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Abstract: This article deals with mathematical programs with vanishing constraints (MPVCs) involv-
ing lower semi-continuous functions. We introduce generalized Abadie constraint qualification (ACQ)
and MPVC-ACQ in terms of directional convexificators and derive necessary KKT-type optimality
conditions. We also derive sufficient conditions for global optimality for the MPVC under convexity
utilizing directional convexificators. Further, we introduce a Wolfe-type dual model in terms of
directional convexificators and derive duality results. The results are well illustrated by examples.
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1. Introduction

Achtziger and Kanzow [1] initially proposed MPVC in 2008. Its roots are in opti-
mization topology design problems related to mechanical structures. MPVC is widely
used in several fields, like the robot motion planning problem [2], the economic dispatch
problem [3], and nonlinear integer optimal control [4,5]. In solving MPVC, it is very difficult
to satisfy standard constraint qualifications such as Mangasarian–Fromovitz constraint
qualification (MFCQ) and linearly independent constraint qualification (LICQ), while
Abadie constraint qualification (ACQ) is a very strong assumption for MPVC. MPVC is
closely related to the class of mathematical programs with equilibrium constraints (MPECs)
(see [6–8]). MPVC can always be formulated as an MPEC, but when solving the MPEC,
this formulation presents certain difficulties because it violates the MPEC-type constraint
qualifications. Thus, it is important to consider MPVC as an independent optimization
problem. MPVC has garnered a lot of attention recently. Many authors have worked
on MPVC with continuously differentiable functions (see [1,9–15]) and with nonsmooth
functions (see [16–18]).

In 1994, Demyanov [19] introduced the notion of convexificators. Jeyakumar and
Luc [20] proposed a revised version of convexificators comprising a closed set that is
not necessarily bounded or convex. Several applications of convexificators are reported
in [21–28]. By extending the notion of convexificators to a discontinuous case, Dempe
and Pilecka [29] introduced the notion of directional convexificators based on the notion
of continuity directions. Using directional convexificators, Gadhi et al. [30] established
optimality conditions for a set-valued optimization problem. Using directional convexi-
ficators, Gadhi [31] developed Stampacchia and Minty variational inequalities of scalar
optimization problems and used these inequalities to determine necessary and sufficient
optimality conditions. Lafhim and Kalmoun [32] obtained optimality conditions for mathe-
matical programs with equilibrium constraints using directional convexificators. For more
applications of directional convexificators, we refer the reader to [33,34].
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The concept of duality is very important in determining the lower bound of an objec-
tive function. Wolfe duality was introduced by Wolfe [35] for differentiable cases. Wolfe
duality has also been studied in several fields, such as multiobjective programming prob-
lems [25], mathematical programs with vanishing constraints [12,36,37], mathematical pro-
grams with equilibrium constraints [24,38,39], semi-infinite programming [40,41], interval-
valued programming [42–47], bilevel programming problems [48], etc.

Recently, Lafhim and Kalmoun [32] derived optimality conditions for mathemati-
cal programs with equilibrium constraints in terms of directional convexificators to also
deal with nonsmooth discontinuous functions. Motivated by the work of Lafhim and
Kalmoun [32], we wanted to develop analogous results for mathematical programs with
vanishing constraints. Therefore, the main objective of this paper is to expand on the find-
ings of Hu et al. [16] and the duality results of Mishra et al. [12] to include discontinuous
functions with a nonempty set of continuity directions. Hence, we aim to establish optimal-
ity and duality theorems for mathematical programs with vanishing constraints in terms of
directional convexificators that can tackle discontinuous functions with a nonempty set of
continuity directions that cannot be handled by the results reported in [12,16]. As far as
we are aware, no research has been conducted on mathematical programs with vanishing
constraints in terms of directional convexificators for the purpose of resolving MPVCs with
discontinuous functions. As such, this study represents an effort in this area.

The structure of our paper is summarized as follows. In Section 2, some basic defini-
tions, preliminary information, and notations are provided. In Section 3, we introduce sev-
eral stationary points under directional convexificators and nonsmooth Abadie constraint
qualifications in terms of directional convexificators. Further, we derive the necessary
optimality condition. We also obtain a sufficient optimality condition under the assumption
of convexity in terms of directional convexificators. We illustrate the results with suitable
examples. In Section 4, we present a Wolfe-type dual model in terms of directional con-
vexificators and further report weak and strong duality results under the assumption of
convexity using directional convexificators. In Section 5, we report the findings of this
paper and discuss some future research possibilities.

2. Preliminaries

Let Rn be a usual n-dimensional Euclidean space with a norm of ∥.∥. The convex
hull and the closure of a nonempty subset (A) of Rn are denoted by coA and clA(orĀ),
respectively, while coneA represent the convex cone (containing the origin) generated by A.
Let Rn

+, [a, b] and ⟨a, b⟩ be the non-negative orthant of Rn, the closed line segment between
a, b ∈ Rn and the inner product, respectively. The set

Ao := {ϑ ∈ Rn : ⟨ζ, ϑ⟩ ≤ 0, ∀ζ ∈ A}

denotes the negative polar cone, which is a nonempty, closed, and convex cone. We recall
the following property from [49].

Let A1 and A2 be two closed and convex cones in Rn; then,

(A1 ∩ A2)
o = cl(Ao

1 + Ao
2). (1)

The cone of all feasible directions and the contingent cone or cone tangent to A at ζ̄ ∈ clA
are expressed as follows [50]:

D(A, ζ̄) := {d ∈ Rn : ∃δ > 0, ∀λ ∈ (0, δ), ζ̄ + λd ∈ A}
and

T(A, ζ̄) := {d ∈ Rn : ∃tk ↓ 0, ∃dk → d, ζ̄ + tkdk ∈ A},

The cone normal to A at ζ̄ ∈ clA is defined by

N(A, ζ̄) := (T(A, ζ̄))o.
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The following proposition expresses the relation between a tangent cone and the cone
of all feasible directions at a point of a locally star-shaped set. Recall that a set (A ⊆ Rn) is
locally star-shaped at ζ̄ ∈ A iff

ζ̄ + λ(ζ − ζ̄) ∈ A, ∀ζ ∈ A.

Proposition 1 ([51]). If A ⊆ Rn is locally star-shaped at ζ̄ ∈ A, then T(A, ζ̄) = cl(D(A, ζ̄)).

The lower and upper Dini directional derivatives are defined as follows:

Definition 1 ([20]). Let h : Rn → R ∪ {+∞} be an extended real-valued function, and let
ζ ∈ Rn be such that f (ζ) is finite. The lower and upper Dini derivatives of h at ζ in a direction
ϑ ∈ Rn are defined by

h−(ζ, ϑ) := lim inf
t↓0

h(ζ + tϑ)− h(ζ)
t

and

h+(ζ, ϑ) := lim sup
t↓0

h(ζ + tϑ)− h(ζ)
t

,

respectively.

The concept of continuity directions is very important for the subsequent analysis.

Definition 2 ([29]). A vector d ∈ Rn is a continuity direction of h : Rn → R∪{+∞} at ζ ∈ Rn

iff, for all sequences, {tk} ⊂]0,+∞[ with {tk} ↘ 0, and we have

lim
k→∞

f (ζ + tkd) = f (ζ).

The set of all continuity directions of h at ζ is denoted by Dh(ζ).

The notion of directional convexificators is based on the notion of continuity directions.

Definition 3 ([29]). Let D be a nonempty cone of Rn. Let Dh(ζ) be the set of all continuity
directions of h at ζ. The function h : Rn → R∪ {+∞} admits

(a) A directional upper convexificator ∂∗Dh(ζ) ⊂ Rn at ζ iff D ⊆ Dh(ζ) such that the set
(∂∗Dh(ζ)) is closed, and for each d ∈ D, one has

h−(ζ, d) ≤ sup
ζ∗∈∂∗Dh(ζ)

⟨ζ∗, d⟩;

(b) A directional lower convexificator ∂∗Dh(ζ) ⊂ Rn at ζ iff D ⊆ Dh(ζ) such that the set
(∂∗Dh(ζ)) is closed, and for each d ∈ D, one has

h+(ζ, d) ≥ inf
ζ∗∈∂∗Dh(ζ)

⟨ζ∗, d⟩;

(c) A directional convexificator ∂∗Dh(ζ) ⊂ Rn at ζ iff it is both an upper and lower directional
convexificator of h at ζ;

(d) An upper regular directional convexificator of h at ζ iff D ⊆ Dh(ζ) such that the set (∂∗Dh(ζ))
is closed, and for each d ∈ D, one has

h+(ζ, d) = sup
ζ∗∈∂∗Dh(ζ)

⟨ζ∗, d⟩;

(e) A lower regular directional convexificator of h at ζ iff D ⊆ Dh(ζ) such the set ∂∗Dh(ζ) is
closed, and for each d ∈ D, one has



Axioms 2024, 13, 516 4 of 21

h−(ζ, d) = inf
ζ∗∈∂∗Dh(ζ)

⟨ζ∗, d⟩.

Remark 1. The notion of directional convexificators merges with the notion of convexificators
introduced in [20] when D = Rn.

The following notion of convexity in terms of directional convexificators was intro-
duced by Lafhim and Kalmoun [32].

Definition 4 ([32]). Assume f1, . . . , fq : Rn → R∪ {∞} are such that f1 has an upper regular
directional convexificator and f2, . . . , fq have a directional convexificator at ζ̄. The q−tuple(f1, . . . , fq)
is called ∂∗D− convex at ζ̄ with respect to Df1 if for each ζ ∈ Rn, ξi ∈ ∂∗Dfi

fi(ζ̄), i ∈ Q :=

{1, 2, . . . , q} there exists ϑ ∈ [NDf1
(0n)]o such that

f1(ζ)− f1(ζ̄) ≥ ⟨ξ1, ϑ⟩,
fi(ζ)− fi(ζ̄) ≥ ⟨ξi, ϑ⟩, i ∈ Q \ {1}.

Lemma 1 ([32]). Assume that A1 ⊂ Rn is a proper closed, convex cone that contains 0Rn and
∅ ̸= A2 ⊆ Rn is a bounded set such that

sup
s∈A2

⟨s, ϑ⟩ ≥ 0, ∀ϑ ∈ A1.

Then, 0 ∈ coA2 + Ao
1.

3. Problem Formulation and Optimality Conditions

In this section, we derive optimality conditions for nonsmooth mathematical programs
with vanishing constraints involving discontinuous functions using directional convexificators.

3.1. Problem Formulation

We consider the following mathematical program with vanishing constraints (MPVC):

min f (ζ)

s.t. gi(ζ) ≤ 0, ∀i ∈ M := {1, 2, . . . , m},

hj(ζ) = 0, ∀j ∈ Ih := {1, 2, . . . , p},

Hk(ζ) ≥ 0, ∀k ∈ L := {1, 2, . . . , l},

Gk(ζ)Hk(ζ) ≤ 0, ∀k ∈ L,

(2)

where f : Rn → R, gi : Rn → R, i ∈ M, hj : Rn → R, j ∈ Ih and Gk, Hk : Rn →
R, k ∈ L are the given functions may or may not be continuously differentiable.

The set of all feasible points of the MPVC is expressed as

S := {ζ ∈ Rn : gi(ζ) ≤ 0, ∀i ∈ M, hj(ζ) = 0, ∀j ∈ Ih,

Hk(ζ) ≥ 0, ∀k ∈ L, Gk(ζ)Hk(ζ) ≤ 0, ∀k ∈ L}.

For ζ̄ ∈ Rn, we define the following indices:
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Ig := {i ∈ M : gi(ζ̄) = 0},

I+ := {k ∈ L : Hk(ζ̄) > 0},

I0 := {k ∈ L : Hk(ζ̄) = 0},

I+0 := {k ∈ L : Hk(ζ̄) > 0, Gk(ζ̄) = 0},

I+− := {k ∈ L : Hk(ζ̄) > 0, Gk(ζ̄) < 0},

I0+ := {k ∈ L : Hk(ζ̄) = 0, Gk(ζ̄) > 0},

I0− := {k ∈ L : Hk(ζ̄) = 0, Gk(ζ̄) < 0},

I00 := {k ∈ L : Hk(ζ̄) = 0, Gk(ζ̄) = 0}.

We denote the set of all continuity directions of f , gi, i ∈ Ig, hj(and− hj), j ∈ Ih, Gk(and
−Gk), Hk(and − Hk), k ∈ L at ζ̄ as D f , Dgi , i ∈ Ig, Dhj

, j ∈ Ih, DGk , DHk , k ∈ L, respectively,
and we let

Dg :=
⋂

i∈Ig

Dgi , Dh :=
p⋂

j=1

Dhj
,

DG :=
l⋂

k=1

DGk , DH :=
l⋂

k=1

DHk .

Consider that all the functions have a directional upper convexificator at ζ̄ ∈ S.
Therefore, we have the following notations:

g =
⋃

i∈Ig

co∂∗Dgi
gi(ζ̄), h =

p⋃
j=1

co∂∗Dhj
hj(ζ̄) ∪ co∂∗Dhj

(−hj)(ζ̄),

GI+0 =
⋃

k∈I+0

co∂∗DGk
Gk(ζ̄), HI0+ =

⋃
k∈I0+

co∂∗DHk
Hk(ζ̄) ∪ co∂∗DHk

(−Hk)(ζ̄),

HI0− =
⋃

k∈I0−

co∂∗DHk
(−Hk)(ζ̄), HI00 =

⋃
k∈I00

co∂∗DHk
(−Hk)(ζ̄),

(GH)I00
=

⋃
k∈I00

co∂∗DGk
Gk(ζ̄) ∪ co∂∗DHk

Hk(ζ̄),

Γ(ζ̄) = g∪ h∪ GI+0 ∪HI0+ ∪HI0− ∪HI00 ,

Π(ζ̄) = g∪ h∪ GI+0 ∪HI0+ ∪HI0− ∪HI00 ∪ (GH)I00
.

Using the above notations, motivated by [32], we introduce Abadie-type constraint
qualification (ACQ) for the MPVC using directional convexificators, which are very useful
to derive further optimality conditions.

Definition 5. Let ζ̄ ∈ S and let all the functions associated with the MPVC (2) have directional
upper convexificators at ζ̄. Then,

(a) The generalized standard ACQ, denoted by ∂∗D—GS ACQ, is satisfied at ζ̄ iff Γo(ζ̄) ⊆ T(S, ζ̄);
(b) The generalized MPVC ACQ, denoted by ∂∗D—MPVC ACQ, is satisfied at ζ̄ iff Πo(ζ̄) ⊆

T(S, ζ̄).

Remark 2. Since Γ(ζ̄) ⊆ Π(ζ̄), ∂∗D—GS ACQ implies ∂∗D—MPVC ACQ. If all the involved func-
tions are continuous, then ∂∗D—GS ACQ and ∂∗D—MPVC ACQ coincide with ([16], Definition 3.1)
and ([16], Definition 3.2), respectively. If all the functions are continuously differentiable, then
∂∗D−GS ACQ and ∂∗D−MPVC ACQ coincide with ([1], p. 77) and ([1], Definition 3), respectively.

Now, we formulate an extended version of stationary points for MPVC in the context of
directional convexificators by generalizing ([14], Definitions 6.1.12, 6.1.9 and 6.1.1) and ([16],
Definitions 3.3, 3.5 and 3.6).
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Definition 6. A feasible point (ζ̄ ∈ S) of the MPVC is called a

(a) ∂∗D—generalized weak stationary point (GW-stationary point) iff there are vectors
(λ = (λg, λh, λH , λG) ∈ Rm+p+2l and λ− = (λ−h, λ−H) ∈ Rp+l) such that the fol-
lowing conditions hold:

0 ∈ co∂∗D f
f (ζ̄) + ∑

i∈Ig

λgi co∂∗Dgi
gi(ζ̄)+

p

∑
j=1

[λhj
co∂∗Dhj

hj(ζ̄) + λ(−hj)
co∂∗Dhj

(−hj)(ζ̄)] +
l

∑
k=1

λ(−Hk)
co∂∗DHk

(−Hk)(ζ̄) (3)

+
l

∑
k=1

[λGk co∂∗DGk
Gk(ζ̄) + λHk co∂∗DHk

Hk(ζ̄)] + ND f (0Rn),

λgi ≥ 0, i ∈ Ig, λhj
, λ(−hj)

≥ 0, j ∈ Ih, λ(−Hk)
, λGk , λHk ≥ 0, k ∈ L, (4)

λ(−H)I+0∪I+−
= 0, λHI+0∪I+−

= 0, λGI0+∪I+−∪I0−
= 0, λ(−Hk)

− λHk ≥ 0, k ∈ I0−; (5)

(b) ∂∗D—generalized Mordukhovich stationary point (GM-stationary point) iff conditions (3)–(5)
and the following conditions hold true:

∀k ∈ I00, λGk (λ(−Hk)
− λHk ) = 0; (6)

(c) ∂∗D—generalized strong stationary point (GS-stationary point) iff conditions (3)–(5) and the
following conditions hold true:

∀k ∈ I00, λGk = 0, (λ(−Hk)
− λHk ) ≥ 0. (7)

Remark 3. Since different stationary concepts for MPVC involving differentiable functions given
in [14] are generalized to a nonsmooth case involving discontinuous functions in Definition 6,
stationary points are called generalized stationary points. If all the involved functions are continuous,
then these stationary concepts coincide with [16]. If all the functions are continuously differentiable,
then these stationary concepts reduce to the stationary concepts defined in [14]. Directly from the
definitions, we obtain following relationship between stationary points:

∂∗D—GS-stationary point =⇒ ∂∗D—GM-stationary point =⇒ ∂∗D—GW-stationary point.

3.2. Necessary Optimality Conditions

Now, prove the following necessary optimality condition for a strong stationary point.

Theorem 1. Let ζ̄ ∈ S be a local minimizer of (2). Assume that f admits a bounded upper regu-
lar directional convexificator (∂∗D f

f (ζ̄)) at ζ̄ and that gi, i ∈ M, hj,−hj, j ∈ Ih, Gk, Hk,−Hk, k ∈
I00, Gk, k ∈ I+0, Hk,−Hk, k ∈ I0+ admit upper directional convexificators (∂Dgi

gi(ζ̄), i ∈ M,
∂Dhj

hj(ζ̄), ∂Dhj
(−hj)(ζ̄), j ∈ P, ∂DGk

Gk(ζ̄), ∂DHk
Hk(ζ̄), ∂DHk

(−Hk)(ζ̄), k ∈ I00, ∂DGk
Gk(ζ̄), k ∈

I+0, ∂DHk
Hk(ζ̄), ∂DHk

(−Hk)(ζ̄), k ∈ I0+) at ζ̄. Suppose that S is locally star-shaped at ζ̄ and that
the following assertions hold true:

(A1) D f is closed and convex;
(A2) cone Γ(ζ̄) + ND f (0Rn) is closed;
(A3) cl (D(S, ζ̄) ∩D f ) = cl D(S, ζ̄) ∩D f .

If ∂∗D− GS ACQ holds at ζ̄, then ζ̄ is a ∂∗D—GS stationary point.

Proof. Suppose that ζ̄ is a local minimizer of the MPVC, that is,

f (ζ̄) ≤ f (ζ), ∀ζ ∈ U ∩ S
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for some neighborhood (U) of ζ̄.
First, we show that

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d⟩ ≥ 0, ∀d ∈ D(S, ζ̄) ∩D f . (8)

On the contrary, suppose that

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d̂⟩ < 0 for some d̂ ∈ D(S, ζ̄) ∩D f .

Since f has an upper regular directional convexificator (∂∗D f
f (ζ̄)) at ζ̄,

f+(ζ̄, d̂) = sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d̂⟩ < 0.

Consequently, there exists a sufficiently small t̂ (> 0) such that ζ̄ + t̂d ∈ S and

f (ζ̄ + t̂d̂) < f (ζ̄).

Since this contradicts the local optimality of ζ̄, (8) holds true. Hence, for any d ∈
cl(D(S, ζ̄) ∩D f ), one has

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d⟩ ≥ 0.

Now, from Proposition 1 and assumption (A3), we obtain

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d⟩ ≥ 0, ∀d ∈ T(S, ζ̄) ∩D f .

Since ∂∗D−GS ACQ holds at ζ̄,

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d⟩ ≥ 0, ∀d ∈ Γo(ζ̄) ∩D f .

Using Lemma 1, we have

0 ∈ co∂∗D f
f (ζ̄) + (Γo(ζ̄) ∩D f )

o.

According to property (1) and considering Do
f = ND f (0Rn) ([29], Lemma 1) and

Aoo = cl coneA ([49], Proposition 2.3.3), we obtain

0 ∈ co∂∗D f
f (ζ̄) + cl

[
cl cone Γ(ζ̄) + ND f (0Rn)

]
.

Using the closure property of subsets A and B in Rn, cl(clA + clB) = cl(A + clB) =
cl(A + B) ([32], Theorem 3.4), we conclude

0 ∈ cl
(

co∂∗D f
f (ζ̄) +

[
cone Γ(ζ̄) + ND f (0Rn)

])
.

Since f has a bounded upper regular directional convexificator at ζ̄, co∂∗D f
f (ζ̄) is

compact and assumption (A2) holds,

0 ∈ co∂∗D f
f (ζ̄) + cone Γ(ζ̄) + ND f (0Rn).
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Thus, there exist non-negative multipliers (λgi , i ∈ Ig, λhj
, λ(−hj)

, j ∈ Ih, λHk , k ∈
I0+, λGk , k ∈ I+0, λ(−Hk)

, k ∈ I0+ ∪ I0− ∪ I00) such that

0 ∈ co∂∗D f
f (ζ̄) + ∑

i∈Ig

λgi co∂∗Dgi
gi(ζ̄) +

p

∑
j=1

[λhj
co∂∗Dhj

hj(ζ̄) + λ(−hj)
co∂∗Dhj

(−hj)(ζ̄)]+

∑
k∈I0+∪I0−∪I00

λ(−Hk)
co∂∗DHk

(−Hk)(ζ̄) + ∑
k∈I+0

λGk co∂∗DGk
Gk(ζ̄) (9)

+ ∑
k∈I0+

λHk co∂∗DHk
Hk(ζ̄) + ND f (0Rn).

We set λ(−H)I+0∪I+−
= 0, λHI00∪I0−∪I+−∪I+0

= 0, and λGI+−∪I0+∪I0−∪I00
= 0. Then, we

find that ζ̄ is a ∂∗D− GS-stationary point.

Remark 4. We can see that if f is continuous at ζ̄, that is, D f = Rn, then assumptions (A1) and
(A2) are trivially satisfied, and Theorem 1 reduces to ([16], Theorem 3.1). If all the functions are
continuously differentiable, then Theorem 1 reduces to ([1], Theorem 1).

We illustrate Theorem 1 using the following example.

Example 1. Consider the following two-dimension MPVC problem:

min f (ζ1, ζ2)

s.t. g(ζ1, ζ2) ≤ 0, H(ζ1, ζ2) ≥ 0,

G(ζ1, ζ2)H(ζ1, ζ2) ≤ 0,

where

f (ζ1, ζ2) =


−ζ2

2
ζ1

, ζ1 < 0, ζ2 ∈ R

ζ1, ζ1 ≥ 0, ζ2 ≥ 0
+∞, ζ1 ≥ 0, ζ2 < 0

,

g(ζ1, ζ2) =


−|ζ2|, ζ1 ≥ 0, ζ2 ∈ R√

−ζ1 +
√
−ζ2 + 1, ζ1 < 0, ζ2 < 0

1
2

, ζ1 < 0, ζ2 ≥ 0
,

H(ζ1, ζ2) =


−1, ζ1 ≥ 0, ζ2 < 0

−1
4

, ζ1 < 0, ζ2 < 0

ζ1, ζ1 ∈ R, ζ2 ≥ 0

and

G(ζ1, ζ2) =


−1

2
, ζ1 < 0, ζ2 ≥ 0

−1, ζ1 < 0, ζ2 < 0
ζ2, ζ1 ≥ 0, ζ2 ∈ R.

It is obvious that (ζ̄1, ζ̄2) = (0, 0) is a global optimum solution of the above problem, and
we have

D f (0, 0) = {d ∈ R2 : d1 ≥ 0, d2 ≥ 0},

Dg(0, 0) = {d ∈ R2 : d1 ≥ 0},

DH(0, 0) = {d ∈ R2 : d2 ≥ 0},

DG(0, 0) = {d ∈ R2 : d1 ≥ 0}.
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Now, we can derive the following directional convexificators at (0, 0) :{
∂∗D f

f (0, 0) = {(1, 0)}, ∂∗Dg
g(0, 0) = {(0, 1), (0,−1)}, ∂∗DH

H(0, 0) = {(1, 0)},

∂∗DH
(−H)(0, 0) = {(−1, 0)}, ∂∗DG

G(0, 0) = {(0, 1)},
(10)

where ∂∗D f
f (0, 0) is upper regular. The feasible set of the problem is

S = {(ζ1, ζ2) : ζ1 ≥ 0, ζ2 ≥ 0, ζ1ζ2 = 0},

which is shown in Figure 1.

Figure 1. The red lines represent both the feasible region and the tangent cone of Example 1.

The set

Γ(0, 0) = {(0, 1), (0,−1), (−1, 0)}, cone Γ(0, 0) = R− ×R.

The negative polar cone of Γ(0, 0) is

Γo(0, 0) = {ϑ ∈ R2 : ϑ1 ≥ 0, ϑ2 = 0} = R+ × {0}.

We can see that
T(S, (0, 0)) = D(S, (0, 0)) = S.

Also, ND f (0, 0) = R− ×R−. Now, it is clear that Γo(0, 0) ⊆ T(S, (0, 0)), cl(D(S, (0, 0))∩

D f ) = cl(D(S, (0, 0))) ∩ D f and cone Γ(0, 0) + ND f is closed. Then, there exist λg =
1
2

,
λ(−H) = 0 and λG = λH = 0 such that

0 ∈ co∂∗D f
f (0, 0)+λgco∂∗Dg

g(0, 0) + λ(−H)co∂∗DH
(−H)(0, 0) + λGco∂∗DG

G(0, 0)

+ λHco∂∗DH
H(0, 0) + ND f (0, 0),

(11)

as shown in Figure 2.
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Figure 2. The set obtained by inclusion (11) containing the origin with λg =
1
2

and λ(−H) = λG =

λH = 0.

Since ∂∗D—ACQ may not always be satisfied at an optimal point, we derive the follow-
ing result under a weaker condition of ∂∗D—MPVC-ACQ to identify ∂∗D—GM-stationary points.

Theorem 2. Assume that all the conditions of Theorem 1 hold, except assertion (A2) is replaced by
Π(ζ̄) + ND f and is closed. If ∂∗D—MPVC-ACQ holds at ζ̄, then ζ̄ is a ∂∗D—GM stationary point.

Proof. The proof of the above theorem is the same as that of Theorem 1. Since ζ̄ is a local
minimizer of MPVC,

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d⟩ ≥ 0, ∀d ∈ T(S, ζ̄) ∩D f .

On the other hand, ∂∗D−MPVC ACQ at ζ̄ implies

sup
ζ∗∈∂∗D f

f (ζ̄)
⟨ζ∗, d⟩ ≥ 0, ∀d ∈ Πo(ζ̄) ∩D f .

Now, according to Lemma 1 and property (1),

0 ∈ co∂∗D f
f (ζ̄) + cl

(
cl cone Π(ζ̄) +Do

f

)
.

We know that Do
f = ND f (0Rn), cone Π(ζ̄) + ND f is closed, and ∂∗D f

f (ζ̄) is compact;
therefore, one has

0 ∈ co∂∗D f
f (ζ̄) + cone Π(ζ̄) + ND f (0Rn).

This implies that there exist non-negative multipliers (λgi , i ∈ Ig, λhj
, λ(−hj)

, j ∈ P,
λHk , k ∈ I0+, λ(−Hk)

, k ∈ I0+ ∪ I0− ∪ I00, λGk , k ∈ I+0, λHk , k ∈ I00) such that

0 ∈ co∂∗D f
f (ζ̄) + ∑

i∈Ig

λgi co∂∗Dgi
gi(ζ̄) +

p

∑
j=1

[λhj
co∂∗Dhj

hj(ζ̄) + λ(−hj)
co∂∗Dhj

(−hj)(ζ̄)]+

∑
k∈I0+∪I0−∪I00

λ(−Hk)
co∂∗DHk

(−Hk)(ζ̄) + ∑
k∈I0+∪I00

λHk co∂∗DHk
Hk(ζ̄) (12)

+ ∑
k∈I+0

λGk co∂∗DGk
Gk(ζ̄) + ND f (0Rn).
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Let λ(−H)I+0∪I+−
= 0, λHI0−∪I+−∪I+0

= 0, and λGI+−∪I0+∪I0−∪I00
= 0, according to which

we obtain

0 ∈ co∂∗D f
f (ζ̄) + ∑

i∈Ig

λgi co∂∗Dgi
gi(ζ̄)+

p

∑
j=1

[
λhj

co∂∗Dhj
hj(ζ̄) + λ(−hj)

co∂∗Dhj
(−hj)(ζ̄)

]
+

l

∑
k=1

λ(−Hk)
co∂∗DHk

(−Hk)(ζ̄)+

l

∑
k=1

[
λGk co∂∗DGk

Gk(ζ̄) + λHk co∂∗DHk
Hk(ζ̄)

]
+ ND f (0Rn),

λgi ≥ 0, i ∈ Ig, λhj
, λ(−hj)

≥ 0, j ∈ Ih, λ(−Hk)
, λGk , λHk ≥ 0, k ∈ L.

λ(−H)I+0∪I+−
= 0, λHI+0∪I+−

= 0, λGI0+∪I+−∪I0−
= 0, λ−Hk − λHk ≥ 0, k ∈ I0−,

∀k ∈ I00, λGk = 0, λGk (λ(−Hk)
− λHk ) = 0.

Thus, ζ̄ is a ∂∗D—GM stationary point.

Next, we provide an example that illustrates the above theorem. We can see that
∂∗D—MPVC-ACQ holds but not ∂∗D—ACQ.

Example 2. Consider the following two-dimensional MPVC problem:

min f (ζ1, ζ2)

s.t. H(ζ1, ζ2) ≥ 0, G(ζ1, ζ2)H(ζ1, ζ2) ≤ 0,

where

f (ζ1, ζ2) =


ζ1 + ζ2, ζ1 ≥ 0, ζ2 ≥ 0
2 + |ζ2|, ζ1 ≥ 0, ζ2 < 0
ζ2

1 + 1, ζ1 < 0, ζ2 ∈ R
,

H(ζ1, ζ2) = ζ2, G(ζ1, ζ2) = ζ2 − |ζ1|.

It is obvious that (ζ̄1, ζ̄2) = (0, 0) is the global optimum solution of the above problem;
therefore, we have

D f (0, 0) = {d ∈ R2 : d1 ≥ 0, d2 ≥ 0}.

Now, we can propose the following directional convexificators at (0, 0) :{
∂∗D f

f (0, 0) = {(1, 1)}, ∂∗DH
H(0, 0) = {(0, 1)},

∂∗DH
(−H)(0, 0) = {(0,−1)}, ∂∗DG

G(0, 0) = {(−1, 1), (1, 1)},
(13)

where ∂∗D f
f (0, 0) is upper regular. The feasible set of the problem is

S = {(ζ1, ζ2) : ζ2 ≥ 0, ζ2 − |ζ1| ≤ 0},

as shown in Figure 3.
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Figure 3. Blue represents both the feasible region and the tangent cone of Example 2.

Π(0, 0) = {(0,−1), ([−1, 1]× 1), (0, 1)} and Γ(0, 0) = {(0,−1)}.

The negative polar cones of Π(0, 0) and Γ(0, 0) are

Πo(0, 0) = {(0, 0)}, and Γ0(0, 0) = R×R+,

respectively. We can see that

T(S, (0, 0)) = D(S, (0, 0)) = S.

Now, it is clear that Πo(0, 0) ⊆ T(S, (0, 0)), but Γo(0, 0) ⊈ T(S, (0, 0)).

Consequently, ∂∗D−MPVC ACQ holds at (0, 0), but ∂∗D−GS-ACQ does not hold at (0, 0).

cone Π(0, 0) = {(ζ1, ζ2) ∈ R2 : ζ2 ≥ |ζ1|} ∪ {(ζ1, ζ2) ∈ R2 : ζ1 = 0}.

Furthermore, ND f (0, 0) = R− ×R−, cl(D(S, (0, 0)) ∩D f ) = cl(D(S, (0, 0))) ∩D f , and
cone Γ(0, 0) + ND f is closed. Then, there exist λ(−H) = λG = λH = 1 such that

0 ∈ co∂∗D f
f (0, 0)+λ(−H)co∂∗DH

(−H)(0, 0) + λGco∂∗DG
G(0, 0)

+ λHco∂∗DH
H(0, 0) + ND f (0, 0),

(14)

as shown in the Figure 4.

Figure 4. The set obtained by inclusion (14) containing the origin with λ(−H) = λG = λH = 1.
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3.3. Sufficient Optimality Condition

Now, we establish the following sufficient optimality conditions using the concept of
generalized convexity. We define the following index sets:

I+g (ζ) := {i ∈ M : λ+
gi
> 0},

I+h := {j ∈ Ih : λ+
hj
> 0}, I−h := {j ∈ Ih : λ−

(−hj)
< 0},

Ĩ++ (ζ) := {k ∈ I+(ζ) : λ+
(−Hk)

> 0}, Ĩ+0 (ζ) := {k ∈ I0(ζ) : λ+
(−Hk)

> 0},

Ĩ−0 (ζ) := {k ∈ I0(ζ) : λ−
Hk

< 0}, Ĩ+00(ζ) := {k ∈ I00(ζ) : λ+
Hk

> 0},

Ĩ+0−(ζ) := {k ∈ I0−(ζ) : λ+
Hk

> 0}, Ĩ+0+(ζ) := {k ∈ I0+(ζ) : λ+
Hk

> 0},

I++0(ζ) := {k ∈ I+0(ζ) : λ+
Gk

> 0}, I−+0(ζ) := {k ∈ I+0(ζ) : λ−
(−Gk)

< 0},

I−+0(ζ) := {k ∈ I+0(ζ) : λ−
(−Gk)

< 0}, I++−(ζ) := {k ∈ I+−(ζ) : λ+
Gk

> 0},

I−0+(ζ) := {k ∈ I0+(ζ) : λ−
(−Gk)

< 0}, I+0−(ζ) := {k ∈ I0−(ζ) : λ+
Gk

> 0},

I−00(ζ) := {k ∈ I00(ζ) : λ−
(−Gk)

< 0}, I+00(ζ) := {k ∈ I00(ζ) : λ+
Gk

> 0}.

(15)

Theorem 3. Let ζ̄ be a ∂∗D—GW-stationary point of (2) and suppose that
(

f , (gi)i∈Ig , (±hj)(j∈Ih)
,

(−Hk)k∈I0+∪I0−∪I00

)
is ∂∗D—convex at ζ̄ with respect to D f . If I+00 ∪ Ĩ+00 ∪ Ĩ+0+ ∪ Ĩ+0− ∪ I++0 = ∅,

then ζ̄ is a global optimal solution of the MPVC.

Proof. On the contrary, assume that ζ̄ is not a global optimal solution of the MPVC. Thus,
there exists a point (ζ̃ ∈ S) such that

f (ζ̄) > f (ζ̃).

Since
(

f , (gi)i∈Ig , (±hj)(j∈Ih)
, (−Hk)k∈I0+∪I0−∪I00

)
is ∂∗D− convex at ζ̄ with respect to

D f , for all ζ∗f ∈ co∂∗D f
f (ζ̄), ζ∗gi

∈ co∂∗Dgi
gi(ζ̄), ζ∗hj

∈ co∂∗Dhj
hj(ζ̄), ζ∗(−hj)

∈ co∂∗Dhj
(−hj)(ζ̄),

ζ∗(−Hk)
∈ co∂∗DHk

(−Hk)(ζ̄), there exists ϑ ∈ [ND f (0Rn)]o such that

⟨ζ∗f , ϑ⟩ ≤ f (ζ̃)− f (ζ̄), (16)

⟨ζ∗gi
, ϑ⟩ ≤ gi(ζ̃)− gi(ζ̄), ∀i ∈ Ig, (17)

⟨ζ∗hj
, ϑ⟩ ≤ hj(ζ̃)− hj(ζ̄), ∀j ∈ P, (18)

⟨ζ∗(−hj)
, ϑ⟩ ≤ −hj(ζ̃) + hj(ζ̄), ∀j ∈ P, (19)

⟨ζ∗(−Hk)
, ϑ⟩ ≤ −Hk(ζ̃) + Hk(ζ̄), ∀k ∈ I0+ ∪ I0− ∪ I00. (20)

By multiplying both sides of the inequalities (17)–(20) by positive scalars λgi , i ∈ Ig,
λhj

, λ(−hj)
, j ∈ Ih and λ(−Hk)

, k ∈ I0+ ∪ I0− ∪ I00 and adding (16) to (20), we obtain〈
ζ∗f + ∑

i∈Ig

λgi ζ
∗
gi
+

p

∑
j=1

[
λhj

ζ∗hj
+ λ(−hj)

ζ∗(−hj)

]
+ ∑

I0+∪I0−∪I00

λ(−Hk)
ζ∗(−Hk)

, ϑ

〉
≤ f (ζ̃)− f (ζ̄)

+ ∑
i∈Ig

λgi (gi(ζ̃)− gi(ζ̄)) +
p

∑
j=1

(
λhj

(hj(ζ̃)− hj(ζ̄)) + λ(−hj)
(−hj(ζ̃) + hj(ζ̄))

)
+ ∑

I0+∪I0−∪I00

λ(−Hk)
(−Hk(ζ̃) + Hk(ζ̄)).

(21)
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Since I+00 ∪ Ĩ+00 ∪ Ĩ+0+ ∪ Ĩ+0− ∪ I++0 = ∅, taking into account the ∂∗D—GW-stationarity of
ζ̄, one obtains

−
(

ζ∗f+ ∑
i∈Ig

λgi ζ
∗
gi
+

p

∑
j=1

[
λhj

ζ∗hj
+ λ(−hj)

ζ∗(−hj)

]
+

l

∑
k=1

λ(−Hk)
ζ∗(−Hk)

+

l

∑
k=1

[
λGk ζ∗Gk

+ λHk ζ∗Hk

])
∈ ND f (0Rn), ∀ζ∗Gk

∈ ∂∗DGk
Gk(ζ̄), ζ∗Hk

∈ ∂∗DHk
Hk(ζ̄).

Using the definition of polar cone, it follows from ϑ ∈ [ND f (0Rn)]o that〈
ζ∗f + ∑

i∈Ig

λgi ζ
∗
gi
+

p

∑
j=1

[
λhj

ζ∗hj
+ λ(−hj)

ζ∗(−hj)

]
+ ∑

I0+∪I0−∪I00

λ(−Hk)
ζ∗(−Hk)

, ϑ

〉
≥ 0.

Thus, according to (21),

0 ≤ f (ζ̃)− f (ζ̄) + ∑
i∈Ig

λgi (gi(ζ̃)− gi(ζ̄))+

p

∑
j=1

(
λhj

(hj(ζ̃)− hj(ζ̄)) + λ(−hj)
(−hj(ζ̃) + hj(ζ̄))

)
+ ∑

I0+∪I0−∪I00

λ−Hk (−Hk(ζ̃) + Hk(ζ̄))

Since ζ̄, ζ̃ ∈ S,
f (ζ̄) ≤ f (ζ̃).

This contradicts our assumption; hence, ζ̄ is a global optimal solution.

4. Duality

In this section, we formulate a Wolfe-type dual model for MPVC (2) using direc-
tional convexificators. Now, we present the following Wolfe-type dual (WD) to MPVC (2)
depending on a feasible point (ζ ∈ S) denoted by VC-WD(ζ):

∂∗D − VC − WD(ζ) max
(u,λg ,λh ,λH ,λG)

{
f (u) + ∑

i∈I+g

λ+
gi

gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)

− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)− ∑
k∈ Ĩ−0

λ−
Hk

Hk(u)+

∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u)

}
subject to :

0 ∈ co∂∗D f
f (u) + ∑

i∈I+g

λ+
gi

co∂∗Dgi
gi(u) + ∑

j∈I+h

λ+
hj

co∂∗Dhj
hj(u)− ∑

j∈I−h

λ−
(−hj)

co∂∗Dhj
(−hj)(u)

+ ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

co∂∗DHk
(−Hk)(u)− ∑

k∈ Ĩ−0

λ−
Hk

co∂∗DHk
Hk(u)

+ ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

co∂∗DGk
Gk(u)− ∑

k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

co∂∗DGk
(−Gk)(u) + ND f (0Rn), (22)

where the indices are defined by the expression (15), and u := (u1, . . . , un) ∈ Rn, λg :=
(λg1 , . . . , λgm) ∈ Rm, λh := (λh1 , . . . , λhp) ∈ Rp, λH := (λH1 , . . . , λHl ) ∈ Rl , λG :=
(λG1 , . . . , λGl ) ∈ Rl are expressed as

λgi :=
{

λ+
gi

, i ∈ I+g ,
0, otherwise;
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λhj
:=


λ+

hj
, j ∈ I+h ,

λ−
(−hj)

, j ∈ I−h ,

0, otherwise;

λHk :=


λ+
(−Hk)

, k ∈ Ĩ++ ∪ Ĩ+0 ,
λ−

Hk
, k ∈ Ĩ−0 ,

0, otherwise;

and

λGk :=


λ−
(−Gk)

, k ∈ I−0+ ∪ I−00 ∪ I−+0,
λ+

Gk
, k ∈ I+00 ∪ I++0 ∪ I+0− ∪ I++−,

0, otherwise.

The set of all feasible points of ∂∗D−VC-WD(ζ) is denoted by SW(ζ). The projection of
set SW(ζ) on Rn is denoted by prRn SW(ζ) and is defined as follows:

prRn SW(ζ) :=
{

u ∈ Rn : (u, λg, λh, λH , λG) ∈ SW(ζ)
}

.

Now, we consider another duality problem that is independent of the primal (2),
denoted by ∂∗D—VC-WD, which is defined as follows:

∂∗D − VC − WD max
(u,λg ,λh ,λH ,λG)

{
f (u) + ∑

i∈I+g

λ+
gi

gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)

− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)− ∑
k∈ Ĩ−0

λ−
Hk

Hk(u)+

∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u)

}
subject to : (u, λg, λh, λH , λG) ∈ ∩ζ∈SSW(ζ). (23)

The set of all feasible points of ∂∗D—VC-WD is denoted by SW := ∩ζ∈SSW(ζ).

Remark 5. If all the involved functions are continuously differentiable, then the above dual models
coincide with the models defined in [12] (Section 3). If all the continuity directions are Rn,, then
we have a dual model in terms of convexificators. In addition, if all the the functions are locally
Lipschitz, then we have a dual model in terms of Clarke subdifferentials, as studied in [36].

Example 3. Consider the primal MPVC of Example 1. The directional convexificators of the
involved functions at ζ̄ := (0, 0) are given in (17). For ζ̄ := (0, 0), the dual model is expressed as

∂∗D − VC − WD(ζ̄) max
(u,λg ,λH ,λG)

{
f (u) + λ+

g1
g1(u)− λ+

(−H1)
H1(u)− λ−

H1
H1(u)+

λ+
G1

G1(u) + λ−
(−G1)

G1(u)

}
subject to :(

0
0

)
∈
(

1
0

)
+ λ+

g1

(
0
ζ̄∗

)
+ λ+

(−H1)

(
−1
0

)
− λ−

H1

(
1
0

)
+ λ+

G1

(
0
1

)
− λ−

(−G1)

(
0
−1

)
+ ND f (0R2),

and
λ+

g1
> 0, if 1 ∈ I+g (ζ̄), λ+

(−H1)
> 0, if 1 ∈ Ĩ+0 (ζ̄),

λ−
H1

< 0, if 1 ∈ Ĩ−0 (ζ̄), λ+
G1

> 0, if 1 ∈ I+00(ζ̄), λ−
(−G1)

< 0, if 1 ∈ I−00(ζ̄),

where ζ̄∗ ∈ [−1, 1] and ND f (0R2) = R− ×R−.
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Example 4. Consider the primal MPVC of Example 2. The directional convexificators of the
involved functions at ζ̄ := (0, 0) are given in (13). For ζ̄ := (0, 0), the dual model is expressed as

∂∗D − VC − WD(ζ̄) max
(u,λH ,λG)

{
f (u)− λ+

(−H1)
H1(u)− λ−

H1
H1(u)+

λ+
G1

G1(u) + λ−
(−G1)

G1(u)

}
subject to(

0
0

)
∈
(

1
1

)
+ λ+

(−H1)

(
0
−1

)
− λ−

H1

(
0
1

)
+ λ+

G1

(
ζ̄∗

1

)
− λ−

(−G1)

(
ζ̄∗

−1

)
+ ND f (0R2),

and
λ+
(−H1)

> 0, if 1 ∈ Ĩ+0 (ζ̄), λ−
H1

< 0, if 1 ∈ Ĩ−0 (ζ̄),

λ+
G1

> 0, if 1 ∈ I+00(ζ̄), λ−
(−G1)

< 0, if 1 ∈ I−00(ζ̄),

where ζ̄∗ ∈ [−1, 1] and ND f (0R2) = R− ×R−.

The following theorem is a weak duality theorem that expresses the relationship
between a feasible point of the primal problem and a feasible point of the corresponding
Wolfe-type dual problem.

Theorem 4 (Weak duality theorem). Let ζ ∈ S and (u, λg, λh, λH , λG) ∈ SW . Suppose that
f admits a bounded upper regular directional convexificator and the constraint functions admit
upper directional convexificators at u. If ( f , gi(i ∈ I+g ), hj(j ∈ I+h (ζ)),−hj(j ∈ I−h (ζ)),−Hk(k ∈
Ĩ++ (ζ)∪ Ĩ+0 (ζ)), Hk(k ∈ Ĩ−0 (ζ)),−Gk(k ∈ I−0+(ζ)∪ I−00(ζ)∪ I−+0(ζ)), Gk(k ∈ I+00(ζ)∪ I+0−(ζ)∪
I++0(ζ) ∪ I++−(ζ)) is ∂∗D— convex at u ∈ S ∪preRn SW with respect to D f , then

f (ζ) ≥ f (u) + ∑
i∈I+gi

λ
g
i gi(u) + ∑

j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)

− ∑
k∈ Ĩ−0

λ−
Hk

Hk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u). (24)

Proof. According to the feasibility of MPVC (2) and VC-WD and the ∂∗D− convexity of
( f , gi(i ∈ I+g (ζ)), hj(j ∈ I+h (ζ)),−hj(j ∈ I−h )− Hk(k ∈ Ĩ++ (ζ) ∪ Ĩ+0 (ζ)), Hk(k ∈ Ĩ−0 (ζ)),−Gk

(k ∈ I−0+(ζ)∪ I−00(ζ)∪ I−+0(ζ)), Gk(k ∈ I+00(ζ)∪ I+0−(ζ)∪ I++0(ζ)∪ I++−(ζ)) at u ∈ S∪preRn SW
with respect to D f , then for all u∗

f ∈ co∂∗D f
f (u), u∗

gi
∈ co∂∗Dgi

gi(u), i ∈ I+g (ζ), u∗
hj

∈
co∂∗Dhj

hj(u), j ∈ I+h , u∗
(−hj)

∈ co∂∗Dhj
(−hj)(u), j ∈ I−h , u∗

(−Hk)
∈ co∂∗DHk

(−Hk)(u), k ∈

I++ (ζ) ∪ I+0 (ζ), u∗
Hk

∈ co∂∗DHk
(Hk)(u), k ∈ I−0 (ζ), u∗

(−Gk)
∈ co∂∗DGk

(−Gk)(u), k ∈ I−0+(ζ) ∪
I−00(ζ), u∗

Gk
∈ co∂∗DGk

(Gk)(u), k ∈ I+00(ζ) ∪ I+0−(ζ) ∪ I++0(ζ) ∪ I++−(ζ), there exists ϑ ∈
[ND f (0Rn)]o such that
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f (u) + ⟨u∗
f , ϑ⟩ ≤ f (ζ),

gi(u) + ⟨u∗
gi

, ϑ⟩ ≤ gi(ζ) ≤ 0, λgi > 0, ∀i ∈ I+g (ζ),

hj(u) + ⟨u∗
hj

, ϑ⟩ ≤ hj(ζ) = 0, λ+
hj
> 0, ∀j ∈ I+h ,

hj(u)− ⟨u∗
(−hj)

, ϑ⟩ ≥ hj(ζ) = 0, λ−
(−hj)

< 0, ∀j ∈ I−h ,

− Hk(u) + ⟨u∗
(−Hk)

, ϑ⟩ ≤ −Hk(ζ) < 0, λ+
(−Hk)

> 0, ∀k ∈ Ĩ++ (ζ),

− Hk(u) + ⟨u∗
(−Hk)

, ϑ⟩ ≤ −Hk(ζ) = 0, λ+
(−Hk)

> 0, ∀k ∈ Ĩ+0 (ζ),

− Hk(u)− ⟨u∗
Hk

, ϑ⟩ ≥ −Hk(ζ) = 0, λ−
Hk

< 0, ∀k ∈ Ĩ−0 (ζ),

Gk(u)− ⟨u∗
(−Gk)

, ϑ⟩ ≥ Gk(ζ) > 0, λ−
(−Gk)

< 0, ∀k ∈ I−0+(ζ),

Gk(u)− ⟨u∗
(−Gk)

, ϑ⟩ ≥ Gk(ζ) = 0, λ−
(−Gk)

< 0, ∀k ∈ I−00(ζ) ∪ I−+0,

Gk(u) + ⟨u∗
Gk

, ϑ⟩ ≤ Gk(ζ) = 0, λ+
Gk

> 0, ∀k ∈ I+00(ζ) ∪ I++0(ζ),

Gk(u) + ⟨u∗
Gk

, ϑ⟩ ≤ Gk(ζ) < 0, λ+
Gk

> 0, ∀k ∈ I+0−(ζ) ∪ I++−(ζ),

which implies that

f (u)+ ∑
i∈I+g

λ+
gi

gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)

− ∑
k∈ Ĩ−0

λ−
Hk

Hk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u)+

〈
u∗

f + ∑
i∈I+g

λgi u
∗
gi
+ ∑

j∈I+h

λ+
hj

u∗
hj
− ∑

j∈I−h

λ−
(−hj)

u∗
(−hj)

+ ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

u∗
(−Hk)

− ∑
k∈ Ĩ−0

λ−
Hk

u∗
Hk

− ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

u∗
(−Gk)

+ ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

u∗
Gk

, ϑ
〉
≤ f (ζ). (25)

By using duality constraint (22) of the VC-WD, we have

−
(

u∗
f + ∑

i∈I+g

λgi u
∗
gi
+ ∑

j∈I+h

λ+
hj

u∗
hj
− ∑

j∈I−h

λ−
(−hj)

u∗
(−hj)

+ ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

u∗
(−Hk)

− ∑
k∈ Ĩ−0

λ−
Hk

u∗
Hk

− ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

u∗
(−Gk)

+ ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

u∗
Gk

)
∈ ND f (0Rn).

Using the definition of polar cone for ϑ ∈ [ND f (0Rn)]0,〈
u∗

f + ∑
i∈I+g

λgi u
∗
gi
+ ∑

j∈I+h

λ+
hj

u∗
hj
− ∑

j∈I−h

λ−
(−hj)

u∗
(−hj)

+ ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

u∗
(−Hk)

− ∑
k∈ Ĩ−0

λ−
Hk

u∗
Hk

− ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

u∗
(−Gk)

+ ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

u∗
Gk

〉
≥ 0.

Now, it follows from (25) that

f (ζ)−
(

f (u) + ∑
i∈I+g

λgi gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)−

∑
k∈ Ĩ−0

λ−
Hk

Hk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u)

)
≥ 0,
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which implies that

f (ζ) ≥ f (u) + ∑
i∈I+g

λgi gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)−

∑
k∈ Ĩ−0

λ−
Hk

Hk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u).

Next, we propose a strong duality theorem.

Theorem 5 (Strong duality theorem). Let ζ̄ be a local minimizer of MPVC (2). Suppose that f ad-
mits a bounded upper regular directional convexificator and constraint functions admit upper direc-
tional convexificators at ζ̄. Assume that ( f , gi(i ∈ I+g ), hj(j ∈ I+h (ζ)),−hj(j ∈ I−h (ζ)),−Hk(k ∈
Ĩ++ (ζ)∪ Ĩ+0 (ζ)), Hk(k ∈ Ĩ−0 (ζ)),−Gk(k ∈ I−0+(ζ)∪ I−00(ζ)∪ I−+0(ζ)), Gk(k ∈ I+00(ζ)∪ I+0−(ζ)∪
I++0(ζ) ∪ I++−(ζ)) is ∂∗D− convex at u ∈ S ∪preRn SW with respect to D f . Furthermore, suppose
that S is star-shaped at ζ̄ and assertions (A1), (A2), (A3) hold. If ∂∗D-ACQ holds at ζ̄, then there
exist Lagrange multipliers (λ̄g ∈ Rm, λ̄h ∈ Rp, λ̄H , λ̄G ∈ Rl) such that (ζ̄, λ̄g, λ̄h, λ̄H , λ̄G) is
a feasible point of VC-WD(ζ̄). Then, (ζ̄, λ̄g, λ̄h, λ̄H , λ̄G) is a global optimal solution of the dual
VC-WD(ζ̄), and the respective objective values are equal.

Proof. Since ζ̄ is a local minimizer of problem (2), assertions (A1), (A2), and (A3) hold,
and ∂∗D−ACQ holds at ζ̄. Then, according to Theorem 1, it follows that there exist Lagrange
multipliers (λ̄g ∈ Rm, λ̄h ∈ Rp, λ̄H , λ̄G ∈ Rl) such that conditions (3)–(5) and (7) hold.
Then, (ζ̄, λ̄g, λ̄h, λ̄H , λ̄G) is a feasible point of the VC-WD(ζ̄), and

∑
i∈I+g

λ̄+
gi

gi(ζ̄) + ∑
j∈I+h

λ̄+
hj

hj(ζ̄) + ∑
j∈I−h

λ̄−
(−hj)

hj(ζ̄)− ∑
k∈ Ĩ++∪ Ĩ+0

λ̄+
(−Hk)

Hk(ζ̄)− ∑
k∈ Ĩ−0

λ̄−
Hk

Hk(ζ̄)+

∑
k∈I−0+∪I−00∪I−+0

λ̄−
(−Gk)

Gk(ζ̄) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ̄+
Gk

Gk(ζ̄) = 0. (26)

Furthermore, according to Theorem 4, we obtain

f (ζ) ≥ f (u) + ∑
i∈I+g

λ+
gi

gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)

− ∑
k∈ Ĩ−0

λ−
Hk

Hk(u) + ∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u). (27)

Using (26) and (27), we obtain

f (ζ̄) + ∑
i∈I+g

λ̄+
gi

gi(ζ̄) + ∑
j∈I+h

λ̄+
hj

hj(ζ̄) + ∑
j∈I−h

λ̄−
(−hj)

hj(ζ̄)− ∑
k∈ Ĩ++∪ Ĩ+0

λ̄+
(−Hk)

Hk(ζ̄)

− ∑
k∈ Ĩ−0

λ̄−
Hk

Hk(ζ̄) + ∑
k∈I−0+∪I−00∪I−+0

λ̄−
(−Gk)

Gk(ζ̄) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ̄+
Gk

Gk(ζ̄) ≥ f (u)+

∑
i∈I+g

λ+
gi

gi(u) + ∑
j∈I+h

λ+
hj

hj(u) + ∑
j∈I−h

λ−
(−hj)

hj(u)− ∑
k∈ Ĩ++∪ Ĩ+0

λ+
(−Hk)

Hk(u)− ∑
k∈ Ĩ−0

λ−
Hk

Hk(u)+

∑
k∈I−0+∪I−00∪I−+0

λ−
(−Gk)

Gk(u) + ∑
k∈I+00∪I++0∪I+0−∪I++−

λ+
Gk

Gk(u).

Hence, (ζ̄, λ̄g, λ̄h, λ̄H , λ̄G) is a global maximum of the VC-WD(ζ̄), and the respective
objective values are equal.

Now, we illustrate Theorems 4 and 5 in the following example.
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Example 5. Consider the primal MPVC of Example 1. The point ζ̄ = (0, 0) ∈ S is a local
minimizer of the MPVC. Its dual model (VC-WD) is given in Example 3. We can easily see that
(A1), (A2), and (A3), as well as ∂∗D-ACQ, hold. According to Theorem 5, there exist Lagrange
multipliers (λ̄g ∈ Rm, λ̄h ∈ Rp, λ̄H , λ̄G ∈ Rl) such that (0, 0, λ̄g, λ̄h, λ̄H , λ̄G) is a feasible point
of the VC-WD(ζ̄) and

λ̄+
g g(ζ̄)− λ̄+

(−H)
H(ζ̄)− λ̄−

H H(ζ̄) + λ̄−
(−G)

G(ζ̄) + λ̄+
G G(ζ̄) = 0.

Furthermore, since the weak duality between MPVC (2) and the VC-WD (ζ̄) holds as in
Theorem 4, according to Theorem 5, (ζ̄, λ̄g, λ̄h, λ̄H , λ̄G) is a global maximum of the VC-WD(ζ̄),
and the respective objective values are equal.

5. Conclusions

In this study, we focused on nonsmooth mathematical programs with vanishing
constraints involving functions without the necessity of being continuous. The idea of
directional convexificators is the main tool used in our proofs. We established several
nonsmooth stationary conditions and proposed standard and MPVC Abadie constraint
qualifications based on this novel concept. We derived necessary optimality conditions
under generalized Abadie constraint qualifications. We proposed sufficient optimality
conditions in terms of directional convexificators under generalized convexity. Lastly, we
proposed a Wolfe-type dual model for MPVC and a weak duality theorem and strong
duality theorem using directional convexificators. The results reported in this paper extend
several results previously reported in literature [1,12–14,16,36].

It is generally known that under general nonlinear constraints, there is no feasible
method that can be defined that always reaches global minimizers of the problem. It is
not feasible to provide even local minimizers, at least not when convexity is not taken into
account. Finding an acceptable stationary point—that is, a computable point exhibiting
essential minimizer properties—is the goal of practical algorithms. In this regard, the
Karush–Kuhn–Tucker (KKT) conditions are the most crucial instrument for characterizing
minimizers of a problem. They have been specialized or adjusted to several specific
situations, such as multi-objective optimization and nonsmooth optimization, among
others, and are used to state the theoretical convergence of almost every approach in
restricted optimization. In addition, KKT conditions provide useful stopping criteria for
various algorithms. Since in MPVC, the standard constraint qualifications are not satisfied
and stationary conditions differ due to nonlinear reformulations, the results reported in this
paper are not only useful to locate local minimizers but also to provide stopping criteria
for various algorithms. Moreover, they are useful in tackling nonsmooth discontinuous
functions with nonempty sets of continuity directions at a stationary point using directional
convexificators.

In future research, we can extend the results reported by Laha and Dwivedi [22] for
interval-valued optimization problems to lower semi-continuous cases using directional
convexificators and the saddle-point criteria proposed by Jaiswal and Laha [25] for multi-
objective optimizations to lower semi-continuous cases. Some other dual models for primal
MPVC (2), like the Mond–Weir-type dual model and mixed-type dual models, may be
introduced by using directional convexificators. It will also be interesting to explore the
impact of the results on the problem; each nonconvex domain (or function) can be presented
as a limit of the difference between two sequences of convex domains (or functions). These
are some possible extensions of our results.
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