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Abstract: In this work, supercobalancing numbers are considered and some properties of these
numbers are investigated. In the first part of this work, it is shown that every supercobalancing
number is also a subbalancer. More specifically, B3-supercobalancing numbers which have not been
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1. Introduction

One of the most attractive topics in number theory is the concept of integer sequences.
Since ancient times, integer sequences have attracted the attention of the mathematicians.
Some of the most studied integer sequences are Fibonacci, Lucas, Pell and Pell–Lucas
sequences. In addition to these integer sequences, another integer sequence that has
attracted attention recently is the sequence of balancing numbers. The terms of the sequence
of balancing numbers n are the solutions of the Diophantine equation

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r) (1)

for some positive integer r, which is called the balancer of n [1].
It is obvious from (1) that

n2 =
(n + r)(n + r + 1)

2
and r =

−(2n + 1) +
√

8n2 + 1
2

(2)

It follows from (2) that n is a balancing number if and only if n2 is a triangular number,
that is, balancing numbers are the square roots of square-triangular numbers. Additionally,
from (2), n is a balancing number if and only if 8n2 + 1 is a perfect square [1].

Later, in [2], Panda and Ray introduced cobalancing numbers n which are the solutions
of the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) (3)

for some positive integer r, which is called the cobalancer of n.
It is obvious from (3) that

n(n + 1) =
(n + r)(n + r + 1)

2
and r =

−(2n + 1) +
√

8n2 + 8n + 1
2

(4)
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It follows from (4) that n is a cobalancing number if and only if n(n + 1) is a triangular
number, that is, cobalancing numbers are related to pronic-triangular numbers. Addition-
ally, from (4), n is a cobalancing number if and only if 8n2 + 8n + 1 is a perfect square.

Let Bn denote the nth balancing number and let bn denote the nth cobalancing number.
Then, the recurrence relations of balancing and cobalancing numbers are

Bn+1 = 6Bn − Bn−1 (n ≥ 2)

bn+1 = 6bn − bn−1 + 2 (n ≥ 2)

where B1 = 1, B2 = 6 and b1 = 0, b2 = 2, respectively.
Since 8B2

n + 1 and 8b2
n + 8bn + 1 are perfect squares,

√
8B2

n + 1 and
√

8b2
n + 8bn + 1 are

integers. Thus, nth Lucas-balancing and nth Lucas-cobalancing numbers were defined as

Cn =
√

8B2
n + 1 and cn =

√
8b2

n + 8bn + 1

respectively, in [3,4].
The recurrence relations of Lucas-balancing and Lucas-cobalancing numbers are

Cn+1 = 6Cn − Cn−1 (n ≥ 2)

cn+1 = 6cn − cn−1 (n ≥ 2)

where C1 = 3, C2 = 17 and c1 = 1, c2 = 7, respectively.
The Binet formulas for balancing, cobalancing, Lucas-balancing and Lucas-cobalancing

numbers are

Bn =
α2n

1 − α2n
2

4
√

2
bn =

α2n−1
1 − α2n−1

2

4
√

2
− 1

2

Cn =
α2n

1 + α2n
2

2
cn =

α2n−1
1 + α2n−1

2
2

where α1 = 1 +
√

2 and α2 = 1 −
√

2.
Since the first published article on balancing numbers, a lot of research has been con-

ducted on this topic by many authors [5–16]. Additionally, in [17], a relationship between
the Diophantine equation of balancing numbers and Fibonacci numbers was studied. In
[18], Rihane investigated the existence of balancing and Lucas-balancing numbers in the
terms of a k-generalized Fibonacci sequence. Moreover, in [19], balancing numbers were
generalized to t-balancing numbers and some algebraic identities regarding these numbers
were obtained. Furthermore, in [20], reciprocal sums involving balancing and Lucas-balancing
numbers were studied. Later, in [21], general identities were obtained related to reciprocal
sums of products of balancing and Lucas-balancing numbers. In addition to these, several
combinatorial expressions for balancing and Lucas-balancing numbers were obtained in [22].

In [23], Panda G. and Panda A. defined almost balancing numbers and showed that
there are two types of almost balancing numbers: A1-balancing and A2-balancing numbers.
They called n an A1-balancing number if

1 + 2 + · · ·+ (n − 1) + 1 = (n + 1) + (n + 2) + · · ·+ (n + r) (5)

for some positive integer r, which is called the A1-balancer of n.
They called n an A2-balancing number if

1 + 2 + · · ·+ (n − 1)− 1 = (n + 1) + (n + 2) + · · ·+ (n + r) (6)

for some positive integer r, which is called the A2-balancer of n.
Later, in [24], D-subbalancing numbers were introduced by substituting an arbitrary posi-

tive integer D instead of 1 and−1, which are the last terms of the left side of Equations (5) and (6).
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Moreover, positive integers r in the Diophantine equations of D-subbalancing numbers were
called D-subbalancers of D-subbalancing numbers.

Davala and Panda [25] introduced D-supercobalancing numbers, which are the solu-
tions of Diophantine equations obtained by adding the positive integer D to the right side
of the Diophantine equation of cobalancing numbers.

Further, it was pointed out that the choice of the positive integer D in the definition of
subbalancing and supercobalancing numbers has crucial importance in [24,25]. This is due to
the fact that D-subbalancing and D-supercobalancing numbers do not exist for every positive
integer D.

In [24], Davala and Panda showed that D-subbalancing numbers exist when the positive
integers D in the definition of subbalancing numbers are chosen as cobalancing numbers
and obtained at least two solution classes of the Diophantine equation of bm-subbalancing
numbers for m ≥ 2.

Similarly, in [25], Davala and Panda showed that D-supercobalancing numbers exist
when the positive integers D in the definition of supercobalancing numbers are chosen as
balancing numbers and obtained at least two solution classes of the Diophantine equation
of Bm-supercobalancing numbers for m ≥ 2.

Later, Rayaguru and Panda [26] showed that Tk-subbalancing and Tk-supercobalancing
numbers exist when the positive integers D in the definition of subbalancing and super-
cobalancing numbers are chosen as triangular numbers and obtained several algebraic
relations related to these numbers.

Sarı and Karadeniz-Gözeri [27] examined b3-subbalancing numbers obtained by tak-
ing D = b3 in the definition of subbalancing numbers and obtained various new identi-
ties related to these numbers. Further, they introduced b3-Lucas subbalancing numbers
and obtained some algebraic identities between b3-Lucas subbalancing numbers and b3-
subbalancing numbers.

Recently, in addition to the fact that the positive integer D in the definition of subbal-
ancing numbers can be chosen as cobalancing and triangular numbers, Sarı and Karadeniz-
Gözeri [28] proved that D-subbalancing numbers are obtained when the values of D are
chosen as the terms of the sequence of balancing numbers. Thus, they showed that for every
positive integer m, Bm-subbalancing numbers exist. Furthermore, they obtained at least
two solution classes of the Diophantine equation of Bm-subbalancing numbers for every
positive integer m and dealt with B3-subbalancing numbers obtained by taking D = B3 in
the definition of subbalancing numbers. They obtained several algebraic identities related
to these numbers and derived several algebraic relations between B3-subbalancing and
b3-subbalancing numbers.

In the present work, first we give an important result about the relationship between
D-supercobalancing numbers and D-subbalancers that correspond to D-subbalancing
numbers. Then, we examine B3-supercobalancing numbers obtained by taking D = B3
in the definition of supercobalancing numbers and obtain several new algebraic iden-
tities related to these numbers. Moreover, we show that the Diophantine equation of
B3-supercobalancing numbers has exactly two solution classes. We also give the recurrence
relation and the Binet formula for B3-supercobalancing numbers. Further, we obtain some
algebraic relations between B3-supercobalancing numbers and balancing, cobalancing,
Lucas-balancing, Lucas-cobalancing and B3-subbalancing numbers.

2. Relationship between Supercobalancing Numbers and Subbalancers

In this section, we show that D-supercobalancing numbers coincide with D-subbalancers
for the proper values of D.

Definition 1 ([24]). A positive integer n is a D-subbalancing number if

1 + 2 + · · ·+ (n − 1) + D = (n + 1) + (n + 2) + · · ·+ (n + r) (7)



Axioms 2024, 13, 523 4 of 14

for some positive integer r, where D is a fixed positive integer. The positive integer r in (7) is called
D-subbalancer of n.

As a result of this definition, we can give the following two corollaries.

Corollary 1. Let n be a D-subbalancing number and r a D-subbalancer of n. Then,

n2 + D =
(n + r)(n + r + 1)

2
and n =

(2r + 1)±
√

8r2 + 8r − 8D + 1
2

.

Proof. By using (7), we obtain

(n − 1)n
2

+ D =
(n + r)(n + r + 1)

2
− n(n + 1)

2

=
(n + r)(n + r + 1)

2
− n2 + n

2
.

Thus, we obtain

n2 + D =
(n + r)(n + r + 1)

2
(8)

On the other hand, from (8) we obtain

2n2 + 2D = n2 + 2nr + n + r2 + r

Thus, we obtain the quadratic equation

n2 − n(2r + 1)− (r2 + r − 2D) = 0 (9)

We obtain the solutions of the quadratic Equation (9) as follows:

n =
(2r + 1)±

√
8r2 + 8r − 8D + 1

2
.

Corollary 2. r is the D-subbalancer of a D-subbalancing number if and only if 8r2 + 8r − 8D + 1
is a perfect square.

Proof. Suppose that r is a D-subbalancer and 8r2 + 8r − 8D + 1 is not a perfect square.
Since r is the D-subbalancer of a D-subbalancing number, we obtain from Corollary 1

n =
(2r + 1)±

√
8r2 + 8r − 8D + 1

2
.

Thus, we obtain

2n − 2r − 1 = ±
√

8r2 + 8r − 8D + 1 (10)

The left side of Equation (10) is an integer, but since ±
√

8r2 + 8r − 8D + 1 is not a
perfect square, we find a contradiction.

Conversely, suppose that 8r2 + 8r − 8D + 1 is a perfect square. Then,

n =
(2r + 1)±

√
8r2 + 8r − 8D + 1

2

are integers. It can be seen from Corollary 1 that r is a D-subbalancer of the D-subbalancing
number n.
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Definition 2 ([25]). A positive integer n is a D-supercobalancing number if

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + D (11)

for some positive integer r, where D is a fixed positive integer. The positive integer r in (11) is called
D-supercobalancer of n.

As a result of this definition, we can give the following two corollaries.

Corollary 3. Let n be a D-supercobalancing number and r a D-supercobalancer of n. Then

r =
−(2n + 1) +

√
8n2 + 8n − 8D + 1
2

.

Proof. By using (11), we obtain

n(n + 1)
2

=
(n + r)(n + r + 1)

2
− n(n + 1)

2
+ D.

Thus, we obtain

n2 + n =
(n + r)(n + r + 1)

2
+ D (12)

On the other hand, from (12) we obtain

2n2 + 2n − 2D = n2 + 2nr + n + r2 + r

Thus, we obtain the quadratic equation

r2 + r(2n + 1)− (n2 + n − 2D) = 0 (13)

We obtain the solutions of the quadratic equation (13) as follows:

r =
−(2n + 1)±

√
8n2 + 8n − 8D + 1
2

.

Since r is a positive integer, we obtain

r =
−(2n + 1) +

√
8n2 + 8n − 8D + 1
2

.

Corollary 4. n is a D-supercobalancing number if and only if 8n2 + 8n − 8D + 1 is a perfect
square.

Proof. Suppose that n is a D-supercobalancing number and 8n2 + 8n − 8D + 1 is not a
perfect square. Since n is a D-supercobalancing number, we obtain from Corollary 3

2r + 2n + 1 =
√

8n2 + 8n − 8D + 1 (14)

The left side of Equation (14) is an integer, but since
√

8n2 + 8n − 8D + 1 is not a
perfect square, we find a contradiction.

Conversely, suppose that 8n2 + 8n − 8D + 1 is a perfect square. Then,

r =
−(2n + 1) +

√
8n2 + 8n − 8D + 1
2
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is an integer. It can be seen from Definition 2 that n is a D-supercobalancing number.

It can be seen from Corollary 2 and Corollary 4 that D-supercobalancing numbers and
D-subbalancers coincide.

We now give the following examples that will be extremely useful in analyzing the
relationship between D-supercobalancing numbers and D-subbalancers.

If D = B1, then B1-supercobalancing numbers satisfy the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + 1.

It is obvious from Corollary 4 that since n is a B1-supercobalancing number, 8n2 + 8n − 7
is a perfect square. On the other hand, it is obvious from Corollary 2 that since 8n2 + 8n − 7 is
a perfect square, n is a B1-subbalancer. Consequently, n is both a B1-supercobalancing number
and a B1-subbalancer. For example, 1, 7, 43 and 253 are all B1-supercobalancing numbers and
B1-subbalancers.

If D = B2, then B2-supercobalancing numbers satisfy the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + 6.

It is obvious that n is both a B2-supercobalancing number and a B2-subbalancer. For
example, 2, 3, 6 and 8 are all B2-supercobalancing numbers and B2-subbalancers.

If D = B3, then B3-supercobalancing numbers satisfy the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + 35.

It is obvious that n is both a B3-supercobalancing number and a B3-subbalancer. For
example, 7, 9, 35 and 49 are all B3-supercobalancing numbers and B3-subbalancers.

3. Some Properties of B3-Supercobalancing Numbers

In [25], at least two solution classes of the Diophantine equation of Bm-supercobalancing
numbers were given for m ≥ 2. In this section, first we show that there are exactly two
solution classes of the Diophantine equation of B3-supercobalancing numbers. Then, we
obtain some algebraic identities regarding these numbers.

Throughout this paper, the nth B3-supercobalancing number is denoted by (sB3)n.
For the notation of B3-supercobalancing numbers, we use the property of cobalancing
numbers to be the balancers of corresponding to balancing numbers. Since the nth B3-
subbalancing number is denoted by (SB3)n in [28], and B3-subbalancers corresponding to
B3-subbalancing numbers are B3-supercobalancing numbers, we prefer this notation, with
a relationship similar to the relationship between the notation of balancing and cobalancing
numbers. Moreover, the nth balancing number is denoted by Bn, the nth cobalancing
number is denoted by bn, the nth Lucas-balancing number is denoted by Cn and the nth
Lucas-cobalancing number is denoted by cn.

We give the following theorem to use in order to prove the theorem that gives the
solution classes of the Diophantine equation of B3-supercobalancing numbers. We also
use similar techniques included in [23,29,30] in order to prove the theorem that gives these
solution classes.

Theorem 1. For every positive integer m, the relationship between balancing, Lucas-balancing
numbers and cobalancing, Lucas-cobalancing numbers are

15Cm − 26Bm = 34bm + 2cm + 17

and
15Cm + 26Bm = 34bm+1 − 2cm+1 + 17.
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Proof. From the Binet formulas for balancing, Lucas-balancing, cobalancing and Lucas-
cobalancing numbers, we deduce that

15Cm − 26Bm = 15

(
α2m

1 + α2m
2

2

)
− 26

(
α2m

1 − α2m
2

4
√

2

)

= α2m
1

(
30
√

2 − 26
4
√

2

)
+ α2m

2

(
30
√

2 + 26
4
√

2

)

= α2m−1
1

(
34

4
√

2
+ 1
)
+ α2m−1

2

(
−34
4
√

2
+ 1
)

= 34

(
α2m−1

1 − α2m−1
2

4
√

2
− 1

2

)
+ 2

(
α2m−1

1 + α2m−1
2

2

)
+ 17

= 34bm + 2cm + 17.

The other case can be proved similarly.

Theorem 2. The Diophantine equation of B3-supercobalancing numbers has exactly two solution
classes, that is, B3-supercobalancing numbers are in the form

(17bk + ck + 8) and (17bk+1 − ck+1 + 8)

for k ≥ 1.

Proof. Let n be a B3-supercobalancing number. Then, 8n2 + 8n − 279 is a perfect square.
Thus, it is necessary to solve the generalized Pell equation y2 − 2x2 = −281 (y ∈ Z) in
order to obtain all the B3-supercobalancing numbers, where x = 2n + 1.

The fundamental solution of the Pell equation y2 − 2x2 = 1 is (y, x) = (3, 2) and there
are two solution classes of the generalized Pell equation y2 − 2x2 = −281 as (y, x) = (13, 15)
and (y, x) = (−13, 15). Thus, the solutions corresponding to these two classes are given by

yk + xk
√

2 = (13 + 15
√

2)(3 + 2
√

2)k (k = 1, 2, · · · ) (15)

yk + xk
√

2 = (−13 + 15
√

2)(3 + 2
√

2)k (k = 1, 2, · · · ) (16)

respectively.
By solving Equations (15) and (16), we obtain

xk = 26

(
α2k

1 − α2k
2

4
√

2

)
+ 15

(
α2k

1 + α2k
2

2

)

yk = 13

(
α2k

1 + α2k
2

2

)
+ 60

(
α2k

1 − α2k
2

4
√

2

)

x
′
k = −26

(
α2k

1 − α2k
2

4
√

2

)
+ 15

(
α2k

1 + α2k
2

2

)

y
′
k = −13

(
α2k

1 + α2k
2

2

)
+ 60

(
α2k

1 − α2k
2

4
√

2

)

where α1 = 1 +
√

2 and α2 = 1 −
√

2.
Thus, using the Binet formulas for balancing and Lucas-balancing numbers, we fi-

nally obtain

xk = 26Bk + 15Ck and x
′
k = −26Bk + 15Ck (k ≥ 1).



Axioms 2024, 13, 523 8 of 14

Since x = 2n+ 1 and the values of n satisfying the generalized Pell equation y2 − 2x2 =
−281 are B3-supercobalancing numbers, we find that B3-supercobalancing numbers are in
the form

nk =
26Bk + 15Ck − 1

2
and n

′
k =

−26Bk + 15Ck − 1
2

(k ≥ 1).

By using Theorem 1, we obtain

nk = 17bk+1 − ck+1 + 8 and n
′
k = 17bk + ck + 8.

Thus, B3-supercobalancing numbers are in the form

(17bk + ck + 8) and (17bk+1 − ck+1 + 8) (k ≥ 1).

In [25], at least two solution classes of B2t−1-supercobalancing numbers were given as

(2Bt + Ct−1)Cl + 2(Ct − 4Bt−1)Bl − 1
2

and
(2Bt + Ct−1)Cl − 2(Ct − 4Bt−1)Bl − 1

2

for l ≥ 1. In the case of t = 2, it can be seen that the solutions obtained from these formulas
and the solutions given in Theorem 2 coincide.

The smallest positive integer satisfying the formulas of the solutions is 9. On the other
hand, for D = B3, we find that B3-subbalancers that correspond to the first two terms of
the sequence of B3-subbalancing numbers are 7 from Corollary 1. Because of this, we call
the first two terms of this sequence as 7.

As a result of this theorem, we can give the following corollary.

Corollary 5. For any positive integer m, the relationship between B3-supercobalancing numbers
and cobalancing, Lucas-cobalancing numbers is

(sB3)2m = 17bm + cm + 8

(sB3)2m+1 = 17bm+1 − cm+1 + 8.

Theorem 3. The recurrence relation of B3-supercobalancing numbers is

(sB3)m+2 = 6(sB3)m − (sB3)m−2 + 2 (m ≥ 2)

where (sB3)0 = 7, (sB3)1 = 7, (sB3)2 = 9 and (sB3)3 = 35.

Proof. It can be obtained by using Corollary 5 and recurrence relations of cobalancing and
Lucas-cobalancing numbers.

Corollary 6. For every m ≥ 2, B3-supercobalancing numbers satisfy

(sB3)2m = 6(sB3)2m−2 − (sB3)2m−4 + 2

and

(sB3)2m+1 = 6(sB3)2m−1 − (sB3)2m−3 + 2.

Proof. It can be proved by using Theorem 3.

Corollary 7. Every B3-supercobalancing number is odd.

Proof. Since the values of bm are even and the values of cm are odd for m ≥ 1, it can be
proved by using Corollary 5.
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In the following theorem, the Binet formula for B3-supercobalancing numbers is given.

Theorem 4. For every positive integer m,

(sB3)2m =

(
17 + 2

√
2
)

α2m−1
1 − (17 − 2

√
2)α2m−1

2

4
√

2
− 1

2

and

(sB3)2m+1 =

(
17 − 2

√
2
)

α2m+1
1 − (17 + 2

√
2)α2m+1

2

4
√

2
− 1

2

where α1 = 1 +
√

2 and α2 = 1 −
√

2.

Proof. From Corollary 5 and the Binet formulas for cobalancing and Lucas-cobalancing
numbers, we obtain

(sB3)2m = 17

(
α2m−1

1 − α2m−1
2

4
√

2
− 1

2

)
+

(
α2m−1

1 + α2m−1
2

2

)
+ 8

=

(
17 + 2

√
2
)

α2m−1
1 − (17 − 2

√
2)α2m−1

2

4
√

2
− 1

2
.

The other case can be proved similarly.

Theorem 5. For every m ≥ 2, B3-supercobalancing numbers satisfy

(sB3)2m =
281(sB3)2m−1 − 34(sB3)2m−2 + 26

195

and

(sB3)2m+1 =
281(sB3)2m − 195(sB3)2m−1 + 26

34
.

Proof. It follows from Corollary 5 that

(sB3)2m = bm+1 + 14bm + 7 (17)

and

(sB3)2m−1 = 14bm + bm−1 + 7 (18)

By using (17) and (18), we obtain

(sB3)2m =
3900bm − 195bm−1 + 1755

195

=
281(14bm + bm−1 + 7)− 34(bm + 14bm−1 + 7) + 26

195

=
281(sB3)2m−1 − 34(sB3)2m−2 + 26

195
.

The other case can be proved similarly.

Theorem 6. For every m ≥ 2, B3-supercobalancing numbers satisfy

[(sB3)m − 1]2 = (sB3)m−2(sB3)m+2 − 279.
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Proof. This theorem is proved by induction. It is easily seen that the assertion is true
for m = 2.

Assuming the assertion is true for m ≤ k, we have

[(sB3)k+1 − 1]2 = (sB3)
2
k+1 − 2(sB3)k+1 + 1

= (sB3)
2
k+1 + (sB3)k−3(sB3)k+1 − 2(sB3)k+1 − [(sB3)k−1 − 1]2 − 278

= [(sB3)k+1 + (sB3)k−3 − 2](sB3)k+1 − [(sB3)k−1 − 1]2 − 278

= 6(sB3)k−1(sB3)k+1 − (sB3)
2
k−1 + 2(sB3)k−1 − 279

= (sB3)k−1(sB3)k+3 − 279.

Thus, it is shown that the assertion is true for m = k + 1.

4. Some Relations between the Sequence of B3-Supercobalancing Numbers and the
Other Integer Sequences

In this section, we give several algebraic identities between B3-supercobalancing num-
bers and balancing, cobalancing, Lucas-balancing, Lucas-cobalancing and B3-subbalancing
numbers. We can give the following theorem on the relationship between B3-supercobalancing
and cobalancing numbers which can be proved by using (17) and (18).

Theorem 7. For any positive integer m,

(sB3)2m = 34bm − (sB3)2m−1 + 16

and
(sB3)2m+1 = 14(sB3)2m − 195bm − 91.

As a result of this theorem, we can give the following four corollaries.

Corollary 8. For every m ≥ 2, the relationship between the terms of the sequence of B3-supercobala-
ncing numbers and balancing numbers is

[(sB3)2m+2 + (sB3)2m+1]− [(sB3)2m + (sB3)2m−1] = 68Bm.

Corollary 9. The sum of any even term of the sequence of B3-supercobalancing numbers and the
preceding one is a multiple of 4. Equivalently to this, the sum of any odd term of the sequence of
B3-supercobalancing numbers and the next one is a multiple of 4.

Corollary 10. For any positive integer m, the relations between B3-supercobalancing numbers and
balancing, cobalancing numbers are

(sB3)2m = 2Bm + 15bm + 7

and
(sB3)2m+1 = 28Bm + 15bm + 7.

Corollary 11. For every m ≥ 2, the relationship between the terms of the sequence of B3-
supercobalancing numbers and cobalancing numbers is

7(sB3)2m = 10(sB3)2m−1 − 17bm−1 − 7.

Theorem 8. For every m ≥ 2, the relationship between the terms of the sequence of B3-supercobalan-
cing numbers and Lucas-cobalancing numbers is

(sB3)2m = (sB3)2m−1 + 2cm.
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Proof. It can be proved by using Corollary 5.

Theorem 9. For any positive integer m, the relationship between the terms of the sequence of
B3-supercobalancing numbers and Lucas-balancing numbers is

(sB3)2m+1 = 15Cm − (sB3)2m − 1.

Proof. From Corollary 10, we obtain

(sB3)2m+1 = 30Bm + 30bm + 14 − (sB3)2m. (19)

Then, by using the relations between balancing and cobalancing and Lucas-balancing
numbers, we obtain

(sB3)2m+1 = 15bm+1 + 15bm + 14 − (sB3)2m

= 15
(

Bm+1 − Bm − 1
2

)
+ 15

(
Bm − Bm−1 − 1

2

)
+ 14 − (sB3)2m

=
15
2
(Bm+1 − Bm−1)− (sB3)2m − 1

= 15(3Bm − Bm−1)− (sB3)2m − 1

= 15Cm − (sB3)2m − 1.

Corollary 12. For every m ≥ 2, the relationship between the terms of the sequence of B3-
supercobalancing numbers and balancing numbers is

(sB3)2m+1 + (sB3)2m = 60
m−1

∑
i=1

Bi + 30Bm + 14.

Proof. From (19) and the relation between balancing and cobalancing numbers, we obtain

(sB3)2m+1 + (sB3)2m = 30[2(B1 + B2 + · · ·+ Bm−1)] + 30Bm + 14

= 60
m−1

∑
i=1

Bi + 30Bm + 14.

Theorem 10. For any positive integer m, the relationship between the terms of the sequence of
B3-supercobalancing numbers and balancing numbers is

(sB3)2m+1 = (sB3)2m + 26Bm.

Proof. From (17), (18) and the relation between balancing and cobalancing numbers, we obtain

(sB3)2m+1 = 13bm+1 − 13bm + (sB3)2m

= 13(bm+1 − bm) + (sB3)2m

= 26Bm + (sB3)2m.

From the above theorem, we can give the following corollary on the sums of B3-
supercobalancing numbers.
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Corollary 13. For any positive integer m,

m

∑
i=1

[(sB3)2i+1 − (sB3)2i] = 13bm+1.

Corollary 14. For every m ≥ 2, the relationship between the terms of the sequence of B3-
supercobalancing numbers and balancing numbers is

(sB3)2m+1 − (sB3)2m−1 = 2(14Bm + Bm−1).

Proof. From Theorem 8, Theorem 10 and the relation between balancing and Lucas-
cobalancing numbers, we obtain

(sB3)2m+1 − (sB3)2m−1 = 2(13Bm + cm)

= 2(13Bm + Bm + Bm−1)

= 2(14Bm + Bm−1).

Theorem 11. The relations between the terms of the sequence of B3-supercobalancing numbers and
balancing, Lucas-balancing numbers are

(sB3)2m =
Cm+1 − 2Bm−2 − 1

2
(m ≥ 2)

and
(sB3)2m+1 =

5Cm+1 − 14Bm − 1
2

(m ≥ 1).

Proof. From (17) and the relation between balancing and cobalancing numbers, we obtain

(sB3)2m =

(
Bm+1 − Bm − 1

2

)
+ 14

(
Bm − Bm−1 − 1

2

)
+ 7

=
17Bm − 3Bm−1 − 2Bm−2 − 1

2

=
Cm+1 − 2Bm−2 − 1

2
.

The other case can be proved similarly.

Theorem 12. For every m ≥ 2, the relationship between the even terms of the sequence of B3-
supercobalancing numbers and balancing numbers is

15(sB3)2m − (sB3)2m+2 = 13Bm+1 − 15Bm−2 − 7.

Proof. From Theorem 9, Theorem 10 and Theorem 11, we obtain

(sB3)2m+2 = 15Cm+1 − (sB3)2m+3 − 1

= 15[2(sB3)2m + 2Bm−2 + 1]− [(sB3)2m+2 + 26Bm+1]− 1

= 30(sB3)2m + 30Bm−2 − (sB3)2m+2 − 26Bm+1 + 14.

Thus, we deduce that

15(sB3)2m − (sB3)2m+2 = 13Bm+1 − 15Bm−2 − 7.
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In the following theorem and corollary, some identities between B3-supercobalancing
and B3-subbalancing numbers are given.

Theorem 13. For every m ≥ 0, the relations between the terms of the sequence of B3-supercobalancing
numbers are

(SB3)2m =
(sB3)2m+2 − (sB3)2m

2
and

(SB3)2m+1 =
(sB3)2m+3 − (sB3)2m+1

2
.

Proof. From (17) and the relation between B3-subbalancing and balancing numbers, we obtain

(SB3)2m = 14Bm + Bm+1

=
bm+2 + 13bm+1 − 14bm

2

=
(sB3)2m+2 − (sB3)2m

2
.

The other case can be proved by using Corollary 13 and the relation between B3-
subbalancing and balancing numbers.

Corollary 15. B3-supercobalancing and B3-subbalancing numbers satisfy

m

∑
i=0

(SB3)2i =
(sB3)2m+2 − 7

2

and
m

∑
i=0

(SB3)2i+1 =
(sB3)2m+3 − 7

2
.

Proof. It can be proved by using Theorem 13.

5. Conclusions

In this work, we deduced some new results on supercobalancing numbers. One of the
important results obtained in this paper is about the relationship between supercobalancing
numbers and subbalancers. Besides this, we determined all the solution classes of the
Diophantine equation related with B3-supercobalancing numbers. We also investigated the
relationship between these numbers and the other integer sequences. In addition to these,
some similarities between B3-supercobalancing and cobalancing numbers can be noticed
by examining Theorem 3 and Theorem 6. Furthermore, by examining Theorem 10 and
Corollary 15, it can be observed that similar relations between balancing and cobalancing
numbers also exist between B3-subbalancing and B3-supercobalancing numbers.
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