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Abstract: In this paper, we implement the finite detail technique primarily based on T-Splines for
approximating solutions to the linear elasticity equations in the connected and bounded Lipschitz
domain. Both theoretical and numerical analyses of the Dirichlet and Neumann boundary problems
are presented. The Reissner–Mindlin (RM) hypothesis is considered for the investigation of the me-
chanical performance of a 3D cylindrical shell pipe without and with preformed hole problems under
concentrated and compression loading in the linear elastic behavior for trimmed and untrimmed
surfaces in structural engineering problems. Bézier extraction from T-Splines is integrated for an iso-
geometric analysis (IGA) approach. The numerical results obtained, particularly for the displacement
and von Mises stress, are compared with and validated against the literature results, particularly with
those for Non-Uniform Rational B-Spline (NURBS) IGA and the finite element method (FEM) Abaqus
methods. The obtained results show that the computation time of the IGA based on the T-Spline
method is shorter than that of the IGA NURBS and FEM Abaqus/CAE (computer-aided engineering)
methods. Furthermore, the highlighted results confirm that the IGA approach based on the T-Spline
method shows more success than numerical reference methods. We observed that the NURBS IGA
method is very limited for studying trimmed surfaces. The T-Spline method shows its power and
capability in computing trimmed and untrimmed surfaces.

Keywords: isogeometric analysis; Reissner–Mindlin theory; NURBS; T-splines; Bézier extraction;
linear elasticity; Abaqus/computer-aided engineering; MATLAB

MSC: 82C27; 65K15

1. Introduction

Isogeometric analysis (IGA) is a recently developed computational technique. This
approach was supported by a study conducted by Hughes et al. [1] aiming to link computer-
aided design (CAD) and finite element analysis (FEA). The IGA approach is primarily
based on the isogeometric paradigm, approximating the unknown response of the partial
differential equation using equal foundation features to symbolize the considered geometry.
The IGA approach has been used to numerically approximate quite a few problems and
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has proved to be correct and environmentally friendly. A detailed discussion of the use
of the IGA approach to solve linear and nonlinear equations for elastic or hydrodynamic
problems can be found in [2,3].

In addition, the IGA approach optionally allows for the use of globally smooth basis
functions. This gives benefits in the numerical approximation of higher-order PDEs inside
the widespread Galerkin formulation. Due to the extensive use of NURBSs (Non-Uniform
Rational B-Splines) [4] in CAD technology, we explicitly point out that IGA is primarily
based on NURBSs, considering the mathematical properties of these basis functions.

One of the major capabilities of NURBSs that enables the numerical approximation of
higher-order partial differential equations in the context of the Galerkin approach is the fact
that the basic capability of NURBSs can be globally Ck non-stopping for k ≥ 0 inside the
computational domain. This property makes it possible to solve the problem with a weak
form of direct discretization without resorting to mixed formulations, such as FEA [5,6].
In [7], the hull structure problem was solved using IGA, especially the Kirchhoff–Love
model. In [8], a high-order formula, the stream function, was used to solve the plane
elasticity problem in the IGA context, and an estimation of the error convergence rate with
respect to the spot size was performed numerically.

T-Splines were developed by Sederberg et al. Introduced in [9] (2004), they have
been extensively studied over the last decade by Y. Bazilevs et al. (2010) [1]. T-Splines
are generalizations of NURBS surfaces, of which their mesh management permits for T-
connections. T-Splines substantially lessen the range of needless manage factors in NURBS
surfaces, permitting treasured operations that are inclusive of neighborhood refinement
and merge a couple of B-Spline surfaces into a steady framework [10].

CAD-derived T-Splines triumph over the restrictions of tensor products inherent in
NURBSs [11]. In fact, NURBSs shape a constrained subset of T-Splines. Additionally,
T-Splines may be regionally refined [12] to generate fashions appropriate for studying
topological complexity [13]. This makes T-Splines an excellent foundation for isogeometric
evaluations. The extension of the isogeometric framework to superior T-Spline configura-
tions was initiated in [14,15]. T-Spline discretization has been correctly implemented for
fractures and injuries [16]. Efficient nearby refinement performs a key function in such
applications. Early paintings extending the use of T-Splines have been primarily based
on the isogeometric evaluation of arbitrary topological frameworks associated with hull
structures and have been promising.

The widespread concept of Bézier extraction involves the creation of a linear map of
the T-Spline foundation features and nearby Bernstein foundation features based on Bézier
elements. Using Bézier extraction operators, preferred FEA applications may be reused in
IGA by editing the most effective form feature subroutine [17].

IGA based on NUBRSs is limited to the evaluation of trimmed surfaces; it requires
specific adjustments in terms of the interpolation domain, especially the B-Spline or NUBRS
interpolation functions in order to consider the trimmed geometry [18]. Alternatively,
MultiPatch specifically relies on Kirchhoff–Love shell theory for trimmed surfaces, as
outlined by Reichle et al. [19]. The isogeometric analysis approach based on the use of
T-Splines is designed to mitigate the limitations of NURBSs. T-Splines provide a high
level of flexibility in 3D surface shaping, and they are often used in conjunction with
subdivision surfaces. This combination allows for the creation of highly detailed models
with smooth surfaces.

According to the literature review, several researchers are interested in investigating
cylindrical shell structures (for example, aircraft fuselages, cooling towers, and reactor
vessels) in the field of linear elasticity and elastoplastic behavior. These studies are based
on experimental and numerical analyses employing the finite element method or the IGA
approach, which are appropriate choices for modeling curved structures. One of the
advantages of the IGA approach is that it allows us to approximate the exact geometry
using NURBS functions. This provides better displacement and stress calculation results
when compared to the finite element method. Du et al. [20] employed an IGA approach
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within MATLAB to investigate several benchmark examples in both 2D and 3D cases. In
another work [21], the author developed the IGA method for thin-walled structures based
on Bézier extraction in linear and nonlinear frameworks.

Pipes have been integrated into cylindrical shell structures. Used in various fields
(naval, aeronautical, and mechanical structures), these structures are subjected to many
mechanical [22,23], thermal [24], and earthquake [25] loads. These loadings reduce their
performance. Due to the importance of these structures, several researchers and engineers
have studied them in order to preserve their integrity and understand their mechanical
behavior under various loads. Zhang et al. [26] studied the mechanical behavior of a
pipeline buried under soil under traffic loads generated by the movement of vehicles
above. The findings showed that the effects and impacts of vehicles are reduced when
increasing the thickness and diameter of the pipelines. On the other hand, EL Fakkoussi
et al. [27,28] investigated a cracked pipeline using the FEM and eXtended Finite Element
Method (XFEM) to calculate the stress intensity factor (KI) in mode I. They also developed
a method to calculate KI according to extended isogeometric analysis (XIGA), which is
based on exact geometric modeling. Hussain et al. [29] predicted stress corrosion cracking
in gas transportation pipelines using artificial intelligence, especially machine learning.
These methods are based on several input data such as corrosion, cracking mechanisms,
mechanical damage, and maintenance activities. These works contribute to investigating
pipelines for potential issues and provide valuable input data for future studies utilizing
machine learning and artificial intelligence methodologies.

The new IGA approach has become the most powerful numerical method in the
field of computational modeling and simulation. Unlike the finite element method, the
results of the IGA approach are not sensitive to mesh quality or local refinement. This
gives us some confidence in terms of numerical stability and convergence. The mechanical
performance analysis of 3D cylindrical shell pipes with and without preformed holes using
the T-Spline approach for isogeometric analysis has been investigated little, as evidenced
in the literature review.

This study investigated 3D cylindrical shell pipes with and without preformed holes
under concentrated compression loading in relation to their linear elastic behavior, while
also using the T-Spline approach for isogeometric analysis in the case of trimmed surfaces.
Problems relating to cylinders that have preformed holes have never been studied using
the T-Spline method, and this work will provide additional theoretical and numerical value
to the literature, especially in terms of evaluating the mechanical performance of cylindrical
shell pipes as well as evaluating and exploiting the robustness of the T-Spline method for
the study of curved structures with untrimmed and trimmed surfaces. The results obtained
were compared and validated with results found in the literature, especially those relating
to the use of the NURBS IGA and Abaqus methods.

This paper is organized into three parts. The first section examines the mathematical
equations, including the modified linear elasticity equation, the weak formulation, the
Bézier extraction of T-Splines, and the parameters of the mechanical damage criterion. The
following section explains the steps used to model a 3D cylindrical shell pipe subjected to a
concentrated compressive load using the FEM based on Abaqus/computer-aided engineer-
ing (CAE), the IGA approach based on NURBS, and the T-Spline methods implemented
in the MATLAB R2021a environment. The last section presents the results, focusing on
the numerical results of displacement and stress in the cylindrical shell pipe subjected to a
concentered compressive elastic load benchmark. The obtained results were compared and
validated with the literature results, especially those relating to the use of NURBS IGA and
FEM Abaqus/CAE methods. Additionally, we evaluated issues concerning a 3D cylindrical
shell or pipe that has preformed holes.
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2. Materials and Methods

In this paper, we present a comprehensive investigation of the Dirichlet boundary prob-
lem for linear elasticity systems in bounded Lipschitz domains with connected boundaries.
This leads to the formulation of the following model:

−µdiv(
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 (1)

Let 𝛺 →  ℝ௡, 𝑛 = 2, 3 represent an elastic solid subjected to a surface or volume 
force 𝑓. Denote its boundary by Γ = ∂Ω = 𝛤஽ ∪ 𝛤ே. 𝛤஽ represents the Dirichlet boundary 
condition, 𝛤ே  represents the Neumann boundary condition, 𝜇 represents a material 
property, and 𝜆 represents a material parameter. 

The solid body is under the small deformation assumption. The displacement field 
u is, therefore, the solution of the following system [30]:  

Find 𝑢 ∶ 𝛺  →   ℝ௡  

where n is the normal vector directed toward the outside of the solid body, and t is the 
traction force applied to the surface of the solid body.  
Weak formulation 

We assume that we have 𝑢 = 𝑔 and that it represents non-homogeneous Dirichlet 
boundary conditions for the displacement field. Then, we look for weak solutions to the 
Navier Lamé equation in the space 𝐻 = ሾ𝐻ଵ(𝛺)  ሿ௡   𝑀 = 𝐿ଶ(𝛺). (2)

Then, we look to the solution in the space 𝐻 ଴ if 𝑢 = 0:  𝐻 ଴ ≔ ሾ𝐻଴ଵ (𝛺)  ሿ௡, with: 𝑛 =  2 𝑜𝑟 3. (3)

For all 𝑣 ∈  𝐻, −𝜇 ׬ 𝑑𝑖𝑣(𝛻𝑢). 𝑣𝑑𝑣 − (𝜇 + 𝜆) ׬ 𝛻൫𝑑𝑖𝑣(𝑢)൯. 𝑣 𝑑𝑣 Ω Ω ׬ =  𝑓. 𝑣 𝑑𝑣 Ω . (4)

We obtain that for all ∀ 𝑣 ∈  𝐻, μ ׬ 𝛻(𝑢): 𝛻𝑣 𝑑𝑣 + (𝜇 + 𝜆) ׬ 𝛻. 𝑢 𝛻. 𝑣  Ω  𝑑𝑣 − 𝜇 ׬ (𝛻. 𝑢)𝑛. 𝑣 𝑑𝛤 ௰ಿ = ׬  𝑓. 𝑣 Ω  𝑑𝑣 ׬ + 𝑡. 𝑣 𝑑𝛤 ௰ಿ Ω . (5)

Bilinear and linear forms:  
Let us introduce the following bilinear forms: 

u)− (µ + λ)
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∂n + λ
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·un = t on ΓN .
(1)

Let Ω → Rn, n = 2, 3 represent an elastic solid subjected to a surface or volume
force f . Denote its boundary by Γ = ∂Ω = ΓD ∪ ΓN . ΓD represents the Dirichlet bound-
ary condition, ΓN represents the Neumann boundary condition, µ represents a material
property, and λ represents a material parameter.

The solid body is under the small deformation assumption. The displacement field u
is, therefore, the solution of the following system [30]:

Find u : Ω → Rn

where n is the normal vector directed toward the outside of the solid body, and t is the
traction force applied to the surface of the solid body.

Weak formulation

We assume that we have u = g and that it represents non-homogeneous Dirichlet
boundary conditions for the displacement field. Then, we look for weak solutions to the
Navier Lamé equation in the space

H =
[

H1(Ω)
]n

M = L2(Ω). (2)

Then, we look to the solution in the space H0 if u = 0:

H 0
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Applying non-homogeneous Dirichlet boundary conditions in the weak formulation 
of a problem using Lagrange multipliers is an elegant technique for systematically inte-
grating these conditions. We construct an augmented formulation by adding a Lagrange 
term to impose 𝑢 = 𝑢௚ on 𝛤஽; the formulation (10) become: 

[
H1

0 (Ω)
]n

, with : n = 2 or 3. (3)

For all v ∈ H,

−µ
∫

Ω
div(
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where n is the normal vector directed toward the outside of the solid body, and t is the 
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Bilinear and linear forms:  
Let us introduce the following bilinear forms: 

u)·vdv− (µ + λ)
∫

Ω
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(div(u))·v dv=
∫

Ω
f ·v dv. (4)

We obtain that for all ∀v ∈ H,

µ
∫

Ω
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(
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Navier Lamé equation in the space 𝐻 = ሾ𝐻ଵ(𝛺)  ሿ௡   𝑀 = 𝐿ଶ(𝛺). (2)

Then, we look to the solution in the space 𝐻 ଴ if 𝑢 = 0:  𝐻 ଴ ≔ ሾ𝐻଴ଵ (𝛺)  ሿ௡, with: 𝑛 =  2 𝑜𝑟 3. (3)

For all 𝑣 ∈  𝐻, −𝜇 ׬ 𝑑𝑖𝑣(𝛻𝑢). 𝑣𝑑𝑣 − (𝜇 + 𝜆) ׬ 𝛻൫𝑑𝑖𝑣(𝑢)൯. 𝑣 𝑑𝑣 Ω Ω ׬ =  𝑓. 𝑣 𝑑𝑣 Ω . (4)

We obtain that for all ∀ 𝑣 ∈  𝐻, μ ׬ 𝛻(𝑢): 𝛻𝑣 𝑑𝑣 + (𝜇 + 𝜆) ׬ 𝛻. 𝑢 𝛻. 𝑣  Ω  𝑑𝑣 − 𝜇 ׬ (𝛻. 𝑢)𝑛. 𝑣 𝑑𝛤 ௰ಿ = ׬  𝑓. 𝑣 Ω  𝑑𝑣 ׬ + 𝑡. 𝑣 𝑑𝛤 ௰ಿ Ω . (5)

Bilinear and linear forms:  
Let us introduce the following bilinear forms: 

·u)n·v dΓ =
∫

Ω
f ·v dv +

∫
ΓN

t·v dΓ. (5)

Bilinear and linear forms:

Let us introduce the following bilinear forms:

a1 : X 0 × X 0 → R , a(u, v) = µ
∫

Ω
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ΓN
(
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·v dv; (7)

Λ : X 0 × X 0 → R , Λ(u, v) = a1(u, v) + a2(u, v). (8)

Furthermore, we define the following linear form:

F : X 0 → R, F(v) =
∫

Ω
f ·v dv +

∫
ΓN

t·v dΓ. (9)
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Given f , find u ∈ H such that u = g:

∀ v ∈ H, Λ(u, v) = F(v). (10)

Applying non-homogeneous Dirichlet boundary conditions in the weak formulation of
a problem using Lagrange multipliers is an elegant technique for systematically integrating
these conditions. We construct an augmented formulation by adding a Lagrange term to
impose u = ug on ΓD; the Formulation (10) become:{

Λ + Lt λ = F
Lu = µ

(11)

where L is the matrix associated with the Lagrange multipliers, and µ imposes Dirichlet
conditions. The solution of this system allows us to find the displacements. u and the
multipliers λ ensure that the boundary conditions are respected.

2.1. Bézier Extraction of T-Spline Basis

Like conventional finite detail analysis, the extracted Bezier factors of T-Splines are
described as shown in Figure 1. A set of constant phrases in a polynomial foundation
feature are referred to as a Bernstein foundation. Bezier factors may be processed in
an identical manner as applied to widespread finite detail computer programs using
identical information processing tables. In fact, it is convenient that only the form feature
subprogram requires a change, as all of the different components relevant to the application
of finite detail remain identical. A by-product of the extraction method is a detail extraction
operator. This operator identifies detail-stage topology facts and worldwide smoothing
facts and represents the canonical processing of T-joints. T-joints, referred to as “placing
nodes” in finite detail analysis, are an essential characteristic of T-Splines.
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Figure 1. See [31] for a Bézier extraction diagram of the B-Spline curve. The basic capabilities and
control points of the B-Spline are denoted as N and P, respectively. The Bernstein polynomial and the
control points are denoted as B and Q, respectively.

The idea of Bezier extraction is to reduce the number of control points while respecting
the geometry without modifying the domain we would like to study. Further, Bezier
extraction applies a local refinement to some parts of the domain (in which there will be
major displacements). This technique improves the resolution of the FEM and generates
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precise results since the number of degrees of freedom is reduced. Note that the geometry
must not change when inserting nodes.

Bezier extraction is fundamentally based on knot insertion, which will be briefly out-
lined for the univariate case below. A new knot ξ ∈ [ξi, ξi+1] can be inserted into the open
node vector, resulting in the modified knot vector Ψ =

{
ξ1, ξ2, . . . ·ξi, ξ, ξi+1 . . . ξn+p+1

}
,

and n is the number of the basis function of order p, where p < i < n + 1.
This insertion produces a new set of basis functions. To preserve the geometry or ap-

proximation while altering the parametrization of the basis, new control point values,
{

Qj
}

,
j = 1 . . . m, must be calculated from the original control points,

{
Pj
}

, j = 1 . . . m, accord-
ing to

Qj =


P1 , j = 1

δjPj + (1−
Pn , j = n.

δj)Pj−1, 1 < j < m (12)

δj =


1 , 1 ≤ j ≤ i− p

ξ−ξ j
ξ j+p−ξp

0 , j ≥ i·
i− p + 1 < j < i (13)

If we are able to convert the T-Spline basis functions of N to Bernstein polynomials B,
this permits the replacement of the T-Spline surface with a series of Bézier patches utilizing
the conventional parametric domain. According to the Cox–de Boor formula, this can be
expressed as follows.

The new set of so-called Bézier control points Q is computed from B-Spline control
points, resulting in the following: Q = CtP. In remembering that the geometry must
remain unchanged during the insertion of the nodes,

T(ξ) = QT B(ξ) = PT N(ξ) = PTCB(ξ) (14)

where ξ is the coordinate in the standard domain of an individual Bézier patch, and N(ξ) is
a T-Spline vector of the basis functions that are non-zero over the Bézier surface. However,
B(ξ) is a vector of the tensor product of the basis functions of Bernstein polynomials
associated with the Bézier surface. C is the extraction operator.

For each localized T-Spline over an element, it can be explained as a linear combination
of these Bernstein polynomials. In fact, there exists a coefficient ci, such that T(ξ) =

∑N
i=0 ciBi(ξ), where the convention N = (p + 1)d is typical in finite element analysis, p is

the degree of the Bernstein polynomial, and d is the dimension of the domain; for example,
for the surfaces, d = 2.

We propose that univariate Bernstein polynomials form the basis of the Bézier surface,
which are defined over the biunit interval [−1, 1], Bi,p(ξ)=Cp

i−1(1− ξ)p−i+1(1 + ξ)i−1, with
1 ≤ i ≤ p + 1, and Cp

i−1: binomial coefficient.
We can define the multivariate Bernstein basis functions of degree p as Ba(i,j),p(ξ) =

Bi,p(ξ1)Bj,p(ξ2), with (ξ) = (ξ1, ξ2) representing a pair of variables, and a(i, j) is a mapping
from a pair of indices (i,j) to a single index. a(i, j) = (p + 1)(j− 1) + i·.

The calculation of the element extraction operators is conducted function-by-function,
each basis function adding a line to each extraction operator corresponding to the Bézier
elements in its support.

In 3D cases, the T-Spline volume in the parametric domain can be defined as follows:

T(ξ, ζ,η) =
∑n

i=0 Ni(ξ, ζ,η)ωiPi

∑n
j=0 Nj(ξ, ζ,η)ωj

. (15)

Weightsωi are scalar weights associated with each control point Pi and T-Spline basis
functions corresponding to control point Pi:

Ni(ξ, ζ, η) = Ni,ξ(ξ)Ni,ζ(ζ)Ni,η(η). (16)
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2.2. Incorporating Bézier Extraction of T-Splines into Finite Element Method

The Bezier extraction of T-Splines produces a fixed set of Bezier elements (defined
using Bernstein terminology) and the corresponding element extraction operators C and
IEN (index element node) arrays. This shape is equivalent to that derived for NURBSs
in [31] and can be incorporated into the finite detail components in a similar way. We
construct the functional subspace of finite dim Hh ⊂ H from the T-Spline functions, forming
the specified geometry. From problem (14), the approximate problem is written as follows:
given fh, find uh ∈ Hh such that uh = gh:

∀ vh ∈ Hh, Λ(uh, vh) = F(vh) (17)

where uh = ∑n
i=1 αiTi, vh = ∑n

j=1 β jTj, and Λ(uh, vh) is a bilinear form that often arises from
integrating the product of the derivatives of the trial function uh and the test function vh
over the domain. F(vh) represents the right-hand side of the weak formulation.

With these combinations, problem (14) can be written in the form of a matrix problem:

Au = F. (18)

We proceed as in the case of classical finite elements, with the global stiffness matrix
A and the force vector F, which can be produced by performing an integration of the
Bézier elements.

On each Bézier element, b, we have Ab, such as in the following:
(

Ab
)

ij
= Λ

(
Tb

i , Tb
j

)
,

where the elementary stiffness matrix and the vector force Fb
i = F

(
Tb

i

)
are assembled in

the global matrix A and the vector F, respectively.
By taking into consideration the non-homogeneous Dirichlet boundary conditions

and with the insertion of the Lagrange parameter, we obtain the following matrix problem

that we wish to solve:
(

A Lt

L 0

)
(u

λ)=(
F
µ).

We use the element extraction operators, and the T-Spline function is defined as follows:

Tb
i (ξ) = WbCb Bi(ξ)

Ψi(ξ)
, (19)

where Ψi(ξ) =
(

ωb
)T

CbBi(ξ), and ωb represents the weight vector corresponding to the

T-Spline control points. Wb is the diagonal matrix form of vector ωb.
We calculate the derivatives of the T-Splines with respect to the coordinates of the

physical domain (x1, x2, x3):

∂Tb
i (ξ)

∂xk
= ∑3

j=1
∂Tb

i (ξ)

∂ξj

∂ξj

∂xk
, for all k = 1, 2, 3 (20)

∂Tb
i (ξ)

∂ξ j
= WbCb ∂

∂ξ j

(
Bi(ξ)(

ωb
)TCbBi(ξ)

)
= (21)

WbCb

(
1

Ψi(ξ)

∂Bi(ξ)

∂ξ j
− ∂Ψ(ξ)

∂ξ j

Bi(ξ)

(Ψi(ξ))
2

)
. (22)

The approximation of the Bezier element is defined using a transformation to a refer-
ence element, which is the e [0, 1]× [0, 1]× [0, 1]· The Jacobian determinant is defined as

|J| =
∣∣∣ ∂x

∂ξ

∣∣∣.
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To solve linear system (18), we must calculate the elements of the rigidity matrix
corresponding to any Bezier element in order to assemble them in a global matrix.

(Ab)ij = (Ab
1 + Ab

2)ij,

such as:
(Ab

1) ij =
t 1

0 µ
(

WbCbMi J−1
)(

WbCbMj J−1
)T
|J|dξ1dξ2dξ3−

µ
s 1

0

(
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·WbCb Bi(ξ)
Ψi(ξ)

)
n·WbCb Bj(ξ)

Ψj(ξ)
|j|dξ1dξ2

(23)

n is the unit vector directed toward the outside of the domain, with the vector Mi written
as follows:

(M i)
T =

1
Ψi(ξ)

∂Bi(ξ)
∂ξ1
− ∂Ψ(ξ)

∂ξ1

Bi(ξ)

(Ψi(ξ))
2

1
Ψi(ξ)

∂Bi(ξ)
∂ξ2
− ∂Ψ(ξ)

∂ξ2

Bi(ξ)

(Ψi(ξ))
2

1
Ψi(ξ)

∂Bi(ξ)
∂ξ3
− ∂Ψ(ξ)

∂ξ3

Bi(ξ)

(Ψi(ξ))
2

(24)

(Ab
2) ij == (µ + λ)

y 1

0
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·(W bCb Bj(ξ)

Ψj(ξ)
)|J|dξ1dξ2dξ3 (25)

F =
y 1

0
f ·(W bCb Bi(ξ)

Ψi(ξ)
)|J|dξ1dξ2dξ3 +

x 1

0
t·(W bCb Bi(ξ)

Ψi(ξ)
)|j|dξ1dξ2. (26)

The matrix j transforms the surface of the lateral domain to the reference surface
[0, 1]× [0, 1].

To calculate all the elements of matrices, we use Gaussian quadrature.

2.3. Theoretically Stress Lateral Loading

The FEM analysis results are confirmed via comparison with the theoretically predicted
tensile stress results and are presented according to the following equation [32,33]:

σtheo =
Px
2S

, (27)

with

S =
π(D4

e−D4
i )

32De
;

P: the concentered load (N);
X: the impact position;
S: the section modulus of a circular hollow section;
De: the outer diameter;
Di: the inner diameters of the pipe.

2.4. Mechanical Failure Criteria

In the literature, several failure criteria can be found that are used to analyze the
performance of structures. The von Mises stress criterion is more commonly used in the
field of linear elasticity to determine whether failure will occur by comparing the failure
limits of materials. Due to this criterion, it is possible to know whether the structure under
study can function normally under load. The equation is expressed as follows:

σMises =
1√
2

√(
σx − σy

)2
+ (σx − σz)

2 +
(
σy − σz

)2, (28)

where σx, σy, and σz are the first, second, and third principal stresses.
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3. Computational Modeling and Simulation

This section explains the steps used to model a 3D cylindrical shell pipe subjected
to a concentrated and compressive load using the classic finite element method based on
Abaqus/CAE and the IGA approach based on the NURBS and the T-Spline methods.

3.1. Cylindrical Shell 3D Pipe Geometry

The geometry of the 3D cylindrical shell pipe studied is shown in Figure 2.
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3.2. Material

P264GH steel material [34] (Table 1) was used in this study. The stress–strain curve
of the mechanical test is shown in Figure 3. The behavior of this material follows the
Ramberg–Osgood law, which is described as follows:

ε =
σ

E
+
(σ

k

)1/n
, (29)

where k = 494.54 MPa, and n = 0.068

Table 1. Mechanical properties of P264GH steel.

Young’s modulus E = 207 GPa

Poisson’s ration v = 0.3

Yield stress Re = 340 MPa

Ultimate tensile strength Rm = 440 MPa

Elongation to fracture A = 35%

The stress–strain curve of the P264GH steel is illustrated in Figure 3:
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3.3. Meshing, Loadings, and Boundary Conditions

To ensure a robust convergence of results in Abaqus/CAE and facilitate pertinent com-
parisons with the IGA approach based on the NURBS and T-Spline results, we performed a
mesh convergence study for the proposed refinements. We established that a mesh size
ranging from 0.15 mm to 0.09 mm for the calculation of stress is robust and consistent
(Figure 4). Additionally, for an efficient computation time ratio, we used a mesh size of
0.15 mm for this investigation.
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In this study, we employed the IGA approach based on the T-Spline method to resolve
industrial mechanical issues, particularly the failure of pipelines due to the side impact of
excavation machines during installation, pipe–soil interactions, and preformed holes. The
impact was modeled using an applied load (F) and a line compression load (Figure 5). It is
important to note that this investigation was carried out in the linear elasticity domain.
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Considering geometric symmetry and to enable an efficient computation time ratio,
we used half of a 3D cylindrical shell pipe (Figure 6) to model the impact for both numerical
investigation methods, the finite element method (FEM) according to Abaqus/CAE and
the IGA approach based on NURBSs and T-Splines.
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After obtaining the efficient convergence of the numerical results in Abaqus/CAE, we
locally refined the mesh where we applied the load, as shown in Figure 7. We used linear
quadrilateral elements of type S4 to model the 3D cylindrical shell pipe case. This element
is characterized by good computational time savings, is easier to mesh, and is less prone to
negative Jacobian errors than 3D solid elements.
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In the IGA approach, we used an exact mesh generated using NURBS functions
(Figure 9a), and we took advantage of Bézier extraction for the T-Spline surfaces (Figure 8).
Contrary to NURBS functions, T-Splines enable local adjustments by introducing additional
control points only in areas where higher resolution is required (Figure 9d). This feature
enhances the efficiency of capturing details during analysis.
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4. Numerical Results and Discussion

In this section, three numerical evaluations are introduced to highlight the primary
advantages of employing the T-Spline approach for isogeometric analysis relating to 3D
cylindrical shell pipe mechanical computation issues. Firstly, a 3D cylindrical shell pipe
subjected to concentered elastic load and compressive load benchmarks was analyzed to
verify the capability of the adaptive T-Spline approach for isogeometric analysis and to
study the robustness of the 3D mechanical cylindrical shell pipe. The obtained results were
compared and validated with results found in the literature, particularly those concerning
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the use of NURBS IGA and FEM Abaqus/CAE methods. In the final analysis, we will evalu-
ate a 3D cylindrical shell involving the preformed hole issue. The goal is to provide further
analysis evaluating the performance and robustness of T-Splines for the computational
modeling of trimmed surfaces.

4.1. Cylindrical Shell 3D Pipe under Concentrated Load

We will study a cylindrical shell pipe without internal pressure subjected to compres-
sive load in order to model impact machine excavation.

We performed a comparative study of the computation time between the different
methods used in this investigation. The results show that the computation time (Table 2)
of IGA based on the T-Spline method is shorter than that of IGA based on NURBS and
FEM Abaqus/CAE. This confirms the results of Du et al. [20] and Guo et al. [35]. The better
computation time of the T-Spline method is due to the use of fewer control points (Figure 10)
compared to the NURBS method. Furthermore, T-Splines combine the advantages of
NURBSs and polygonal modeling techniques, leading to better convergence of the results.

Table 2. Time calculation comparison for FEM, IGA NURBS, and IGA T-Splines carried out using
Intel® Core ™ i5-8250U CPU 1.60 GHz (4 CPUs).

Method FEM (Abaqus/CAE) IGA NURBS IGA T-Splines

Time Calculation (s) 3.30 0.99 0.42

Axioms 2024, 13, x FOR PEER REVIEW 13 of 23 
 

4.1. Cylindrical Shell 3D Pipe under Concentrated Load 
We will study a cylindrical shell pipe without internal pressure subjected to com-

pressive load in order to model impact machine excavation. 
We performed a comparative study of the computation time between the different 

methods used in this investigation. The results show that the computation time (Table 2) 
of IGA based on the T-Spline method is shorter than that of IGA based on NURBS and 
FEM Abaqus/CAE. This confirms the results of Du et al. [20] and Guo et al. [35]. The 
better computation time of the T-Spline method is due to the use of fewer control points 
(Figure 10) compared to the NURBS method. Furthermore, T-Splines combine the ad-
vantages of NURBSs and polygonal modeling techniques, leading to better convergence 
of the results. 

 

Figure 10. Boundary conditions and T-Spline surface with 326 control points and 215 T mesh ele-
ments. 

Table 2. Time calculation comparison for FEM, IGA NURBS, and IGA T-Splines carried out using 
Intel® Core ™ i5-8250U CPU 1.60 GHz (4 CPUs). 

Method FEM (Abaqus/CAE) IGA NURBS IGA T-Splines 
Time Calculation (s) 3.30 0.99 0.42 

Figure 11 illustrates a comparison of the displacement magnitude of a 3D cylindrical 
shell pipe subjected to a force of 1.6 kN computed using the FEM (Abaqus/CAE) (𝑢௠௔௫ =1.45 10ିଷ mm ), IGA NURBS ( 𝑢௠௔௫ = 1.49 10ିଷ mm ), and IGA T-Spline ( 𝑢௠௔௫ =1.58 10ିଷ mm) methods. The results show that the IGA T-Spline method yields better 
results than the IGA NURBS method, which is also a robust method. These results lead to 
the same conclusion reached by Du et al. [21]. The disparity between the T-Spline and 
NURBS methods is that the IGA approach based on T-Splines provides a high level of 
flexibility in 3D surface shaping, and T-Splines allow for the local refinement of the mesh 
(Figure 12). T-Splines are often used in conjunction with subdivision surfaces. This com-
bination allows for the creation of highly detailed models with smooth surfaces. 

Figure 10. Boundary conditions and T-Spline surface with 326 control points and 215 T mesh elements.

Figure 11 illustrates a comparison of the displacement magnitude of a 3D cylindrical
shell pipe subjected to a force of 1.6 kN computed using the FEM (Abaqus/CAE) (umax =
1.45 × 10−3 mm), IGA NURBS (umax = 1.49 × 10−3 mm), and IGA T-Spline (umax =
1.58× 10−3 mm) methods. The results show that the IGA T-Spline method yields better
results than the IGA NURBS method, which is also a robust method. These results lead
to the same conclusion reached by Du et al. [21]. The disparity between the T-Spline
and NURBS methods is that the IGA approach based on T-Splines provides a high level
of flexibility in 3D surface shaping, and T-Splines allow for the local refinement of the
mesh (Figure 12). T-Splines are often used in conjunction with subdivision surfaces. This
combination allows for the creation of highly detailed models with smooth surfaces.
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To complete the previously highlighted results and apply them to the study of the
mechanical behavior and strength of a 3D pipe, we analyzed the load variation applied
to the 3D cylindrical shell pipe as a function of displacement using the different FEM
Abaqus/CAE, IGA NURBS, and T-Spline methods, as illustrated in Figure 13. Load
magnitudes varying from 0 N to 1600 N were used to maintain linear elasticity and predict
the impact of the excavator during work not subjected to internal pressure. The results
show linearity between the load and displacement curves. Furthermore, it is important to
point out that, after 1200 N, there is some variation in the results between the three methods.
The divergence of the numerical results is explained by the influence of the proximity of
the plastic zone.
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Figure 14 illustrates the von Mises stress distribution around an applied radial load
of 1.6 kN. Evaluations were performed for two numerical references methods, FEM
Abaqus/CAE, IGA NURB and IGA T-Splines. The results confirm that the IGA approach
based on the T-Spline method is successful compared to the numerical references methods.
We conclude that, thanks to the T-Spline method, we obtain higher values of σvm = 348 MPa
around the impact region than those found using FEM Abaqus/CAE (σvm = 341 MPa)
and IGA NURBS (σvm = 342 MPa). The value found using the T-Splines method is in
close proximity to the yield strength of the material. This allows us to provide pertinent
information on fracture prediction and the robust convergence of the results that were
undetected when using the FEM Abaqus/CAE and IGA NURBS methods. The robustness
of the T-Spline method relates to its capability to introduce local control points, allowing
for more detailed information to be obtained in certain regions without compromising the
overall simplicity of the model. The local refinement feature of T-Splines is particularly
useful for efficiently capturing geometric details in specific areas of a model.
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imum values (denoted as 348 MPa) of the von Mises stress around the force impact region 
for various methods, especially using FEM Abaqus/CAE, IGA NURBSs, and IGA 
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On the other hand, we evaluated the structural integrity of the 3D cylindrical shell pipe
by applying various load values (from 0 N to 1600 N). We extracted different maximum
values (denoted as 348 MPa) of the von Mises stress around the force impact region for
various methods, especially using FEM Abaqus/CAE, IGA NURBSs, and IGA T-Splines
(Figure 15). The results indicate that the stress curves converge closely with minor disparity.
The value of 348 MPa obtained through the use of IGA T-Splines is higher than that of FEM
Abaqus/CAE and IGA NURBSs.
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In addition, it was observed that the curve diverges from linearity when it exceeds
the value of 340 MPa above 1200 N, suggesting a transition to the plastic region. This
nonlinearity in the curve indicates a change in material behavior and signifies that the
structural response is moving beyond the linear elastic domain.

4.2. Cylindrical 3D Shell Pipe under Compressive Loading

We studied a cylindrical shell pipe subjected to compressive load, modeling the
pipe–soil interaction. The predicted load of this interaction between the pipe and the soil is
1.9 kN (Figure 16).
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where good convergence is required (Figure 17), which is not available in IGA based on
NURBS functions.
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We compared the results found using T-Splines for different proposals for the local
refinement of control points in a 3D cylinder (Figure 18). The obtained results show a
dependence on the number of refinement control points. With 122 control points, the
maximum displacement on the cylinder is 0.0728 mm, and when we refine up to 361 control
points, the maximum displacement on the cylinder is reduced to 0.0693 mm.
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using the T-Spline method.

Further, we performed a comparative study using a T-Spline for comparison and
validation with results found in the literature, especially those relating to the use of the
NURBS IGA and FEM Abaqus/CAE methods (Figure 19). The amount of displacement
calculated using the T-Spline method is 0.0728 mm, which is slightly higher than that found
when using IGA NURBSs and FEM Abaqus at 0.0531 mm and 0.0626 mm, respectively.
Note that in T-Splines with 361 control points, the maximum displacement per cylinder is
reduced to 0.0693 mm. We conclude from all these results that we are confident in using
the T-Spline method as an alternative method to investigate the mechanical performance of
cylindrical shell structures.
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4.3. Three-Dimensional Cylindrical Shell Pipe with Preformed Holes and Pipe Junction under
Compressive Loading

In this section, we evaluated a 3D cylindrical shell pipe with a preformed hole under a
compressive load (Figure 20) in relation to structural engineering problems. The objective
is to evaluate the efficiency and robustness of the T-Spline method in the field of trimmed
surfaces. In this study, we compared the results found when using the T-Spline method with
the Abaqus/CAE finite element method because IGA based on NUBRSs is too limited for
the evaluation of the trimmed surfaces; it requires a specific adjustment of the interpolation
domain, especially the B-Spline or NUBRS interpolation functions, when considering a
trimmed geometry. A 3D cylindrical shell pipe (r = 300 mm; L = 600 mm; thickness = 3 mm)
with nine holes with a 2.5 mm diameter was evaluated with the objective of assessing the
mechanical robustness and structural integrity of pipes with preformed holes in cases of
severe mechanical and chemical damage. This recent investigation completes the research
conducted in [36–38].

In Figure 21, we compare the numerical results of the displacement between the
T-Spline and FEM Abaqus methods, and in noting that the NURBS IGA method is very
limited in terms of studying trimmed surfaces, it was not considered for comparison in
this study. The maximum displacement value was found to be 7.7× 10−2 mm higher than
the FEM Abaqus displacement value 5.53× 10−2 mm, and we concluded that, in the case
of preformed holes, the displacement value increased by 7.7× 10−3 mm; this suggests
the performance degradation of a cylindrical shell pipe with preformed holes, leading to
integrity issues.
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Figure 21. The displacement magnitude results of a 3D cylindrical pipe with holes calculated using
the T-Spline method.

In addition, the T-Spline method once again shows its power and capability in terms
of computing trimmed and untrimmed surfaces.

5. Conclusions

An investigation of the mechanical performance of a 3D cylindrical shell pipe with
and without preformed holes under concentrated and compressive loading in terms of
the linear elastic behavior in the cases of trimmed and untrimmed surfaces using the IGA
method based on the T-Spline technique was successfully conducted. The numerical results
obtained, especially relating to displacement and von Mises stress, were compared and
validated with results found in the literature, particularly concerning the NURBS IGA
and FEM Abaqus methods. The results show that the computation time of IGA based on
T-Splines is shorter than the IGA NURBS and FEM Abaqus/CAE methods. Moreover, the
results confirm that the IGA approach based on the T-Spline method shows successful
achievements compared to numerical references found in the literature review.

The numerical results of von Mises stress found, through the use of the T-Spline
method, are in close proximity to the yield strength of the material. This allows us to
provide pertinent information on fracture prediction and the robust convergence of the
results that were undetected when using the FEM Abaqus/CAE and the IGA NURBS
methods. The robustness of the T-Spline method is based on its ability to introduce local
control points in the area where robust convergence is required, which is too limited in IGA
based on NURBS functions. In addition, through the use of T-Splines, we will end up with
a linear system with a slightly lower degree of freedom with a stiffness matrix that is less
full compared to the one obtained when using the NURBS method. This makes it easy to
invert this matrix with a fairly small inversion error.
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On the other hand, a 3D cylindrical shell pipe with a preformed hole under compres-
sive load was studied as a structural engineering problem with the objective of evaluating
the efficiency and robustness of the T-Spline method in the field of trimmed surfaces. We
noticed that the NURBS IGA method is very limited when evaluating trimmed surfaces.
The maximum displacement value was found to be higher than the FEM Abaqus displace-
ment value; thus, we conclude that, in the case of preformed holes, the displacement value
increased, which suggests the performance degradation of a cylindrical shell pipe with
preformed holes, leading to integrity issues.

Future research work will involve the integration of a complementary investigation
on the impact of machine excavation on pipes under internal pressure. This study will
consider scenarios both with and without the presence of cracks using the IGA approach
based on T-Splines. The aim is to evaluate the mechanical behavior and performance of
cylindrical shell pipelines, addressing problems in both linear elastic and dynamic studies.
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