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Abstract: Since the early 21st century, within fuzzy mathematics, there has been a stream of research
in the field of option pricing that introduces vagueness in the parameters governing the movement of
the underlying asset price through fuzzy numbers (FNs). This approach is commonly known as fuzzy
random option pricing (FROP). In discrete time, most contributions use the binomial groundwork
with up-and-down moves proposed by Cox, Ross, and Rubinstein (CRR), which introduces epistemic
uncertainty associated with volatility through FNs. Thus, the present work falls within this stream of
literature and contributes to the literature in three ways. First, analytical developments allow for the
introduction of uncertainty with intuitionistic fuzzy numbers (IFNs), which are a generalization of
FNs. Therefore, we can introduce bipolar uncertainty in parameter modelling. Second, a methodology
is proposed that allows for adjusting the volatility with which the option is valued through an
IFN. This approach is based on the existing developments in the literature on adjusting statistical
parameters with possibility distributions via historical data. Third, we introduce into the debate on
fuzzy random binomial option pricing the analytical framework that should be used in modelling
upwards and downwards moves. In this sense, binomial modelling is usually employed to value
path-dependent options that cannot be directly evaluated with the Black–Scholes–Merton (BSM)
model. Thus, one way to assess the suitability of binomial moves for valuing a particular option
is to approximate the results of the BSM in a European option with the same characteristics as the
option of interest. In this study, we compared the moves proposed by Renddleman and Bartter (RB)
with CRR. We have observed that, depending on the moneyness degree of the option and, without a
doubt, on options traded at the money, RB modelling offers greater convergence to BSM prices than
does CRR modelling.

Keywords: intuitionistic fuzzy numbers; probability–possibility transformation; fuzzy binomial
option pricing; zero-coupon bond options; binomial up-and-down modelling

MSC: 62A88; 91G20; 91G30

1. Introduction

The Black–Scholes–Merton (BSM) model for valuing European options [1,2] has been
one of the fundamental pillars of financial economics since the late 20th century [3]. The
approach used to determine the BSM formula, which is based on the no-arbitrage argument,
allows the valuation of not only options but also any asset containing some form of
optionality, using a few parameters that are relatively easy to estimate because they do not
depend on subjective risk perception. Thus, option pricing theory enables pricing not only
for a great deal of derivative assets but also for some embedded rights, such as convertibility
rights and early amortization in bonds or financial assets such as life insurance or mortgage
loans [3]. It also allows for the valuation of companies [1] or investment projects using real
options theory [3].

However, while the BSM philosophy allows for the valuation of a wide range of
economic rights, continuous-time option valuation models do not allow for the evaluation
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of the majority of path-dependent options. This encompasses American options, several
types of exotic options, or flexibilities associated with real options [4]. Thus, one of the main
derivations of the BSM is the binomial approximation, also called the two-state model [4],
where up-and-down moves are instantaneous, which is equivalent to the BSM formula [5].
Therefore, the use of a binomial methodology in valuing path-dependent options allows
the application of the philosophy and assumptions underlying the BSM [5].

The so-called binomial approximation is not a single model but comprises a great
deal of up-and-down binomial moves modelling. The most widely used and well-known
method is the one proposed by Cox, Ross, and Rubinstein [6] (CRR hereafter), although
there are many more approximations. In this regard, we can mention the ones simultane-
ously published by Rendleman and Bartter [7] (RB hereafter) or [8,9]. In fact, [5] identified
up to 11 possible variants of the binomial method.

Conventional option valuation models assume that the parameters governing vari-
ations in underlying asset prices are crisp values. However, in practical situations, there
is often imprecision and/or vagueness regarding their values. For example, the historical
volatility of the underlying asset must be estimated through sample values; thus, a more
comprehensive but also imprecise estimation requires at least the use of confidence interval
estimations associated with a significance level [10]. In the case of real options, parameters
such as the exercise price or even its date may be imprecisely estimated by the evaluator
or manager [11,12]. Thus, at the beginning of the 21st century, a trend in fuzzy mathe-
matics emerged, which we can label fuzzy random option pricing (FROP). A considerable
number of studies have modelled uncertainty in valuation parameters through possibility
distributions [13]. These works are based on conventional option valuation frameworks,
such as the BSM or the binomial method, which introduce the vagueness of parameters
governing movements of the underlying asset through fuzzy subsets [13]. In most cases,
the type of fuzzy subset used is the type-1 fuzzy number, which is typically triangular or
trapezoidal [12,13] and should be considered an epistemic fuzzy set [14].

FROP development spans both discrete and continuous periods. Over time, contribu-
tions within the BSM framework have been particularly numerous [10,11,15–21]. However,
FROP has utilized possibility distributions to model the parameter uncertainty of other
price variation models, such as multivariate Brownian geometric models [22] or Levy
processes [23,24].

Discrete-time developments have mainly focused on extending the binomial model
to price options for stocks [25–30] and real options [31–34]. In these papers, all binomial
models shape the up-and-down moves with the analytical groundwork of the CRR without
considering any of the numerous alternatives provided in the literature. However, there is
no reason not to choose any other binomial model from those mentioned earlier, such as
the RB model [31]. Likewise, to the best of our knowledge, modelling vagueness over the
value of parameters governing the movement of the underlying asset price is performed
through fuzzy numbers, which are typically linear [13]. An exception to this assertion is
the intuitionistic triangular extension to CRR [35], which uses soft set parameters to model
CRR. Notably, a significant number of FROP binomial extensions consider volatility to be
the main source of uncertainty [22,26,36].

The reflections outlined in the preceding paragraphs lead to the development of the
present work, in which we extend the two-state model of option valuation to estimate the
parameters governing underlying assets quantified by intuitionistic fuzzy numbers (IFNs),
with particular emphasis on volatility. This study introduces the following novelties to the
FROP literature:

1. We model uncertainty via IFNs, which generalize FNs, in an option pricing context.
Introducing parameter quantification with IFNs allows for the incorporation of bipolar
information; that is, capturing values that can actually take the parameter, as well
as those that are definitely not [37]. It should not be understood that IFNs introduce
more uncertainty in parameter estimation but rather introduce new information [38].
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Although intuitionistic fuzzy uncertainty has been considered in some studies [39–43],
it is quite residual and absent in fuzzy binomial modelling.

2. We propose a methodology that allows for the adjustment of the volatility necessary to
value the option as an IFN using the historical volatility approach [4] and the concept
of coherent probability–possibility transformation [44]. This focus has been adopted
to fit fuzzy number parameters in an FROP setting to price stock options [10], in a real
options setting [45], and in the field of valuation of interest-sensitive instruments [46].

3. We contribute to FROP in a binomial setting by critically proposing the modelling of
up-and-down moves in the valuation of the path-dependent option under assessment.
We compared the commonly used fuzzy literature CRR with the alternative of Rendle-
man and Bartter [7]. In this sense, given that the use of the binomial model is justified
by its convergence to the BSM, the evaluation of binomial models is carried out by
comparing the proximity of their calculated price with the BSM in a European option
with the same characteristics as those intended to be evaluated [47].

The paper is organized as follows. The following section presents the analytical
foundations of fuzzy mathematics used in this paper and proposes an intuitionistic fuzzy
estimate of option volatility on the basis of the concept of historical volatility. In the
Section 3, intuitionistic expressions of the BSM and binomial option prices are developed.
Fourth, we evaluated the modelling of binomial up-and-down moves with CRR and RB in
an intuitionistic fuzzy setting. We assume that volatility is a unique uncertain parameter.
To test up-and-down moves, we used historical data from the IBEX-35 Futures Index, which
is the reference index for the most traded options on stocks in the Spanish derivatives
financial market.

2. Intuitionistic Fuzzy Estimates of Statistical Parameters and Intuitionistic Fuzzy
Number Arithmetic
2.1. Fuzzy Numbers, Intuitionistic Fuzzy Numbers, and Distance between Intuitionistic
Fuzzy Numbers

Definition 1. A fuzzy set in a universe of discourse X,
∼
A, is

∼
A = {⟨x, µA(x)⟩, x ∈ X}, where

µA : X −→ [0, 1] is the so-called membership function [48]. Conversely,
∼
A can be represented

through level sets or α-cuts: Aα:Aα = {x|µA(x) ≥ α, α ∈ (0, 1]}.

Definition 2. A fuzzy number (FN),
∼
A, is a fuzzy subset of a real line. It is normal

(i.e., ∃x|µA(x) = 1)) or convex (i.e., ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1 + (1 − λ)x2) ≥
min(µA(x1), µA(x2))) [49]. Therefore, the level sets of

∼
A and Aα are confidence intervals:

Aα = {x|µA(x) ≥ α,α ∈ (0, 1]} =
[
Aα, Aα

]
, (1)

where Aα increases with α and where Aα decreases with respect to α.

Remark 1. A fuzzy number
∼
A is also known as a possibility distribution, and µA(x) is known as

the possibility distribution function.

Definition 3. The intuitionistic fuzzy set (IFS)
∼
A

I
in the universe of discourse X is

∼
A

I
=

{⟨x, µA(x), vA(x)⟩, x ∈ X}, where µA : X −→ [0, 1] is the membership value of x in
∼
A

I
and

where vA : X −→ [0, 1] is the nonmembership value. The following relation holds: 0 ≤ µA(x) +
vA(x) ≤ 1 [50].

Remark 2. The degree of hesitancy of
∼
A

I
, hA(x), is hA(x) = 1 − µA(x)− vA(x). Note that an

IFS generalizes the concept of an FS such that if hA(x) = 0 ∀x,
∼
A

I
is a conventional FS

∼
A.
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Definition 4. An intuitionistic fuzzy number (IFN)
∼
A

I
is an IFS defined on real numbers such

that [51]:
(i) is normal, ∃x|µA(x) = 1 ⇒ vA(x) = hA(x) = 0.
(ii) µA(x) is convex, which implies that ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1 + (1 − λ)x2) ≥

min(µA(x1), µA(x2)), and vA(x) are concave; that is, ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, vA(λx1+
(1 − λ)x2) ≤ max(vA(x1), vA(x2)).

Remark 3. An IFN
∼
A

I
can be represented throughout its level sets or ⟨α, β⟩-cuts, A⟨α,β⟩, as:

A⟨α,β⟩ = ⟨Aα =
[
Aα, Aα

]
, A′

β =
[

A′
β, A′

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)⟩. (2)

where Aα and A′
β increase with respect to α and β, respectively. Similarly, Aα and A′

β

decrease with respect to these arguments.

Remark 4. In an IFN, µA(x) is the lower possibility distribution function of
∼
A

I
, and µ∗

A(x) = 1−

vA(x) is its upper distribution function [52]. Consequently, the α-cut representation of
∼
A
∗
, A∗

α and
the β-cut representation in (2), A′

β, accomplishes that for β = 1 − α, A′
1−α = A∗

α, i.e.,[
A′

1−α, A′
1−α

]
=

[
A∗

α, A∗
α

]
(3)

Thus, µ*
A(x) and µA(x) can be interpreted as bipolar measurements of the reliability

of A as x [38]. Thus, µ*
A(x) quantifies for x the potential possibility and µA(x) its real

possibility. Figure 1 shows the shape of an intuitionistic triangular fuzzy number.
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Definition 5. The expected value of an intuitionistic fuzzy number, EV(
∼
A

I
), can be defined via (2)

and (3) as follows [53]:

EV(
∼
A

I
) =

1
2

1∫
0

f (α)
(

Aα + Aα + A′
1−α + A′

1−α

)
dα. (4)

where f (α) is a function that satisfies f (0) = 0 and
∫ 1

0 f (α)dα = 0.5. Therefore, we consider in
this paper f (α) = α.

Definition 6. Let there be two IFNs:
∼
A

I
and

∼
B

I
. The distance between these IFNs is defined by (2)

and (3) as follows [54]:
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D(
∼
A

I
,
∼
B

I
) =

1
2

1∫
0

f (α)
[(

Aα − Bα

)2
+

(
Aα − Bα

)2
+

(
A′

1−α − B′
1−α

)2
+

(
A′

1−α − B′
1−α

)2
]

dα. (5)

where f (α) is the same function as in (4).

Note that (4) and (5) can be implemented by using any of the numerical approximations
to integral calculations existing in the literature, such as Simpson’s rule.

2.2. Fitting Statistical Parameters with Intuitionistic Fuzzy Numbers

Fuzzy numbers are frequently employed in fuzzy mathematics to represent the epis-
temic uncertainty of parameters and play an analogous role to random variables in proba-
bility theory [38]. Consequently, several studies have investigated the equivalence between
fuzzy numbers and random variables with the aim of facilitating consistent ways to trans-
form random variables into possibility distribution functions [44,55,56].

Definition 7. From a random variable A and a family of confidence intervals Aα such that

P(x ∈ Aα) ≥ 1 − α, where P(·) is a probability measure, we can induce an equivalent FN
∼
A whose

α-cut representation Aαis [55]:

Aα =
[
Aα, Aα

]
=

[{
x
∣∣∣P(A ≤ x) =

α

2

}
,
{

x
∣∣∣P(A ≤ x) = 1 − α

2

}]
. (6)

Thus, the membership function of the fuzzy number
∼
A equivalent to A is as follows:

µA(x) = sup{α|x ∈ Aα}. (7)

This analytical connection between random variables and possibility distributions
has led several authors to propose adjusting statistical parameters, such as the mean or
variance, with fuzzy numbers that are built up by overlaying sample confidence intervals
from the lowest to the highest level of significance [57–61]. Therefore, we define:

Definition 8. Let (i) be a sample of independent and identically distributed random variables with
an unknown parameter θ that allows its interval estimate to be obtained with a significance level
(1 − α)%,

[
θ(α), θ(α)

]
. (ii) be a monotonic function g(γ, α) : (0, 1] →

[ γ
2 , 0.5

]
, γ ∈ (0, 1) . Then,

from
[
θ(α), θ(α)

]
, we can induce a fuzzy number estimate for θ, γ

∼
θ whose α-cuts are [59]:

γθα =
[

γθα, γθα

]
=

[
θ(2g(γ, α)), θ(2g(γ, α))

]
. (8)

The function g(·) transforms the significance level of the probabilistic confidence
interval to a possibilistic membership degree.

Remark 5. According to [59], the parameter γ determines the width of the support of γ
∼
θ . The

determination of γ to encompass all potential values considered in γ
∼
θ can be interpreted through

the application of the 95% and 99.7% rules, which are commonly employed in finance and business
modelling [62]. A 95% value (implying a significance level of 5%) covers typical scenarios, incorpo-
rating those that are reasonable but not entirely extreme. Conversely, the utilization of significance
levels γ close to 0, such as 0.3% (i.e., the 99.7% rule), assumes virtually all conceivable scenarios in

support of γ
∼
θ .

Remark 6. In this study, the function g(γ, α) is defined as a linear function [59]:

g(γ, α) =

(
1
2
− γ

2

)
α +

γ

2
. (9)
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Definition 9. Let be a sample with n observations and a sample variance σ̂2(standard deviation σ̂).

For variance σ2, we can build a possibilistic estimate γ∼σ
2

whose membership function is [59]:

µγσ2(x) =


2−γ
1−γ − 2

1−γ F
(
(n−1)σ̂2

x

)
(n−1)σ̂2

χ2
n−1; 2−γ

2

≤ x ≤ (n−1)σ̂2

M

2
1−γ F

(
(n−1)σ̂2

x

)
− γ

1−γ
(n−1)σ̂2

M ≤ x ≤ (n−1)σ̂2

χ2
n−1; γ2

,
(10)

where F(·) is the distribution function of a Chi-squared distribution with n − 1 degrees
of freedom; χ2

n−1;(·) is its inverse for a probability level (·); and M is the median of the

Chi-squared distribution. Therefore, the α-levels of γ∼σ
2

and γσ2
α are as follows:

γσ2
α =

[
γσ2

α, γσ2
α

]
=

 (n − 1)σ̂2

χ2
n−1; 2−γ

2 −( 1
2−

γ
2 )α

,
(n − 1)σ̂2

χ2
n−1;( 1

2−
γ
2 )α+

γ
2

. (11)

Remark 7. Therefore, for the standard deviation, σ, the possibility distribution function estimate, γ∼σ ,
can be obtained by performing µγσ (x) = µγσ2

(
x2); thus, the α-cuts γσα are as follows:

γσα =
[

γσα, γσα

]
=


√√√√ (n − 1)σ̂2

χ2
n−1; 2−γ

2 −( 1
2−

γ
2 )α

,

√√√√ (n − 1)σ̂2

χ2
n−1;( 1

2−
γ
2 )α+

γ
2

. (12)

Definition 10. Let us suppose a sample of a random variable with an associated unknown parame-
ter θ that allows us to obtain an interval estimate

[
θ(α), θ(α)

]
with a significance level of (1 − α)%.

Therefore, we can adjust an intuitionistic estimate
∼
θ

I
by fitting its lower distribution function via

(8) and (9) γ, (γ
∼
θ ), that is, µθ(x) = µγθ (x), and its upper distribution function with γ∗ ≤ γ in

(7), (γ∗∼
θ ), that is, µ∗

θ (x) = µγ∗ θ (x). Therefore, for
∼
θ

I
, we can state that:

µ∗
θ (x) = µγ∗ θ (x) and so υθ(x) = 1 − µγ∗ θ (x). (13)

Thus, θ⟨α,β⟩ = ⟨θα =
[
θα, θα

]
, θ′β =

[
θ′β, θ′β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)⟩, where:

θα = γθα =
[

γθα, γθα

]
=

[
θ(2h(γ, α)), θ(2h(γ, α))

]
, (14)

θ′β = γ∗
θ1−β =

[
γ∗

θ1−β , γ∗
θ1−β

]
=

[
θ(2h(γ∗, 1 − β)), θ(2h(γ∗, 1 − β))

]
(15)

Remark 8. Note that the proposed approach utilizes, on the one hand, the transformation of
confidence intervals for statistical parameters into possibility distributions. On the other hand, an
IFN can be delimited through two possibility distributions: a lower distribution, which gathers the
values of the parameters of interest considered real according to the available evidence, and an upper
distribution, which gathers the potential values of the parameters [38].

Definition 11. Let be a sample with n observations and sample variance σ̂2. From Definition

10, we can fit intuitionistic variance
∼
σ

I2
by adjusting γ∼σ

2
and γ∗∼

σ
2
. From (13), we can define a

possibilistic estimate,
∼
σ

I2
= {⟨x, µσ2(x), vσ2(x)⟩, x ∈ X}, where:

µσ2(x) = µγσ2 (x), µ∗
σ2(x) = µγ∗σ2 (x) and vσ2(x) = 1 − µ∗

σ2(x). (16)
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Therefore, the level set representation
∼
σ

I2
can be denoted as σ2

⟨α,β⟩ = ⟨σ2
α =

[
σ2

α , σ2
α

]
,

σ2′
β =

[
σ2′

β , σ2′
β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)⟩, where by using (11), (14), and (15):

σ2
α = γσ2

α =
[

γσ2
α, γσ2

α

]
=

 (n − 1)σ̂2

χ2
n−1; 2−γ

2 −( 1
2−

γ
2 )α

,
(n − 1)σ̂2

χ2
n−1;( 1

2−
γ
2 )α+

γ
2

. (17)

σ2′
β =

[
γ∗

σ
2
1−β, γ∗

σ
2
1−β

]
=

 (n − 1)σ̂2

χ2
n−1; 2−γ∗

2 −( 1
2−

γ∗
2 )(1−β)

,
(n − 1)σ̂2

χ2
n−1;( 1

2−
γ∗
2 )(1−β)+ γ∗

2

. (18)

Remark 9. Therefore, for the standard deviation σ, we can fit an IFN
∼
σ

I
obtained by perform-

ing µσ(x) = µσ2
(

x2) and υσ(x) = υσ2
(

x2). Therefore, the ⟨α, β⟩-cuts σ⟨α,β⟩ = ⟨σα =
[
σα, σα

]
,

σ′
β =

[
σ′

β, σ′
β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)⟩ are:

σα =

[√
σ2′

α ,
√

σ2′
α

]
=

[√
γσ2

α,
√

γσ2
α

]
and σ′

β =

[√
σ2′

β ,
√

σ2′
β

]
=

[√
γ∗

σ
2
α,
√

γ∗
σ

2
α

]
. (19)

Numerical application 1. The empirical applications developed in this section are based on
the daily average values of the IBEX35 Futures Index, which serves as the underlying asset
for most liquid stock options in the Spanish derivative market. This numerical analysis uses
daily data from 11 August 2022, to 27 January 2023, comprising 121 observations. Figure 2
illustrates the evolution of the index throughout the specified period and the corresponding
logarithmic returns.
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The volatility of the index requires a predefined time horizon that varies over time. In
this example, we adjust an IFN for volatility over calculation horizons of n = 60 observations
and n = 120 observations as of 27 January 2023. That is, we calculate the 60-day and 120-day
volatility recorded on 27 January 2023.

The annualized 60-day volatility of the index is 9.806%. Thus, for a significance level
of γ = 5% (i.e., with the 95% rule), we obtain a membership function for the annualized
standard deviation 0.05∼σ , whose shape starts from (16) and Remark 5.

µ0.05σ (x) =


1.95
0.95 − 2

0.95 F
(

59·0.098062

x2

)
0.08312 ≤ x ≤ 0.09806

2
0.95 F

(
59·0.098062

x2

)
− 0.05

0.95 0.09806 ≤ x ≤ 0.11958
.
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Therefore, the α-cuts (12) are:

0.05σα =
[

0.05σα, 0.05σ2
α

]
=

√√√√ 59·0.098062

χ2
59;0.975− 0.95

2 α

,

√√√√ 59·0.098062

χ2
59; 0.95

2 α+0.025

.

We can construct an intuitionistic estimate for the volatility
∼
σ

I
of the index in the period of

interest on the basis of 0.05∼σ and adjust an upper possibility distribution whose support is
set by the 99.7% rule in (16) and (19); that is, by stating γ* = 0.3% and using 0.003∼σ to state
the nonmembership function. Thus, µσ(x) = µ0.05σ (x):

µσ(x) =


1.95
0.95 − 2

0.95 F
(

59·0.098062

x2

)
0.08312 ≤ x ≤ 0.09806

2
0.95 F

(
59·0.098062

x2

)
− 0.05

0.95 0.09806 ≤ x ≤ 0.11958
.

From (16) and (19), µ*
σ(x) = µ0.003σ (x):

µ*
σ(x) =


1.997
0.997 − 2

0.997 F
(

59·0.098062

x2

)
0.07668 ≤ x ≤ 0.09806

2
0.997 F

(
59·0.098062

x2

)
− 0.003

0.997 0.09806 ≤ x ≤ 0.13338
.

In such a way, the nonmembership of
∼
σ

I
is νσ(x) = 1 − µ∗

σ(x):

νσ(x) =


2

0.997 F
(

59·0.098062

x2

)
− 1

0.997 0.07668 ≤ x ≤ 0.09806
1

0.997 − 2
0.997 F

(
59·0.098062

x2

)
0.09806 ≤ x ≤ 0.13338

Similarly, σ⟨α,β⟩ = ⟨σα =
[
σα, σα

]
, σ′

β =
[
σ′

β, σ′
β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)⟩, where:

σα = γσα =
[

γσα, γσα

]
=

√√√√ 59·0.098062

χ2
59;0.975− 0.95

2 α

,

√√√√ 59·0.098062

χ2
59; 0.95

2 α+0.025

,

and,

σ′
β =

[
γ*

σ1−β, γ*
σ1−β

]
=

√√√√ 59·0.098062

χ2
59;0.9985− 0.997

2 (1−β)

,

√√√√ 59·0.098062

χ2
59; 0.997

2 (1−β)+0.0015

.

Figure 3 shows the shape of the possibilistic estimates of the annualized volatility for
the last 60 days of the IBEX-35 Futures Index on 27 January 2023, 0.05∼σ and 0.003∼σ , and the
IFN developed above.

On the other hand, the annualized 120-day volatility of the IBEX-35 Futures index
is 13.908%. Thus, analogous to the 60-day volatility, we can construct an intuitionistic

estimate for the 120-day volatility
∼
σ

I
of the index in the period of interest on the basis of

0.05∼σ and 0.003∼σ . Thus, µσ(x) = µ0.05σ (x):

µ0.05σ (x) = µσ(x) =


1.95
0.95 − 2

0.95 F
(

119·0.139082

x2

)
0.12343 ≤ x ≤ 0.13908

2
0.95 F

(
119·0.139082

x2

)
− 0.05

0.95 0.13908 ≤ x ≤ 0.15931
.
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From (16) and (19), µ*
σ(x) = µ0.003σ (x):

µ∗
σ(x) =


1.997
0.997 − 2

0.997 F
(

119·0.139082

x2

)
0.11635 ≤ x ≤ 0.13908

2
0.997 F

(
119·0.139082

x2

)
− 0.003

0.997 0.13908 ≤ x ≤ 0.17995
.

In such a way, the nonmembership of
∼
σ

I
is νσ(x) = 1 − µ∗

σ(x):

νσ(x) =


2

0.997 F
(

119·0.139082

x2

)
− 1

0.997 0.07668 ≤ x ≤ 0.09806
1

0.997 − 2
0.997 F

(
119·0.139082

x2

)
0.09806 ≤ x ≤ 0.13338

Similarly, σ⟨α,β⟩ = ⟨σα =
[
σα, σα

]
, σ′

β =
[
σ′

β, σ′
β

]
, 0 ≤ α+ β ≤ 1,α, β ∈ (0, 1)⟩, where:

σα = γσα =
[

γσα, γσα

]
=

√√√√ 119·0.139082

χ2
119;0.975− 0.95

2 α

,

√√√√ 119·0.139082

χ2
119; 0.95

2 α+0.025

,

and,

σ′
β =

[
γ*

σ1−β, γ*
σ1−β

]
=

√√√√ 119·0.139082

χ2
119;0.9985− 0.997

2 (1−β)

,

√√√√ 119·0.139082

χ2
119; 0.997

2 (1−β)+0.0015

.

Regarding the obtained results, the following points need to be clarified:

• To determine historical volatility, the desired time horizon (e.g., 30 days, 60 days) must
be specified. The choice of horizon will determine the core of the IFN that quantifies
volatility.

• The time horizon for volatility affects the breadth of the membership and nonmem-
bership functions: a shorter time horizon implies fewer observations for calculating
volatility and broader confidence intervals (17) and (18).

• The percentiles used to set the upper and lower possibility functions determine their
breadth. The percentiles associated with lower probabilities result in narrower mem-
bership and nonmembership functions. For example, using 90% rules for the lower
possibility function and 95% for the upper possibility function would result in nar-
rower ⟨α, β⟩-cuts.
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2.3. Intuitionistic Fuzzy Number Arithmetic

We are now interested in evaluating continuous and differentiable functions

y = f (x1, x2, . . . , xn) such that the values of the arguments are estimated by IFNs
∼
A

I

(i),

i = 1, 2, . . . , n. Thus, f (·) generates an IFN
∼
B

I
,
∼
B

I
= f

(∼
A

I

(1),
∼
A

I

(2), . . . ,
∼
A

I

(n)

)
. The member-

ship and nonmembership functions of
∼
B

I
can be obtained via the generalization of Zadeh’s

extension principle [63]:

µB(y) = max
y= f (x1,x2,...,xn)

min
{

µA(1)
(x1), µA(2)

(x2), . . . , µA(n)
(xn)

}
, (20)

vB(y) = min
y= f (x1,x2,...,xn)

max
{

vA(1)
(x1), vA(2)

(x2), . . . , vA(n)
(xn)

}
. (21)

Therefore, if
∼
A

I

(i), i = 1, 2, . . . , n are simply fuzzy numbers
∼
A(i), the result is also a fuzzy

number
∼
B whose shape only depends on µB(y) in (20).

The compatibility of Zadeh’s extension with the α-cut arithmetic can also be extended
to the evaluation of f (·). Thus, to obtain B⟨α,β⟩ from A(i)⟨α,β⟩ , i = 1, 2, . . . , n, we must
implement:

B⟨α,β⟩ = f
(

A(1)⟨α,β⟩, A(2)⟨α,β⟩, . . . , A(n)⟨α,β⟩

)
, (22)

Thus, given that f is supposed to be continuous, B⟨α,β⟩ can be represented as

B⟨α,β⟩ = ⟨Bα =
[
Bα, Bα

]
, B′

β =
[

B′
β, B′

β

]
, 0 ≤ α+ β ≤ 1,α, β ∈ [0, 1]⟩,

where for i = 1,2,. . .,n:

Bα = inf
{

y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, Bα = sup

{
y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, (23)

B′
β = inf

{
y
∣∣∣y = f (x1, . . . , xn), xi ∈ A′

(i)β

}
, B′

β = sup
{

y
∣∣∣y = f (x1, . . . , xn), xi ∈ A′

(i)β

}
. (24)

If f (·) increases with respect to xi, i = 1, 2, . . . m and decreases in xi, i = m + 1, m +
2, . . . , n, m ≤ n, we obtain [64]:

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)α

, . . . , A(n)α

)
, (25)

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)α

, . . . , A(n)α

)
. (26)

and thus, by induction, for B′
β =

[
B′

β, B′
β

]
:

B′
β = f

(
A′

(1)β
, A′

(2)β
, . . . , A′

(m)β
, A′

(m+1)β
, . . . , A′

(n)β

)
, (27)

B′
β = f

(
A′

(1)β
, A′

(2)β
, . . . , A′

(m)β
, A(m+1)β

, . . . , A(n)β

)
. (28)

In the case where we evaluate f (·) in the fuzzy numbers
∼
A(i), i = 1,2,. . .,n, the α-cuts of the

result,
∼
B, are simply Bα = f

(
A(1)α

, . . . , A(n)α

)
, which can be fitted with (23), (25), and (26)

when f (·) is a monotonic function.
In this regard, alternatives exist for directly computing (22)–(28) to reduce the compu-

tation time. For example, using piecewise linear approximations can significantly reduce
computational overhead.
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3. An Extension Black–Scholes–Merton and Binomial Option Pricing Model for the Use
of Intuitionistic Fuzzy Parameters
3.1. Pricing European Options with the Black–Scholes–Merton Model and Intuitionistic
Fuzzy Parameters

Let be a call European option for an asset with price S, strike price K, and volatility
σ that can be exercised in T years. The BSM formula [1,2] for the price of a call option,
C(S, K, r, σ, T), for the free risk rate r is

C(S, K, r, σ, T) = SΦ

 ln
(

S
K

)
+

(
r + σ2

2

)
T

σ
√

T

− e−rTKΦ

 ln
(

S
K

)
+

(
r − σ2

2

)
T

σ
√

T

, (29)

where Φ(·) is the cumulative standard Gaussian function.
In the case of a European put option, the price is also a function of S, K, r, σ, and T

such that

P(S, K, r, σ, T) = e−rTKΦ

−
ln
(

S
K

)
+

(
r − σ2

2

)
T

σ
√

T

− SΦ

−
ln
(

S
K

)
+

(
r + σ2

2

)
T

σ
√

T

. (30)

Note that in the case of options on future contracts, Black [65] demonstrates that prices (29)
and (30) are obtained by evaluating them at r = 0.

A mainstream research field within the FROP literature is located within the BSM
framework. Within these applications, we outline the following settings:

1. Analytical aspects include computing prices (29)–(30) with possibility distribu-
tions [16,66,67].

2. The immunization measures derived from formulas (29)–(30), so-called ‘the Greeks’,
are computed and analysed when data are given fuzzy numbers [10,68–70].

3. The most relevant parameter is computed, at least for options on financial assets
traded in organized markets, which is volatility. Studies include both computing
historical volatility [10] and calculating implied volatility [19–21,67,71].

4. A fuzzy BSM formula is used for corporate and real option pricing [11,15,72,73].

Obviously, the parameters that should be subject to fuzzification depend on the
context in which optionality is embedded. In options for stocks traded in exchange markets,
parameters that may be vague include the price of the underlying asset, the risk-free interest
rate, and volatility. In contrast, exercise price and expiration are crisp parameters because
they are standardized contracts [12]. However, in the valuation of real options, a common
situation is that the exercise price or expiration date are parameters whose knowledge is
not precise [11,12,72].

Without loss of generality, we assume that all the variables used to evaluate (29)

and (30) S, K, r, σ, and T are given by IFNs
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
, and

∼
T

I
, respectively. With the

exception of
∼
r

I
, the remaining IFNs were defined strictly in R+. Therefore, (29) induces

an intuitionistic fuzzy price for a call option
∼
C

I
= C (

∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
,
∼
T

I
) whose level sets

are obtained by evaluating C⟨α,β⟩ = C(S⟨α,β⟩ , K⟨α,β⟩ , r⟨α,β⟩ , σ⟨α,β⟩ , T⟨α,β⟩ ). Therefore, by
considering that ∂C

∂S ≥ 0, ∂C
∂K ≤ 0, ∂C

∂r ≥ 0, ∂C
∂σ ≥ 0 and ∂C

∂T ≥ 0 [3] and applying rules
(25)–(28) in (29)

Cα =
[
Cα, Cα

]
=

[
C
(
Sα, Kα, rα, σα, Tα

)
, C

(
Sα , Kα, rα , σα, Tα

)]
, (31)

and

C′
β =

[
C′

β, C′
β

]
=

[
C
(

S′
β, K′

β, r′β, σ′
β, T′

β

)
, C

(
S′

β , K′
β, r′β , σ′

β, T′
β

)]
. (32)
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Similarly, in the case of put options, we can induce an intuitionistic fuzzy price
∼
P

I
=

P (
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
,
∼
T

I
) whose level sets are obtained by evaluating P⟨α,β⟩ = P(S⟨α,β⟩ , K⟨α,β⟩ ,

r⟨α,β⟩ , σ⟨α,β⟩ , T⟨α,β⟩). To do so, we must apply rules (22)–(28) in (30) by considering
∂P
∂S ≤ 0, ∂P

∂K ≥ 0, ∂P
∂r ≤ 0, and ∂C

∂σ ≥ 0 [3]. Therefore, we obtain the following for
Pα =

[
Pα, Pα

]
:

Pα = minimum P
(
Sα, Kα, rα , σα, T

)
, subject to : Tα ≤ T ≤ Tα , (33)

Pα = maximum P
(

Sα, Kα, rα, σα, T
)
, subject to : Tα ≤ T ≤ Tα, (34)

and P′
β =

[
P′

β, P′
β

]
considering:

P′
β = minimum P

(
S′

β, K′
β, r′β , σ′

β, T
)

, subject to : T′
β ≤ T ≤ T′

β , (35)

P′
β = maximum P

(
S′

β, K′
β, r′β, σ′

β, T
)

, subject to : T′
β ≤ T ≤ T′

β. (36)

3.2. Pricing European Options with a Binomial Model and Intuitionistic Fuzzy Parameters

The origin of the binomial option pricing model can be traced back to the nearly
simultaneous publication of Cox et al. [6] and Rendleman and Bartter [7]. In the binomial
framework, variation in stock prices occurs in discrete time, and there are only two possible
moves, which are growth (up) and decline (down). In both CRR and RB, as well as in their
multiple variants, movements of the prices of the underlying asset are multiplicative, and
both these movements and the risk-neutral probabilities depend on the volatility of the
underlying asset and the risk-free rate [5,9].

Thus, we symbolize the upwards growth rate of the underlying asset as u(r, σ) > 1 and
the downwards rate as d(r, σ), where 0 < d(r, σ) < 1. Similarly, we denote the risk-neutral
probability of the upwards movement as πu(r, σ) and the associated probability of the
downwards movement as πd(r, σ) = 1 − πu(r, σ). Table 1 shows the models analysed in
our work. The first is the most commonly used method in practice and is unanimously
considered in the fuzzy literature; we call this the CRR [6]. The alternative tested in this
paper is [7], which we call the RB. Note that both cases can be unified into a general
formulation of up-and-down moves, u(a, r, σ) = ea·σ

√
h and d(b, r, σ) = e−b·σ

√
h. Therefore,

while in the case of CRR a = b = 1, for the RB, it can be checked that a =
(
r − σ2/2

)
h+σ

√
h

and b = −
(
r − σ2/2

)
h + σ

√
h.

Table 1. Models of binomial up-and-down moves used in this paper.

CRR [6] RB [7]

u(r, σ) eσ
√

h e(r−σ2/2)h+σ
√

h

d(r, σ) e−σ
√

h e(r−σ2/2)h−σ
√

h

pu(r, σ) erh−e−σ
√

h

eσ
√

h−e−σ
√

h
eσ2h/2−e−σ

√
h

eσ
√

h−e−σ
√

h

pd(r, σ) eσ
√

h−erh

eσ
√

h−e−σ
√

h
eσ

√
h−eσ2h/2

eσ
√

h−e−σ
√

h

In any binomial model, maturity T is divided into n periods of duration h years such
that T = n·h. Then, the price of a European call option is

Cb(S, K, r, σ, n, h) = e−r·n·h
n

∑
j=0

(
n
j

)
πu(r, σ)jπd(r, σ)n−jmax{Su(r, σ)jd(r, σ)n−j − K, 0} (37)

For a put option,
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Pb(S, K, r, σ, n, h) = e−r·n·h
n

∑
j=0

(
n
j

)
πu(r, σ)jπd(r, σ)n−jmax{K − Su(r, σ)jd(r, σ)n−j, 0} (38)

As h → 0 , Formulas (37)–(38) tend towards the price obtained with the BSM [5]. The
primary utility of using binomial lattices lies in their applicability to options where the use
of the BSM formula is challenging, such as American options, exotic options, or different
flexibilities linked to real options [4].

In the FROP literature, the binomial model is the most widely used discrete-time
option valuation method. In all the studies, modelling of the up-and-down moves and
their probabilities was performed using the CRR model, with volatility being the parameter
commonly considered fuzzy. Furthermore, in all contributions, uncertainty is introduced
epistemically through fuzzy numbers, which are typically triangular or trapezoidal [12,13].

Next, we extend (18) and (19), assuming that all the parameters, except those asso-

ciated with maturity, are IFNs
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
. With the exception of

∼
r

I
, these IFNs are

defined in R+ The hypothesis that n and h are crisp parameters is a unanimous as-
sumption in the FROP literature. Therefore, (37) induces an intuitionistic fuzzy price

of call options
∼
C

I

b = Cb (
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
, n, h) whose level sets are obtained by evaluating

Cb⟨α,β⟩ = Cb (S⟨α,β⟩ , K⟨α,β⟩ , r⟨α,β⟩ , σ⟨α,β⟩ , n, h) and by applying rules (25)–(28) in (37)

Cbα
=

[
Cbα

, Cbα

]
=

[
Cb

(
Sα, Kα, rα, σα, n, h

)
, Cb

(
Sα , Kα, rα , σα, n, h

)]
, (39)

and

C′
bβ

=
[
C′

bβ
, C′

bβ

]
=

[
Cb

(
S′

β, K′
β, r′β, σ′

β, n, h
)

, Cb

(
S′

β , K′
β, r′β , σ′

β, n, h
)]

(40)

For the case of an intuitionistic fuzzy price of a put option
∼
P

I

b = Pb(
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
, n, h), the

level sets are obtained by evaluating Pb⟨α,β⟩ = Pb(S⟨α,β⟩ , K⟨α,β⟩ , r⟨α,β⟩ , σ⟨α,β⟩ , n, h) analogous
to the case of call options. Therefore, we obtain Pbα

by applying (25)–(28) in (38)

Pbα
=

[
Pbα

, Pbα

]
=

[
Pb
(
Sα, Kα, rα , σα, n, h

)
, Pb

(
Sα, Kα, rα, σα, n, h

)]
, (41)

and

P′
bβ

=
[

P′
bβ

, P′
bβ

]
=

[
P
(

S′
β, K′

β, r′β , σ′
β, n, h

)
, P

(
S′

β, K′
β, r′β, σ′

β, n, h
)]

. (42)

Numerical application 2. In this section, we evaluate European call options for IBEX-35
futures via the intuitionistic versions of the BSM and binomial models developed in this
section. Within the binomial models, we considered both CRR and RB for modelling moves.

The only intuitionistic fuzzy parameter is the 60-day volatility (
∼
σ

I
), which was adjusted in

the numerical application on 27 January 2023, in numerical application 1. Additionally, we
consider the intuitionist estimate of the 60-day volatility obtained from the S&P 500 index
on 4 November 2020.

In the application, we assume that the value of the underlying asset is S = 1 and
r = 0% because we are pricing futures on options [65]. The maturity of all the options
was T = 1 year. We consider three possible strike prices with three different degrees of
moneyness as follows: K = 0.9 (in the money), K = 1 (in the money), and K = 1.1 (out of
the money).

For the binomial models, we considered the following eight different jump frequencies:
annual (h = 1, n = 1), semiannual (h = 1

2 , n = 2), quarterly (h = 1
4 , n = 4), monthly (h = 1

12 ,
n = 12), biweekly (h = 1

24 , n = 24), weekly (h = 1
48 , n = 48), daily (h = 1

252 , n = 252), and
every 12 h h = 1

504 , n = 504).
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Therefore, to calculate the prices of call options with the BSM formula, we use (29),

(31), and (32) to implement
∼
C

I
= C (1, K, 0,

∼
σ

I
, 1).

Thus, the level sets of the BSM option price in the case of the 60-day volatility
obtained for the IBEX-35 of Futures obtained in numerical application 1 are C⟨α,β⟩ =
C(1, K, 0, σ⟨α,β⟩ , 1)

Cα =
[
Cα, Cα

]
=

C

1, K, 0,
√

59·0.098062

χ2
59;0.975− 0.95

2 α

, 1

, C

1, K, 0,
√

59·0.098062

χ2
59; 0.95

2 α+0.025

, 1

,

and

C′
β =

[
C′

β, C′
β

]
=

1, K, 0,
√

59·0.098062

χ2
59;0.9985− 0.997

2 (1−β)

, 1

, C

1, K, 0,
√

59·0.098062

χ2
59; 0.997

2 (1−β)+0.0015

, 1

.

On the other hand, if call option prices are calculated using the binomial formula, they are

evaluated via an evaluation of (37) with intuitionistic volatility:
∼
C

I

b = Cb (1, K, 0,
∼
σ

I
, n, h).

The level sets are calculated using (39)–(40) as follows: Cb⟨α,β⟩ = Cb (1, K, 0, σ⟨α,β⟩ , n, h),
where

Cbα
=

[
Cbα

, Cbα

]
=

Cb

1, K, 0,
√

59·0.098062

χ2
59;0.975− 0.95

2 α

, n, h

, Cb

1, K, 0 ,
√

59·0.098062

χ2
59; 0.95

2 α+0.025

, n, h

,

and

C′
bβ

=
[
C′

bβ
, C′

bβ

]
=

=

Cb

1, K, 0,
√

59·0.098062

χ2
59;0.9985− 0.997

2 (1−β)

, n, h

, Cb

1, K, 0 ,
√

59·0.098062

χ2
59; 0.997

2 (1−β)+0.0015

, n, h


Obviously, the final form of the above ⟨α, β⟩-cuts will depend on how we model the moves
of the underlying asset, which, in this work, are those listed in Table 1. Table 2 shows the
results of the expected values of the European call prices, which we calculate via (4); that

is, EV(
∼
C

I
) in the case of prices calculated with the BSM and EV(

∼
C

I

b) with those calculated
with the binomial model.

When evaluating a particular option that cannot be valued with the BSM formula, it
seems reasonable to choose a binomial model that yields prices of the European option of
the same type (call or put) and with the closest strike prices, maturities, and of the same
type as the BSM formula [47]. Therefore, Table 2 also shows the distance between the value
of the price calculated with the BSM and with the binomial model, which is expressed

in relation to the expected value of the BSM price; that is, D(
∼
C

I
,
∼
C

I

b)

EV(
∼
C

I
)

. It involves using (4)

and (5). This ratio indicates the error caused by the binomial approximation of the BSM
formula. The calculations of (4) and (5) were performed by computing the integrals using
Simpson’s rule.
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Table 2. A comparison of European option prices (with T = 1 and r = 0%) on futures over IBEX-35
obtained using the Black–Scholes–Merton model and binomial models such as CRR and RB via the
intuitionistic fuzzy variance in numerical example 1.

K = 900

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 107.83 101.87 8.401% 102.97 7.417% RB
1/2 2 107.83 109.36 2.179% 109.83 2.662% CRR
1/4 4 107.83 106.83 1.660% 107.07 1.563% RB

1/12 12 107.83 107.83 0.395% 107.94 0.374% RB
1/24 24 107.83 107.84 0.165% 107.84 0.172% CRR
1/48 48 107.83 107.81 0.085% 107.83 0.089% CRR
1/252 252 107.83 107.83 0.018% 107.83 0.017% RB
1/504 504 107.83 107.83 0.009% 107.83 0.009% CRR

K = 1000

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 40.85 51.18 34.909% 51.04 34.461% RB
1/2 2 40.85 36.20 15.712% 37.48 11.500% RB
1/4 4 40.85 38.40 8.288% 39.34 5.181% RB

1/12 12 40.85 40.01 2.844% 40.55 1.056% RB
1/24 24 40.85 40.43 1.431% 40.80 0.221% RB
1/48 48 40.85 40.64 0.717% 40.89 0.124% RB
1/252 252 40.85 40.81 0.137% 40.89 0.124% RB
1/504 504 40.85 40.83 0.068% 40.87 0.064% RB

K = 1100

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 10.36 4.61 90.444% 2.97 109.045% CRR
1/2 2 10.36 12.98 35.153% 12.48 28.995% RB
1/4 4 10.36 9.48 19.089% 9.06 22.685% CRR

1/12 12 10.36 10.60 4.641% 10.49 4.304% RB
1/24 24 10.36 10.36 2.127% 10.38 2.040% RB
1/48 48 10.36 10.38 1.097% 10.35 1.081% RB
1/252 252 10.36 10.36 0.208% 10.36 0.219% CRR
1/504 504 10.36 10.36 0.108% 10.36 0.106% RB

Notes: i. Prices are expressed in notions of 1000 monetary units. ii. (a) stands for the expected value of the option;

(b) stands for the ratio D(
∼
C

I
,
∼
C

I
b)

EV(
∼
C

I
)

; and (c) stands for the up-and-down binomial moves model that provides the

nearest price to the BSM price.

We can draw the following conclusions from the results presented in Table 2:

• As expected, both the CRR and the RB converge to the BSM since D(
∼
C

I
,
∼
C

I

b) → 0
when h → 0 .

• For the in-the-money options, the number of times that the CRR and RB are the closest
to the BSM is the same (50%). The RB provides the closest price when there is only
one move, and the CRR provides the closest price when the number of moves is the
maximum (n = 504).

• For out-of-the-money options, the RB tends to provide better approximations to the
BSM. However, when the movement frequency is annual, the CRR is better, but when
h = 1

504 , the price closest to the BSM comes from the RB.
• For at-the-money options, the best model is the RB model, regardless of the movement

frequency.
• The price equations are monotonic functions of volatility, so the extremes of Cα and C′

β

are easily programmable even in a spreadsheet. On the other hand, the calculation of

the integrals to obtain EV(
∼
C

I
) and D(

∼
C

I
,
∼
C

I

b) has been carried out via Simpson’s rule
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with the discretization of the ⟨α, β⟩-cuts, which in our case have been obtained as α = 0,
0.25, 0.5, 0.75, 1, and β = 1 − α. Thus, these calculations are also easily implemented
with a spreadsheet.

The 60-day volatility of the S&P 500 index on 4 November 2020, was 17.462%. Thus,
from (16)–(19), the ⟨1, 0⟩-cut of the intuitionistic volatility is σ⟨1,0⟩ = ⟨σ1 = [0.17462, 0.17462],
σ′

0 = [0.17462, 0.17462]⟩. Likewise, the ⟨0, 1⟩-cut of the volatility is
σ⟨0,1⟩ =

〈
σ0 = [0.14801, 0.21298], σ′

1 = [0.13656, 0.23753]
〉
. Therefore, the results of the

approximation to BSM prices for the same call options analysed in Table 2 are presented
in Table 3.

Table 3. A comparison of European option prices (with T = 1 and r = 0%) on the S&P 500 obtained via
the Black–Scholes–Merton model and binomial models such as the CRR and RB using the intuitionistic
fuzzy volatility on 4 November 2020.

K = 900

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 130.33 136.40 6.425% 140.19 10.295% CRR
1/2 2 130.33 136.08 6.208% 134.95 5.181% RB
1/4 4 130.33 133.57 3.426% 133.64 3.576% CRR

1/12 12 130.33 129.81 0.855% 130.38 0.692% RB
1/24 24 130.33 130.69 0.470% 130.40 0.365% RB
1/48 48 130.33 130.35 0.177% 130.43 0.209% CRR
1/252 252 130.33 130.34 0.036% 130.35 0.037% CRR
1/504 504 130.33 130.34 0.018% 130.34 0.019% CRR

K = 1000

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 72.67 90.95 34.749% 90.16 33.333% RB
1/2 2 72.67 64.41 15.713% 68.31 8.482% RB
1/4 4 72.67 68.31 8.289% 71.15 3.035% RB

1/12 12 72.67 71.18 2.844% 72.76 0.247% RB
1/24 24 72.67 71.92 1.431% 72.96 0.527% RB
1/48 48 72.67 72.30 0.717% 72.94 0.502% RB
1/252 252 72.67 72.60 0.137% 72.71 0.086% RB
1/504 504 72.67 72.64 0.068% 72.66 0.042% RB

K = 1100

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 36.58 45.50 33.176% 40.14 13.987% RB
1/2 2 36.58 42.52 23.032% 43.30 25.578% CRR
1/4 4 36.58 40.40 14.503% 39.90 12.453% RB

1/12 12 36.58 36.17 3.145% 35.75 3.612% CRR
1/24 24 36.58 36.78 1.553% 37.07 1.972% CRR
1/48 48 36.58 36.62 0.787% 36.52 0.721% RB
1/252 252 36.58 36.60 0.161% 36.59 0.162% CRR
1/504 504 36.58 36.59 0.075% 36.58 0.074% RB

Notes: i. Prices are expressed in notions of 1000 monetary units. ii. (a) stands for the expected value of the option;

(b) stands for the ratio D(
∼
C

I
,
∼
C

I
b)

EV(
∼
C

I
)

; and (c) stands for the up-and-down binomial moves model that provides the

nearest price to the BSM price.

Tables 2 and 3 both show that for options trading in the money and out of the money,
whether one binomial approximation is better than the other depends on the frequency of
the moves. However, for at-the-money options, the RB modelling of the moves is better
than CRR regardless of their frequency.

Therefore, when deciding how to model up-and-down moves in a situation with fuzzy
volatility, which is the most common assumption in models developing binomial FROP, it
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is worth considering Rendleman and Bartter modelling [7] as a more accurate alternative
than the more common CRR modelling. In the following section, we develop a deeper
analysis of the convergence of the RB and CRR to the BSM.

4. Assessment of the Convergence of Two Alternative Binomial Moves Modelling to
Black–Scholes–Merton Prices with Intuitionistic Fuzzy Volatility
4.1. Materials and Methods

In this section, we compare the ability of the two modelling approaches of binomial
moves (CRR and RB) to approximate the price obtained with the BSM for a European call
option on the IBEX 35 futures. We assume a notional value of 1 monetary unit, T = 1 year,
and strike prices of K = 0.9 (in the money), K = 1 (at the money), and K = 1.1 (out of the
money). Because these are options for futures, we consider r = 0 [65]. Thus, as in numerical
application 1, the only intuitionistic fuzzy parameter is volatility.

To evaluate the scenarios of fuzzy intuitionistic volatility, we considered the evolution
of the IBEX 35 futures index from 27 April 2011, to 27 January 2023. Therefore, we used
3020 observations. For this index, we determined volatility, measured as the annualized
standard deviation of logarithmic returns in a temporal window of 60 days. Figure 4 shows
the evolution of the 60-day historical volatility during the entire analysed period. We
observe that the average volatility is 17.21%, with a minimum of 8.71% and a maximum
of 48.74%.

The empirical analysis was conducted using the following steps:

Step 1: We identified five scenarios of low volatility, five of medium volatility, and five of
high volatility. The low-volatility scenarios are the 1st, 5th, 19th, 20th, and 30th percentiles of
historical volatility. The medium volatility scenarios are determined from percentiles 40, 45,
50, 55, and 60 of the calculated standard deviations. The high-volatility scenarios are identified
with 70th, 80th, 90th, 95th, and 99th percentiles. Table 4 shows the <0,1>-cut, <0.5,0.5>-cut,
and <1,0>-cut of the volatility scenarios considered in this empirical application.
Step 2: For these volatility scenarios, we fit an intuitionistic estimation using
Equations (16)–(19). We used 95 and 99.7 rules to adjust the membership and non-
membership functions, respectively. Thus, with γ = 0.05, we obtain µσ(x) = µ0.05σ (x),
and with γ* = 0.003, µ∗

σ(x) = µ0.003σ (x) and so vσ(x) = 1 − µ∗
σ(x).

Step 3: We determined the prices of the evaluated European call options (for K = 0.9, 1, 1.1,
and T = 1) for all evaluated volatility scenarios. To calculate the binomial prices, we used
periodicities h = {1/504, 1/252, 1/48, 1/24, 1/12, 1/4, 1/2, 1}.
Step 4: In all valuations, we determined the distance (5) between the value obtained with

the BSM and the tested binomial models; that is, D(
∼
C

I
,
∼
C

I

b). Comparing the distances of
the prices obtained with CRR and RB in a specific option, volatility scenario, and move
frequency with respect to the benchmark, the BSM, allows us to establish which model
converges better to the BSM.
Step 5: We conducted three analyses of the convergence of the binomial IFN to the intu-
itionistic BSM as follows:

1. We analysed the level of convergence for each degree of moneyness (in the money,
out of the money, and at the money) separately, considering all volatility scenarios
and moving frequencies together.

2. We analysed the convergence levels by differentiating the degree of moneyness and
movement frequency by considering conjointly all volatility scenarios. Within move
frequencies, we differentiated between ‘low’ frequencies (monthly, quarterly, semi-
annual, and annual) and ‘high’ frequencies (every 12 h, daily, weekly, and every
half month).

3. We analysed the convergence levels by differentiating the moneyness degree and
volatility scenarios without differentiating move periodicity. Within the volatility
scenarios, we differentiated low-volatility, medium-volatility, and high-volatility
scenarios, as indicated in Table 4.
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Figure 4. Evolution of the 60-day volatility of the IBEX35 Futures Index from 27 April 2011, to 27
January 2023.

In all three analyses, we calculated the proportion ρ, in which RB modelling was
closer than CRR was to the BSM. Thus, if both methods provide approximations of equal
quality, the proportion ρ in which the RB improves the CRR should be 0.5. If the RB is
generally better than the CRR, ρ > 0.5, and if the CRR is better than the RB, then ρ < 0.5. In
all the cases, we evaluated the null hypothesis about the proportion ρ = 0.5, with the test
statistic z = ρ−0.5√

0.5(1−0.5)
N

, which tends to follow a standard normal distribution. where N is

the number of simulations embedded in the statistical test.

Table 4. <1,0>-cut, <0.5, 0.5>-cut, and <0, 1>-cut of historical intuitionistic fuzzy volatilities of futures
on the IBEX-35 linked to the 60-day windows are considered in this empirical analysis.

σ1=σ
′
0 σ0.5 σ

′
0.5 σ0 σ

′
1

Percentile σ̂ σ1=σ
′
0 σ0.5 σ0.5 σ

′
0.5 σ

′
0.5

σ0 σ0 σ
′
1 σ

′
1

Low
volatility

1% 9.32% 9.37% 8.61% 10.34% 8.30% 11.00% 7.90% 11.37% 7.29% 12.68%
5% 9.88% 9.94% 9.13% 10.96% 8.80% 11.66% 8.37% 12.05% 7.73% 13.44%

10% 10.28% 10.34% 9.50% 11.41% 9.16% 12.13% 8.71% 12.54% 8.04% 13.99%
20% 11.27% 11.34% 10.42% 12.51% 10.05% 13.31% 9.56% 13.75% 8.82% 15.34%
30% 12.55% 12.62% 11.59% 13.92% 11.18% 14.81% 10.63% 15.30% 9.81% 17.07%

Medium
volatility

40% 13.44% 13.51% 12.41% 14.91% 11.97% 15.86% 11.39% 16.39% 10.51% 18.28%
45% 14.04% 14.12% 12.97% 15.58% 12.51% 16.57% 11.90% 17.12% 10.98% 19.09%
50% 14.78% 14.86% 13.65% 16.40% 13.17% 17.44% 12.53% 18.03% 11.56% 20.10%
55% 15.66% 15.75% 14.46% 17.38% 13.95% 18.48% 13.27% 19.10% 12.24% 21.30%
60% 16.53% 16.62% 15.27% 18.35% 14.73% 19.51% 14.01% 20.16% 12.93% 22.48%

High
volatility

70% 18.30% 18.41% 16.91% 20.31% 16.31% 21.60% 15.51% 22.32% 14.31% 24.90%
80% 23.15% 23.28% 21.39% 25.70% 20.63% 27.32% 19.62% 28.24% 18.11% 31.49%
90% 26.71% 26.86% 24.67% 29.64% 23.80% 31.52% 22.64% 32.58% 20.89% 36.33%
95% 33.25% 33.43% 30.71% 36.90% 29.62% 39.23% 28.18% 40.55% 26.00% 45.22%
99% 47.87% 48.15% 44.23% 53.13% 42.66% 56.50% 40.58% 58.39% 37.44% 65.12%

4.2. Results

The results in Table 5 suggest that while in the in-the-money options, the CRR model
converges more to the BSM than to the RB (44.17% = ρ < 50%), this closer proximity in
prices is not significant, because the p value (p) is 0.212. In contrast, if the option is out of
the money, the better performance of RB (ρ = 60%) is significant (p = 0.029).
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Table 5. Convergence of the CRR and RB binomial models to the BSM on the moneyness degree.

Moneyness Degree Strike Price ρ z p Value

In the money K = 0.9 44.17% −1.278 0.201
At the money K = 1 100.00% 10.954 <0.001

Out of the money K = 1.1 60.00% 2.191 0.029
Note: The number of observations for every strike price is N = 120.

Table 6 shows that the different comparative performances of the intuitionistic bi-
nomial models tested to approximate the BSM depend on the periodicity of the moves.
Thus, the slightly greater performance of RB over CRR in the in-the-money and out-of-
the-money options when the frequency is low (periodicities h ≥ 1/12) is not significant.
In contrast, better CRR convergence is observed for the in-the-money options when the
frequency is high (periodicities lower than one month), which is significant (ρ = 36.67%,
p = 0.039). Greater convergence of the RB to the BSM at these frequencies is also noted for
the out-of-the-money options, which is also significant (ρ = 63.33%, p = 0.0389).

Table 7 shows that the volatility scenario also determines the significance at which the
RB or CRR converges more to the BSM. Thus, within low- and high-volatility scenarios and
in the in-the-money and out-of-the-money options, we do not observe that either of the two
binomial modelling approaches significantly provides greater convergence to the BSM than
the other approaches do. In contrast, in the ‘medium’ volatility scenarios and in-the-money
options, CRR provides greater convergence to the BSM than RB does (ρ = 32.5%, p = 0.027).
Conversely, in the out-of-the-money options and the same ‘medium’ volatility scenarios,
the RB generates prices closer to the BSM than the CRR does (ρ = 80%, p < 0.001).

Table 6. Convergence of the CRR and RB binomial models to the BSM based on the moneyness
degree and the periodicity of the moves.

Low Frequency
(h = 1, 1/2, 1/4, 1/12)

High Frequency
(h = 1/24, 1/48, 1/252, 1/504)

Moneyness Degree Strike Price ρ z p Value ρ z p Value

In the money K = 0.9 53.33% 0.516 0.606 36.67% −2.066 0.039
At the money K = 1 100% 7.746 <0.001 100.00% 7.746 <0.001

Out of the money K = 1.1 55.00% 0.775 0.439 63.33% 2.066 0.039

Note: The number of observations for every strike price and move periodicity was N = 60.

Table 7. Convergence of the CRR and RB binomial models to the BSM based on the moneyness
degree and the periodicity of moves.

Low Volatility Medium Volatility High Volatility

Moneyness Degree Strike
Price ρ z p Value ρ z p Value ρ z p Value

In the money K = 0.9 50% 0.000 1.000 32.5% −2.214 0.027 50% 0 1.000
At the money K = 1 100% 6.325 <0.001 100% 6.325 <0.001 100% 6.324 <0.001

Out of the money K = 1.1 45% −0.632 0.527 80% 3.795 <0.001 55% 0.632 0.527

Note: The number of observations for each strike price and volatility scenario is N = 40.

Tables 5–7 also show that in the at-the-money options, the RB binomial model better
approximates BSM prices than does the CRR in all the simulations performed, regardless
of the periodicity of the moves and the evaluated volatility scenario.

5. Conclusions and Further Research

Fuzzy random option pricing (FROP) is a branch of fuzzy mathematics that models the
uncertainty of the parameters necessary for valuing options through fuzzy subsets [12]. A
common approach in FROP involves assuming stochastic variation in the underlying asset
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price, where the uncertainty in the parameters governing these fluctuations is introduced
through type-1 fuzzy numbers [13]. In FROP, possibility distributions must be interpreted
as epistemic fuzzy sets [14].

Among the continuous-time frameworks considered by FROP, the most developed is
the Black–Scholes–Merton (BSM) model [10,11,15–20,71]. Similarly, the most commonly
used analytic groundwork for option pricing in discrete time in FROP is the binomial
model [25–27,29–34]. In most fuzzy literature, the forms used to model uncertainty as
parameters such as volatility are fuzzy numbers, usually with a linear shape [13], and the
modelling of Cox, Ross, and Rubinstein moves [6], denoted as CRRs.

The contributions of this study are located in the FROP with a binomial framework,
highlighting three aspects. First, the modelling of the parameters governing the valuation
of options is carried out through intuitionistic fuzzy numbers (IFNs), which are a gener-
alization of fuzzy numbers. Their use allows the introduction of bipolar uncertainty of
parameters into option pricing. Thus, in financial analysis, they not only offer informa-
tion about the possible values that variables may introduce but also information about
those variables that are certainly not worth considering [37]. We are aware that IFNs
increase computational complexity with respect to the use of simple type-1 fuzzy numbers.
Therefore, the use of a Gaussian quadrature or other numerical integration techniques that
require fewer evaluation points while maintaining accuracy and implement processing for
the computation of level sets and integrals should be considered. Modern computational
environments with multicore processors can be utilized to speed up these computations.

Second, we propose a methodology that allows for the adjustment of the volatility of
the underlying asset, which is the key parameter in option valuation and typically involves
the most uncertainty, with an IFN. The proposed methodology combines the concept of
historical volatility [4] and the interpretation of the α-level sets of possibility distributions
of the variable as the narrowest interval containing those values with a probability of
occurrence of 1-α [55]. This approach has already been used in the field of FROP to adjust
the volatility of the underlying asset through type-1 fuzzy numbers [10,45,46] by applying
the contributions of possibilistic adjustments of statistical parameters [57–61].

The proposed method requires adjusting two possibility distributions. On the one
hand, a lower possibility distribution, whose support can be aligned with the 95% rule,
assesses the current possibility levels. On the other hand, an upper possibility distribution,
encompassing a broader range of values and adjustable, for instance, using the 99.7%
rule, measures the potential possibility of the parameter of interest taking specific values.
The IFN resulting from applying the proposed methodology allows for the parametric
representation of all possible outcomes for the parameter of interest. This includes both
highly probable results (which form the core of the membership function and align with
the 95% rule) and those that are almost certainly not considered for the parameter (i.e.,
values that are not part of the 99.7% rule selection and have a nonmembership level of 1).

Third, although the literature on option pricing has proposed a wide variety of method-
ologies for modelling up-and-down moves [5,8,9], developments in FROP have been limited
to the most well-known method developed in [6], which we refer to as CRR. In this study,
the suitability of using an alternative, which we refer to as RB [7], is analysed. Notably, the
main justification for using the BSM is its ability to use the conceptual BSM framework in
path-dependent options, where the direct application of the BSM does not apply [4]. To
assess binomial approximations to the BSM in the valuation of path-dependent options, we
compared their convergence to the value of the BSM in a European option with the same
characteristics (strike price, expiration date, volatility, and initial price of the underlying
asset). In this study, we evaluated the CRR and RB models on a call option on IBEX35
futures with a maturity of one year that can be traded in the money, at the money, and out
of the money.

We observe that the moneyness of the option is relevant for determining the con-
vergence of the proposed intuitionistic fuzzy binomial move models. While the CRR
might perform better for options traded in the money, the RB tends to perform better for
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out-of-the-money options. Additionally, for options traded at the money, the RB always
approximated BSM prices better than the CRR did.

The periodicity of moves is a relevant second-order factor. We observe that the best
convergence of the CRR in-the-money options and that of the RB out-of-the-money options
is significant when the periodicity of the movements is less than one month. However,
in periods equal to or greater than monthly, it cannot be established whether any of the
methods approximate these moneyness degrees better than the alternatives do. Similarly,
we find that the volatility of the option determines which particular model of the binomial
moves is better than that of the alternative. We observe that both the superiority of the CRR
in the in-the-money options and the superiority of the RB in the out-of-the-money options
are significant only in the central volatility scenarios.

The results presented in this study have various theoretical and practical implications.
Studies introducing bipolar uncertainty through IFNs are scarce in financial economics,
and option principles are nonexistent in fuzzy binomial option pricing. In this context, we
outline contributions in the fields of FROP [36,39–43], capital budgeting [51,74,75], and risk
evaluation [76,77].

In the contributions of FROP with a binomial framework, the modelling of up-and-
down moves was carried out with the formulation of CRR without any critical consideration.
We highlight the need to consider alternative models that may converge better to the BSM.
In this work, we found that the contemporary modelling by Rendleman and Bartter [7]
often converges better to BSM prices than do CRRs in the out-of-the-money options and
always in the at-the-money options. The analysis presented in this work can be expanded
by introducing alternative up-and-down moves, such as those in [8,9].

The findings of this paper can be useful for practitioners because although volatility
or prices are assumed to be intuitionistic fuzzy subsets, their interpretation is very intuitive
and does not require knowledge of fuzzy logic. This covers both the construction of the
possibility distributions of volatility and the calculation of option prices. The construction of
IFNs to measure bipolar uncertainty is based on common quantitative concepts in financial
pricing, such as historical volatility [4] and the 95–99.7% rule [62]. Thus, the <1,0>-cut of the
variable of interest is a singleton that indicates its possible value with maximum reliability.
This is comparable to the result offered by the BSM model or the evaluated binomial models
using crisp parameters. The <0,1>-cut set was delimited by extreme values. Thus, the 0-cut
of the membership function indicates moderately extreme scenarios, comparable to those
generated via the 95% rule. The 1-cut of the nonmembership function indicates extremely
extreme scenarios, similar to those generated using the 99.7% rule. Using intermediate
levels of membership and nonmembership allows for the structuring of several scenarios
linked to prefixed membership and nonmembership levels of interest to the decision maker.

The developments presented in this paper open up several lines for future research,
both within option price modelling and in more general areas of quantitative finance. This
analysis can undoubtedly be extended to more binomial moves than the two considered
in the work and can be applied not only to stock market data but also in the field of real
option valuation. In any case, our work has shown that to value a specific non-European
option with a proposed binomial model, alternative binomial moves to the CRR should
be considered. To determine the optimum moves, it may be particularly useful to assume
that these can take the general form u(a) = ea·σ

√
h in the case of up and d(b) = e−b·σ

√
h for

down. Thus, in this problem, the decision variables are a and b, which must minimize the
distance between the binomial and BSM prices of an equivalent European option that we
actually want to value (same maturity, strike price, etc.).

The modelling of the parameters that determine price behavior proposed in this work
can be generalized to option valuation models where the stochastic process governing the
movement of the underlying asset’s price is more complex than a univariate geometric
Brownian motion. The uncertainty of other parameters that govern price movements, such
as the correlation between the stochastic components in multivariate movements or the
parameter quantifying the speed of return to the equilibrium value in mean-reverting
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processes, can be captured in the intuitional estimation through a probability–possibility
transformation criterion, as presented in this work. In this context, [46] quantified the
mean reversion parameter as a type-1 fuzzy number on the basis of its estimation through
probabilistic intervals with a time series model and applied the criterion of Equation (8).

The intuitionistic fit of volatility presented in this work is based on the concept of
historical volatility associated with the prices of the underlying asset [4], which has also
been used in the FROP literature [10,45,46]. An alternative procedure could be to adjust
intuitionistic fuzzy volatility from observed implicit volatilities. The modelling of implied
volatility has been the subject of extensive debate in quantitative finance [78]. In the FROP
literature, implicit volatility has been adjusted with fuzzy numbers, either with fuzzy
regression [19,20] or with coherent transformations of the empirical distribution functions
to possibility distributions [21,71]. These contributions can serve as an analytical basis
for adjusting empirical volatilities through IFNs, either by using intuitionistic regression
instruments or considering that IFNs can be modelled as bivariate distribution functions.

In financial modelling, methods aimed at making the best possible point predictions,
such as neural networks and many machine learning algorithms, are certainly useful [79].
However, we also understand the importance of being able to parametrize predictions that
take into account the variability of the parameter of interest, which will be the subject of
future analysis. In this work, we have demonstrated that intuitionistic fuzzy modelling can
be reliable.
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