − τ(e)∥) ≥ 0 = ∥τ(e)− τ(y)∥.

(Case-2) If 7 ≤ e, y ≤ 13 then, ∥τ(e)− τ(y)∥ = ∥ e−y
2 ∥.

Hence,
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1
2
(∥(e − τ(y)∥+ ∥y − τ(e)∥) = ∥

e − ( y+7
2 )

2
∥+ ∥

y − ( e+7
2 )

2
∥

≥ ∥
(e − ( y+7

2 ))− (y − ( e+7
2 ))

2
∥

= ∥3e − 3y
4

∥

≥ ∥ e − y
2

∥ = ∥τ(e)− τ(y)∥.

(Case-3) If e = 13, 7 ≤ y < 13 then, ∥τ(e)− τ(y)∥ = ∥ y−7
2 ∥.

Hence,

1
2
(∥(e − τ(y)∥+ ∥y − τ(e)∥) = ∥

e − ( y+7
2 )

2
∥+ ∥y − 7

2
∥

≥ ∥y − 7
2

∥ = ∥τ(e)− τ(y)∥.

(Case-4) If y = 13, 7 ≤ e < 13 then, ∥τ(e)− τ(y)∥ = ∥ e−7
2 ∥.

Hence,

1
2
(∥(e − τ(y)∥+ ∥y − τ(e)∥) = ∥ e − 7

2
∥+ ∥

y − ( e+7
2 )

2
∥

≥ ∥ e − 7
2

∥ = ∥τ(e)− τ(y)∥.

Hence, from the above cases (1–4), part (3) of Example 1 is proved.

We choose σm = 1 − 6n
(7n+5)2 , βm = 1 − 1

(n+7)2 , and γm = 1 − 2n
(9n+8)2 with initial

point (7.5) and generate the following Table 1 of the values by performing 30 iterations. We
analyze that Agarwal et al. iterative algorithm [35] converges at the 29th iteration while
Abbas and Nazir [13] and M [22] iterative algorithms need 19 and 18 iterations, respectively.
It is significant to remark that our proposed new algorithm converges to the solution at
the 11th iteration, which is a noticeable improvement. However, the M-Iterative algorithm
has already been proven efficient over the others [22,29]. The main purpose is now to
compare the Z-iterative algorithm and the M-Iterative algorithm. We continue in this way
by changing the choice of sequences and initial guesses to obtain numerical values in
Tables 2 and 3. Figures 1 and 2 validate our results.

Table 1. Numeric outcomes of different iterative algorithms with an initial guess (7.5).

n Z-Iterative Algorithm M-Iteration [22] Abbas and Nazir [13] Agarwal et al. [35]

1 7.500000000000000 7.500000000000000 7.500000000000000 7.500000000000000

2 7.015655895074208 7.062501507040895 7.063055266033983 7.125247148819911

3 7.000489920215704 7.007812726243000 7.007939333106386 7.031354890441289

4 7.000015325339965 7.000976592259887 7.000998266519663 7.007846573196534

5 7.000000479276985 7.000122074107349 7.000125392389422 7.001963118312863

6 7.000000014986078 7.000015259267889 7.000015738891011 7.000491063737875

7 7.000000000468528 7.000001907408786 7.000001974395973 7.000122821832627

8 7.000000000014647 7.000000238426120 7.000000247574630 7.000030716651000
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Table 1. Cont.

n Z-Iterative Algorithm M-Iteration [22] Abbas and Nazir [13] Agarwal et al. [35]

9 7.000000000000458 7.000000029803267 7.000000031033345 7.000007681438493

10 7.000000000000014 7.000000003725408 7.000000003888928 7.000001920828534

11 7.000000000000000 7.000000000465675 7.000000000487228 7.000000480304887

12 7.000000000000000 7.000000000058209 7.000000000061030 7.000000120096814

13 7.000000000000000 7.000000000007276 7.000000000007643 7.000000030028581

14 7.000000000000000 7.000000000000909 7.000000000000957 7.000000007508084

15 7.000000000000000 7.000000000000114 7.000000000000120 7.000000001877224

16 7.000000000000000 7.000000000000014 7.000000000000015 7.000000000469351

17 7.000000000000000 7.000000000000002 7.000000000000002 7.000000000117347

18 7.000000000000000 7.000000000000000 7.000000000000001 7.000000000029339

19 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000007335

21 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000001833

22 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000458

23 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000115

25 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000001833

26 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000028

27 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000007

28 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000002

29 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000000

30 7.000000000000000 7.000000000000000 7.000000000000000 7.000000000000000

Table 2. σm = 1 −
√

n
(n+5)2 , βm =

√
n

(6n+5)n , and γm = 1 −
√

n
(n3+6)6 .

Algorithms Number of Iterations
Initial Point (9) Initial Point (9.5)

Agarwal et al. [35] 52 53

Abbas and Nazir [13] 27 26

Thakur et al. [14] 26 24

M-Iterative Algorithm [22] 17 16

Z-Iterative Algorithm 13 14

By considering the sequences σm = 1 −
√

n
(n+5)2 , βm =

√
n

(6n+5)n , and γm = 1 −
√

n
(n3+6)6 ,

a significant improvement of the results can be observed between our proposed iterative
algorithm and Agarwal et al. iterative algorithm that needs 52 iterations as compared to
13. It is interesting to note that by changing the initial guess from 9 to 9.5, each of the
listed algorithms needs one more iteration see Figure 1. Furthermore, by considering the

sequences σm =
√

n2+2
(n2+n+3) , βm =

√
n+3

(2n+6) , and γm =
√

n+2
(n2+3) , a significant improvement

of the results can be observed between our proposed iterative algorithm and Agarwal et al.
iterative algorithm that needs 54 iterations as compared to 11. It is interesting to note that
by changing the initial guess from 10 to 10.5, miscellaneous variation in the number of
iterations for each of the listed algorithms can be seen in Figure 2.
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Figure 1. Comparison of Z-iterative algorithm with other iterative algorithms with initial point (9)
and (9.5).

Table 3. σm =
√

n2+2
(n2+n+3) , βm =

√
n+3

(2n+6) , and γm =
√

n+2
(n2+3) .

Algorithms Number of Iterations
Initial Point (10) Initial Point (10.5)

Agarwal et al. [35] 54 53

Abbas and Nazir [13] 22 23

Thakur et al. [14] 21 22

M-Iterative Algorithm [22] 16 17

Z-Iterative Algorithm 11 12

Figure 2. Comparison of Z-iterative algorithm with other iterative algorithms with initial point (10)
and (10.5).

From the graphical comparison between the Z-iterative algorithm and another existing
algorithm, one can observe the fast convergence of the Z-iterative algorithm as demon-
strated in Figures 1 and 2, respectively. This faster convergence is a significant advantage
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of the Z-iterative algorithm, as it allows us to reach the desired solution more quickly
and efficiently.

6. Conclusions and Further Discussions

The iterative Z-Algorithm that includes operators enhanced with the Chatterjea–Suzuki–C
condition is examined in this study. It shows that, under the right circumstances on the
operator or the domain, this technique converges both weakly and strongly to a fixed point
of a mapping equipped with the Chatterjea–Suzuki–C condition. Furthermore, we use
operators enhanced with the Chatterjea–Suzuki–C condition to solve a fractional differ-
ential equation. Furthermore, some tables and graphs are presented to demonstrate the
Z-iterative scheme’s higher accuracy in comparison to other existing schemes [12,13,29].
Let us discuss the advantages of our proposed iterative scheme:

1. Compared to other schemes in the literature, our approach demonstrates superior
convergence to a fixed point. This means that it reaches a stable solution more
efficiently and effectively.

2. Our proposed iterative scheme stands out by utilizing two scalar sequences σm, βm
instead of three. This unique approach leads to better convergence in comparison
with various other iterative techniques described in the literature.

3. The proposed iterative scheme has been proven to be stable when it comes to initial
points and sequences of scalars. This stability is demonstrated by the data presented
in tabular and graphical forms, which clearly shows the consistent and reliable perfor-
mance of the scheme.
In light of the above discussion, we further compared it with the Mann Iterative
algorithm ([9]) in Figure 3.

Figure 3. Comparison between Z-iterative algorithm (ZIA) and Mann iterative Algorithm [9].

Similarly, we compare with Ishikawa iterative algorithm [11] in Figure 4

Figure 4. Comparison between Z-iterative algorithm (ZIA) and Ishikawa iterative Algorithm [11].

And so forth, the efficiency of our proposed algorithm is vital in comparison to the
existing, well-known algorithms (Figures 5–7) .
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Figure 5. Further comparison between the Z-iterative algorithm (ZIA) and Agarwal iterative Algorithm.

Figure 6. Further comparison between the Z-iterative algorithm (ZIA) and Abbas iterative Algorithm.

Figure 7. Further comparison between the Z-iterative algorithm (ZIA) and M-Iterative Algorithm.

As a result, a decision must be made between various iteration methodologies, with
crucial factors taken into account. For example, simplicity and convergence speed are
the two most important elements in determining whether the iteration strategy is more
effective than others. In cases like this, the following problems will unavoidably arise:
Which iteration strategy accelerates convergence among these? This article demonstrates
that our proposed iteration scheme converges faster than the present modern iteration
schemes. For our future work, we can enhance the results using more generalized (C)-
conditions [42]. It may help to improve the convergence rate of our proposed iteration.
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