Chen-Burr XII Model as a Competing Risks Model with Applications to Real-Life Data Sets
Abstract
:1. Introduction
2. Model Construction
3. Graphical Description
- For and :
- For and :
- For and :
- For and and for and :Here in these two cases, the limiting behavior of the hrf, , is the same, that is:
- and , In this case, is a decreasing-unimodal hrf. Let and are two critical values for . When , is a decreasing hrf, , and when , the hrf of C-BXII distribution is increasing hrf, . Finally, when , is decreasing again.
- and , here is a decreasing hrf, since is bathtub hrf and is a decreasing hrf and dominates the increasing part in .
4. Statistical Properties
- The quantile function and the modeOne can obtain the quantile function of the C-BXII distribution by inverting
- ii.
- Central and non-central moments
- iii.
- The moment generating function
- iv.
- Incomplete moments and inequality curves
- v.
- The mean residual life and mean past life
- vi.
- Mean time to failure, mean time between failures and availability
- For fixed and , as decreases, MTTF, rf and MTBF increase, while Av decreases this is for and .
- For and and for fixed and , as decreases, MTTF, rf, MTBF and Av decrease.
- For and and for fixed and , as decreases, MTTF, rf and MTBF decrease, while Av increases.
- For fixed and , as decreases, MTTF, rf, MTBF and Av increase for , while for , the MTTF, rf, MTBF also increase as decreases, except the Av decreases.
- For all parameters values, the results of the MTBF when are smaller than the case of , whereas the results of the Av for are larger than the case of .
- vii.
- Entropy measures
- viii.
- The order statistics
- When , the pdf of the smallest order statistics can be derived as
- If , one can obtain the pdf of the largest order statistics as
- ix.
- Some sub-models
5. Maximum Likelihood Estimation
5.1. Point Estimation
5.2. Asymptotic Confidence Intervals
6. Simulation
- (a)
- Two sets of parameters are used in the simulation study.
- (b)
- Random samples are generated from the C-BXII distribution for various sample sizes
- (c)
- Using Mathematica 11, the simulation study is carried out with a number of replications .
- (d)
- (e)
- (f)
- As the sample size increases, the ML averages of the estimates for the parameters of the C-BXII distribution stabilize.
- As the sample size increases, the ERs and REs of the ML estimates of the parameters , rf, hrf and rhrf decrease.
- As the sample size increases, the RABs of the ML estimates of the parameters , rf, hrf and rhrf decrease.
- The variances of the parameters, rf, hrf and rhrf decrease, as the sample size increases.
- As the sample size increases, the lengths of the 95% ACIs of the parameters, rf, hrf and rhrf decrease.
7. Applications
7.1. Application 1
7.2. Application 2
7.3. Application 3
7.4. Concluding Remarks
- The C-BXII distribution has the lowest K-S, A-D and C-V values and the highest p-values for the three applications. Thus, it provides the best fit for this data compared to the other competitor distributions.
- Moreover, the C-BXII distribution has the smallest values of the statistic, AIC, BIC and CAIC, which imply that the proposed model is the best among the other competitor distributions (AC-P, W-C, BXII-MW, AW, AC, ABXII, Chen and BXII).
- The ML estimates of the parameters, rf, hrf and rhrf of the C-BXII distribution have small SEs for the three applications.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Mode
Appendix A.2. The th Non-Central Moment
Appendix A.3. Asymptotic Fisher Information Matrix
References
- Lai, C.D. Constructions and applications of lifetime distributions. Appl. Stoch. Models Bus. Ind. 2013, 29, 127–129. [Google Scholar] [CrossRef]
- Xie, M.; Lai, C.D. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 1995, 52, 87–93. [Google Scholar] [CrossRef]
- Wang, F.K. A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab. Eng. Syst. Saf. 2000, 70, 305–312. [Google Scholar] [CrossRef]
- Bousquet, N.; Bertholon, H. An alternative competing risk model to the Weibull distribution for modelling aging in lifetime data analysis. Lifetime Data Anal. 2006, 12, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Almalki, S.J.; Yuan, J. A new modified Weibull distribution. Reliab. Eng. Syst. Saf. 2013, 111, 164–170. [Google Scholar] [CrossRef]
- Lai, C.D.; Xie, M.; Murthy, D.N.P. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Ortega, E.M.; Lemonte, A. The exponential-Weibull distribution. J. Stat. Comput. Simul. 2013, 84, 2592–2606. [Google Scholar] [CrossRef]
- He, B.; Cui, W.; Du, X. An additive modified Weibull distribution. Reliab. Eng. Syst. Saf. 2016, 145, 28–37. [Google Scholar] [CrossRef]
- Oluyede, B.O.; Foya, S.; Warahena-Liyanage, G.; Huang, S. The log-logistic Weibull distribution with applications to lifetime data. Austrian J. Stat. 2016, 45, 43–69. [Google Scholar] [CrossRef]
- Singh, B. An additive Perks-Weibull model with bathtub-shaped hazard rate function. Commun. Math. Stat. 2016, 4, 473–493. [Google Scholar] [CrossRef]
- Mdlongwa, P.; Oluyede, B.O.; Amey, A.; Huang, S. The Burr XII modified Weibull distribution: Model, Properties and Applications. Electron. J. Appl. Stat. Anal. 2017, 10, 118–145. [Google Scholar]
- Tarvirdizade, B.; Ahmadpour, M. A new extension of Chen distribution with applications to lifetime data. Commun. Math. Stat. 2019, 9, 23–38. [Google Scholar] [CrossRef]
- Shakhatreh, M.K.; Lemonte, A.J.; Moreno-Arenas, G. The log-normal modified Weibull distribution and its reliability implications. Reliab. Eng. Syst. Saf. 2019, 188, 6–22. [Google Scholar] [CrossRef]
- Osagie, S.A.; Osemwenkhae, J.E. Lomax-Weibull distribution with properties and applications in lifetime analysis. Int. J. Math. Anal. Optim. Theory Appl. 2020, 2020, 718–732. [Google Scholar]
- Kamal, R.M.; Ismail, M.A. The flexible Weibull extension-Burr XII distribution: Model, properties and applications. Pak. J. Stat. Oper. Res. 2020, 16, 447–460. [Google Scholar] [CrossRef]
- Bebbington, M.; Lai, C.D.; Zitikis, R. A flexible Weibull extension. Reliab. Eng. Syst. Saf. 2007, 92, 719–726. [Google Scholar] [CrossRef]
- Thach, T.T.; Bris, R. An additive Chen-Weibull distribution and its applications in reliability modeling. Qual. Reliab. Eng. Int. 2021, 37, 352–373. [Google Scholar] [CrossRef]
- Khalil, A.; Ijaz, M.; Ali, K.; Mashwani, W.K.; Shafiq, M.; Humam, P.; Kumam, W. A novel flexible additive Weibull distribution with real-life applications. Commun. Stat.—Theory Methods 2021, 50, 1557–1572. [Google Scholar] [CrossRef]
- Makubate, B.; Oluyede, B.; Gabanakgosi, M. A new Lindley-Burr XII distribution: Model, Properties and Applications. Int. J. Stat. Probab. 2021, 10, 33–51. [Google Scholar] [CrossRef]
- Abba, B.; Wang, H.; Bakouch, H.S. A reliability and survival model for one and two failure modes system with applications to complete and censored datasets. Reliab. Eng. Syst. Saf. 2022, 223, 108460. [Google Scholar] [CrossRef]
- Xavier, T.; Jose, J.K.; Nadarajah, S. An additive power-transformed half-logistic model and its applications in reliability. Qual. Reliab. Eng. Int. 2022, 38, 3179–3196. [Google Scholar] [CrossRef]
- Thach, T.T. A Three-Component Additive Weibull Distribution and Its Reliability Implications. Symmetry 2022, 14, 1455. [Google Scholar] [CrossRef]
- Salem, H.N.; AL-Dayian, G.R.; EL-Helbawy, A.A.; Abd EL-Kader, R.E. The additive flexible Weibull extension-Lomax distribution: Properties and estimation with applications to COVID-19 data. Acad. Period. Ref. J. AL-Azhar Univ. 2022, 28, 1–44. [Google Scholar] [CrossRef]
- Méndez-González, L.C.; Rodríguez-Picón, L.A.; Pérez Olguín, I.J.C.; García, V.; Luviano-Cruz, D. The additive Perks distribution and its applications in reliability analysis. Qual. Technol. Quant. Manag. 2023, 20, 784–808. [Google Scholar] [CrossRef]
- Méndez-González, L.C.; Rodríguez-Picón, L.A.; Pérez-Olguín, I.J.C.; Vidal Portilla, L.R. An additive Chen distribution with applications to lifetime data. Axioms 2023, 12, 118. [Google Scholar] [CrossRef]
- Méndez-González, L.C.; Rodríguez-Picón, L.A.; Rodríguez Borbón, M.I.; Sohn, H. The Chen–Perks distribution: Properties and Reliability Applications. Mathematics 2023, 11, 3001. [Google Scholar] [CrossRef]
- Lai, C.D.; Xie, M. Stochastic Ageing and Dependence for Reliability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Jensen, F.; Petersen, N.E. Burn-In: An Engineering Approach to the Design and Analysis of Burn-In Procedures; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Kuo, W.; Kuo, Y. Facing the headaches of early failures: A state-of-the-art review of burn-in decisions. Proc. IEEE 1983, 71, 1257–1266. [Google Scholar] [CrossRef]
- Chen, Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Probab. Lett. 2000, 49, 155–161. [Google Scholar] [CrossRef]
- Burr, I.W. Cumulative frequency functions. Ann. Math. Stat. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Kleiber, C.; Kotz, S. Statistical Size Distributions in Economics and Actuarial Sciences; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Eliwa, M.S.; El-Morshedy, M.; Ali, S. Exponentiated odd Chen-G family of distributions: Statistical properties, Bayesian and non-Bayesian estimation with applications. J. Appl. Stat. 2021, 48, 1948–1974. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 20 June–30 July 1961; Volume 1, pp. 547–561. Available online: https://projecteuclid.org/euclid.bsmsp/1200512181 (accessed on 26 July 2024).
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 8th ed.; Pearson Education India: Bengaluru, India, 2018. [Google Scholar]
- EL-Sagheer, R.M. Estimation of parameters of Weibull–Gamma distribution based on progressively censored data. Stat. Pap. 2018, 59, 725–757. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M.; Shokr, E.M.; Mohamed, A.W.; Mahmoud, M.A.W.; El-Desouky, B.S. Inferences for Weibull Fréchet Distribution Using Bayesian and Non-Bayesian Methods on Gastric Cancer Survival Times. Comput. Math. Methods Med. 2021, 2021, 9965856. [Google Scholar] [CrossRef]
- Buzaridah, M.M.; Ramadan, D.A.; El-Desouky, B.S. Estimation of some lifetime parameters of flexible reduced logarithmic-inverse Lomax distribution under progressive Type-II censored data. J. Math. 2022, 2022, 1690458. [Google Scholar] [CrossRef]
- Liu, X.; Ahmed, Z.; Gemeay, A.M.; Abdulrahman, A.T.; Hafez, E.H.; Khalil, N. Modeling the survival times of the COVID-19 patients with a new statistical model: A case study from China. PLoS ONE 2021, 16, e0254999. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, A.E.; Almetwally, E.M. A new extension exponential distribution with applications of COVID-19 data. J. Financ. Bus. Res. 2021, 22, 444–460. [Google Scholar]
- Barlow, R.E.; Toland, R.H.; Freeman, T. A Bayesian analysis of stress-rupture life of Kevlar/epoxy spherical pressure vessels. In Proceedings of the Canadian Conference in Applied Statistics; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Andrews, D.F.; Herzberg, A.M. Data: A Collection of Problems from Many Fields for the Student and Research Worker; Springer Series in Statistics: New York, NY, USA, 1985. [Google Scholar]
- Cooray, K.; Ananda, M.M.A. A Generalization of the Half-Normal Distribution with Applications to Lifetime Data. Commun. Stat.—Theory Methods 2008, 37, 1323–1337. [Google Scholar] [CrossRef]
2.6 | 2 | 1.2 | 1.8 | 0.1738 | 0.3213 | 0.4995 | 0.2057 | - |
0.05 | 4 | 0.15 | 0.8 | 0.0038 | 1.0691 | 1.2995 | 1.3373 | - |
0.15 | 6 | 1.5 | 2 | 0.2881 | 0.5529 | 0.9185 | 0.2511 | 1.1238 |
0.01 | 5 | 1.15 | 1.8 | 0.2178 | 0.5181 | 1.0980 | 0.0724 | 1.3608 |
0.25 | 3 | 5 | 2.3 | 0.6295 | 0.7694 | 0.9084 | 0.7712 | - |
2.6 | 2 | 1.2 | 1.8 | 0.3513 | 0.1722 | 0.1010 | 0.0666 | 0.0487 | 0.6284 | 0.5808 | 2.7403 |
0.05 | 4 | 0.15 | 0.8 | 0.7455 | 0.9149 | 1.1585 | 1.4891 | 0.3591 | 0.8039 | −0.2744 | 1.2299 |
0.15 | 6 | 1.5 | 2 | 0.5948 | 0.4774 | 0.4383 | 0.4317 | 0.1236 | 0.5912 | 0.1682 | 1.7465 |
0.01 | 5 | 1.15 | 1.8 | 0.6342 | 0.6180 | 0.7023 | 0.8536 | 0.2158 | 0.7325 | 0.3647 | 1.6800 |
0.25 | 3 | 5 | 2.3 | 0.7684 | 0.6331 | 0.5517 | 0.5041 | 0.0427 | 0.2689 | −0.0323 | 2.8953 |
2.6 | 2 | 1.2 | 1.5 | 0.3094 | 0.0441 | 0.1621 | 0.2423 |
0.75 | 0.3523 | 0.0419 | 0.1738 | 0.2178 | |||
0.5 | 0.3687 | 0.0405 | 0.1780 | 0.2077 | |||
0.9 | 1.5 | 0.3035 | 0.0528 | 0.1660 | 0.2722 | ||
0.7 | 0.3049 | 0.0606 | 0.1693 | 0.2984 | |||
1.5 | 1.2 | 0.2643 | 0.0444 | 0.1582 | 0.2675 | ||
1.0 | 0.2152 | 0.0514 | 0.1650 | 0.3184 | |||
1.8 | 2 | 0.3541 | 0.0447 | 0.2014 | 0.2421 | ||
0.9 | 0.4400 | 0.0456 | 0.2865 | 0.2468 |
2.6 | 2 | 1.2 | 1.5 | 0.3701 | 0.8888 | 0.8481 | 0.4364 | 0.2779 | 0.3905 | 0.9478 |
0.75 | 0.4249 | 0.9305 | 1.3885 | 0.3060 | 0.3644 | 0.4953 | 0.8578 | |||
0.5 | 0.4461 | 0.9449 | 1.7630 | 0.2530 | 0.3989 | 0.5440 | 0.8201 | |||
0.9 | 1.5 | 0.3378 | 0.8155 | 0.4902 | 0.6891 | 0.2510 | 0.3618 | 0.9337 | ||
0.7 | 0.3104 | 0.7415 | 0.3344 | 0.9282 | 0.2327 | 0.3429 | 0.9051 | |||
1.5 | 1.2 | 0.3147 | 0.8392 | 0.5704 | 0.5516 | 0.1931 | 0.3040 | 1.0000 | ||
1.0 | 0.2336 | 0.6940 | 0.2738 | 0.8533 | 0.1077 | 0.2244 | 1.0000 | |||
1.8 | 2 | 0.4126 | 0.8960 | 0.9102 | 0.4533 | 0.3488 | 0.4747 | 0.8691 | ||
0.9 | 0.4934 | 0.9041 | 0.9918 | 0.4975 | 0.4504 | 0.6268 | 0.7872 |
Parameter | The Resulting Distribution | |
---|---|---|
Chen-compound exponential distribution | ||
Chen-compound Rayleigh distribution | ||
Chen-log logistic | ||
BXII distribution | ||
Chen distribution | ||
and | Lomax distribution | |
and | Compound Rayleigh distribution | |
and | Log logistic distribution |
30 | 2.5985 | 0.4114 | 0.2467 | 0.0006 | 0.4114 | 3.8557 | 1.3414 | 2.5143 | |
1.9906 | 0.1071 | 0.1636 | 0.0047 | 0.1070 | 2.6318 | 1.3494 | 1.2824 | ||
1.2640 | 0.0537 | 0.1932 | 0.0533 | 0.0496 | 1.7006 | 0.8273 | 0.8733 | ||
1.6478 | 0.3750 | 0.4083 | 0.0985 | 0.3532 | 2.8126 | 0.4830 | 2.3297 | ||
60 | 2.5479 | 0.2846 | 0.2052 | 0.0200 | 0.2819 | 3.5886 | 1.5073 | 2.0813 | |
1.9810 | 0.0729 | 0.1350 | 0.0095 | 0.0725 | 2.5089 | 1.4531 | 1.0558 | ||
1.2511 | 0.0365 | 0.1592 | 0.0426 | 0.0339 | 1.6120 | 0.8903 | 0.7217 | ||
1.6402 | 0.3603 | 0.4002 | 0.0934 | 0.3407 | 2.7841 | 0.4962 | 2.2879 | ||
100 | 2.5596 | 0.2156 | 0.1786 | 0.0156 | 0.2139 | 3.4661 | 1.6530 | 1.8130 | |
2.0066 | 0.0598 | 0.1222 | 0.0033 | 0.0597 | 2.4856 | 1.5276 | 0.9579 | ||
1.2472 | 0.0288 | 0.1414 | 0.0393 | 0.0266 | 1.5667 | 0.9277 | 0.6389 | ||
1.6297 | 0.3546 | 0.3970 | 0.0865 | 0.3377 | 2.7688 | 0.4907 | 2.2781 | ||
200 | 2.5809 | 0.1299 | 0.1386 | 0.0074 | 0.1295 | 3.2862 | 1.8755 | 1.4107 | |
2.0138 | 0.0484 | 0.1100 | 0.0070 | 0.0482 | 2.4442 | 1.5835 | 0.8608 | ||
1.2264 | 0.0177 | 0.1110 | 0.0220 | 0.0170 | 1.4822 | 0.9706 | 0.5116 | ||
1.5931 | 0.3067 | 0.3692 | 0.0621 | 0.2981 | 2.6632 | 0.5230 | 2.1401 | ||
500 | 2.5732 | 0.0642 | 0.0975 | 0.0103 | 0.0635 | 3.0672 | 2.0792 | 0.9880 | |
2.0213 | 0.0463 | 0.1076 | 0.0106 | 0.0459 | 2.4410 | 1.6015 | 0.8395 | ||
1.2165 | 0.0112 | 0.0882 | 0.0137 | 0.0109 | 1.4215 | 1.0115 | 0.4100 | ||
1.5813 | 0.2689 | 0.3457 | 0.0542 | 0.2623 | 2.5850 | 0.5775 | 2.0075 |
30 | 2.0696 | 0.1523 | 0.1951 | 0.0348 | 0.1474 | 2.8222 | 1.3171 | 1.5051 | |
0.5074 | 0.0061 | 0.1567 | 0.0148 | 0.0061 | 0.6603 | 0.3545 | 0.3059 | ||
0.5100 | 0.0149 | 0.2440 | 0.0201 | 0.0148 | 0.7483 | 0.2717 | 0.4766 | ||
0.0233 | 0.0155 | 2.4870 | 0.5349 | 0.0148 | 0.2613 | 0 | 0.2613 | ||
60 | 2.0389 | 0.0865 | 0.1471 | 0.0194 | 0.0850 | 2.6103 | 1.4675 | 1.1428 | |
0.5062 | 0.0031 | 0.1111 | 0.0123 | 0.0031 | 0.6144 | 0.3979 | 0.2165 | ||
0.5067 | 0.0082 | 0.1809 | 0.0134 | 0.0081 | 0.6835 | 0.3299 | 0.3637 | ||
0.0242 | 0.0066 | 1.6297 | 0.5167 | 0.0060 | 0.1756 | 0 | 0.1756 | ||
100 | 2.0346 | 0.0478 | 0.1093 | 0.0173 | 0.0466 | 2.4578 | 1.6114 | 0.8464 | |
0.5034 | 0.0019 | 0.0865 | 0.0068 | 0.0019 | 0.5880 | 0.4189 | 0.1691 | ||
0.5073 | 0.0072 | 0.1693 | 0.0145 | 0.0071 | 0.6726 | 0.3419 | 0.3307 | ||
0.0262 | 0.0090 | 1.8974 | 0.4762 | 0.0084 | 0.2062 | 0 | 0.2062 | ||
200 | 2.0261 | 0.0273 | 0.0827 | 0.0130 | 0.0267 | 2.3461 | 1.7061 | 0.6400 | |
0.5007 | 0.0009 | 0.0605 | 0.0014 | 0.0009 | 0.5600 | 0.4414 | 0.1186 | ||
0.5022 | 0.0041 | 0.1284 | 0.0044 | 0.0041 | 0.6280 | 0.3764 | 0.2516 | ||
0.0333 | 0.0062 | 1.5804 | 0.3350 | 0.0060 | 0.1846 | 0 | 0.1846 | ||
500 | 2.0071 | 0.0107 | 0.0518 | 0.0036 | 0.0107 | 2.2095 | 1.8048 | 0.4048 | |
0.4997 | 0.0004 | 0.0386 | 0.0007 | 0.0004 | 0.5375 | 0.4618 | 0.0757 | ||
0.5042 | 0.0035 | 0.1179 | 0.0083 | 0.0035 | 0.6194 | 0.3889 | 0.2304 | ||
0.0333 | 0.0028 | 1.0631 | 0.3333 | 0.0026 | 0.1323 | 0 | 0.1979 |
30 | 0.2738 | 0.0030 | 0.0905 | 0.0146 | 0.0029 | 0.3802 | 0.1675 | 0.2127 | |
4.5181 | 0.4940 | 0.0374 | 0.0198 | 0.4863 | 5.8849 | 3.1513 | 2.7336 | ||
1.6864 | 0.1080 | 0.4123 | 0.0109 | 0.1076 | 2.3293 | 1.0434 | 1.2859 | ||
60 | 0.2736 | 0.0015 | 0.1939 | 0.0156 | 0.0015 | 0.3494 | 0.1977 | 0.1517 | |
4.4843 | 0.2962 | 0.1578 | 0.0122 | 0.2933 | 5.5457 | 3.4229 | 2.1228 | ||
1.6777 | 0.0546 | 0.3192 | 0.0160 | 0.0538 | 2.1324 | 1.2230 | 0.9094 | ||
100 | 0.2760 | 0.0011 | 0.1401 | 0.0069 | 0.0011 | 0.3403 | 0.2117 | 0.1286 | |
4.4768 | 0.2072 | 0.1228 | 0.0105 | 0.2051 | 5.3643 | 3.5892 | 1.7751 | ||
1.6973 | 0.0341 | 0.2670 | 0.0045 | 0.0340 | 2.0587 | 1.3359 | 0.7228 | ||
200 | 0.2750 | 0.0006 | 0.1182 | 0.0106 | 0.0005 | 0.3207 | 0.2293 | 0.0914 | |
4.4727 | 0.1079 | 0.1028 | 0.0096 | 0.1061 | 5.1111 | 3.8342 | 1.2769 | ||
1.6924 | 0.0207 | 0.1927 | 0.0074 | 0.0205 | 1.9729 | 1.4118 | 0.5611 | ||
500 | 0.2759 | 0.0002 | 0.0555 | 0.0073 | 0.0002 | 0.3059 | 0.2459 | 0.0600 | |
4.4492 | 0.0457 | 0.0482 | 0.0043 | 0.0453 | 4.8664 | 4.0320 | 0.8344 | ||
1.6932 | 0.0079 | 0.1254 | 0.0069 | 0.0077 | 1.8653 | 1.5211 | 0.3442 |
30 | 0.1282 | 0.0024 | 0.3940 | 0.0036 | 0.0290 | 0.0024 | 0.2241 | 0.0323 | |
2.9844 | 0.4430 | 0.2304 | 0.0955 | 0.0331 | 0.4339 | 4.2755 | 1.6933 | ||
0.4156 | 0.0119 | 1.6193 | 0.0045 | 0.0110 | 0.0119 | 0.6290 | 0.2021 | ||
60 | 0.1278 | 0.0013 | 0.2861 | 0.0033 | 0.0262 | 0.0013 | 0.1974 | 0.0583 | |
2.9457 | 0.2527 | 0.1740 | 0.0568 | 0.0197 | 0.2495 | 3.9247 | 1.9666 | ||
0.4179 | 0.0058 | 1.2231 | 0.0068 | 0.0166 | 0.0057 | 0.5663 | 0.2695 | ||
100 | 0.1253 | 0.0006 | 0.2685 | 0.0007 | 0.0055 | 0.0006 | 0.1746 | 0.0759 | |
2.9347 | 0.1366 | 0.1663 | 0.0458 | 0.0159 | 0.1345 | 3.6536 | 2.2159 | ||
0.4134 | 0.0035 | 0.8993 | 0.0023 | 0.0057 | 0.0035 | 0.5290 | 0.2977 | ||
200 | 0.1240 | 0.0003 | 0.2022 | −0.0006 | 0.0045 | 0.0003 | 0.1592 | 0.0888 | |
2.9205 | 0.0771 | 0.1280 | 0.0316 | 0.0110 | 0.0761 | 3.4612 | 2.3800 | ||
0.4094 | 0.0017 | 0.6755 | −0.0016 | 0.0039 | 0.0017 | 0.4893 | 0.3296 | ||
500 | 0.1253 | 0.0001 | 0.1443 | 0.0007 | 0.0058 | 0.0001 | 0.1475 | 0.1030 | |
2.8916 | 0.0308 | 0.0961 | 0.0027 | 0.0009 | 0.0308 | 3.2353 | 2.5479 | ||
0.4125 | 0.0006 | 0.4267 | 0.0015 | 0.0036 | 0.0006 | 0.4619 | 0.3632 |
Model | K-S (p-Value) | A-D (p-Value) | C-V (p-Value) | AIC | BIC | CAIC | |
---|---|---|---|---|---|---|---|
C-BXII | 0.0943 (0.9747) | 0.4040 (0.8444) | 0.0462 (0.8990) | 278.116 | 286.116 | 293.997 | 286.95 |
AC-P | 0.1698 (0.4327) | 2.1492 (0.0763) | 0.3178 (0.1205) | 294.082 | 302.082 | 309.963 | 302.915 |
W-C | 0.2076 (0.2045) | 3.3996 (0.0173) | 0.5385 (0.0318) | 283.565 | 291.565 | 299.446 | 292.399 |
BXII-MW | 0.2264 (0.1317) | 2.3973 (0.0562) | 0.3595 (0.0927) | 975.042 | 985.042 | 994.894 | 986.319 |
AW | 0.1132 (0.8898) | 0.6363 (0.5700) | 0.0533 (0.8560) | 313.350 | 321.350 | 329.232 | 322.184 |
AC | 0.1698 (0.4308) | 1.6355 (0.1473) | 0.1939 (0.2795) | 357.847 | 365.847 | 373.728 | 366.68 |
ABXII | 0.1321 (0.7471) | 0.7992 (0.4811) | 0.1007 (0.5817) | 281.693 | 293.693 | 305.515 | 295.519 |
C | 0.1887 (0.3042) | 2.2943 (0.0638) | 0.2833 (0.1508) | 314.931 | 318.931 | 322.871 | 319.171 |
BXII | 0.3019 (0.0155) | 3.9657 (0.0091) | 0.7486 (0.0097) | 288.079 | 292.079 | 296.019 | 292.319 |
, rf, hrf and rhrf | MLE | SE |
---|---|---|
0.0412 | 0.0002 | |
0.2562 | 0.0001 | |
1.4104 | 0.0017 | |
0.5354 | 0.0007 | |
0.7986 | 0.0001 | |
0.4536 | 0.0003 | |
1.7989 | 0.0003 |
Model | K-S (p-Value) | A-D (p-Value) | C-V (p-Value) | AIC | BIC | CAIC | |
---|---|---|---|---|---|---|---|
C-BXII | 0.0921 (0.9068) | 0.5252 (0.7209) | 0. 0748 (0.7223) | 283.318 | 291.318 | 300.640 | 291.881 |
AC-P | 0.1184 (0.6643) | 1.2924 (0.2346) | 0.4306 (0.1373) | 294.285 | 302.285 | 311.608 | 302.848 |
W-C | 0.1447 (0.4057) | 1.4633 (0.1855) | 0.3961 (0.1479) | 299.544 | 307.544 | 316.867 | 308.107 |
BXII-MW | 0.1053 (0.7963) | 0.8546 (0.4429) | 0.0854 (0.6613) | 376.489 | 386.489 | 398.143 | 387.346 |
AW | 0.1316 (0.5291) | 1.7241 (0.1310) | 0.1734 (0.3257) | 374.345 | 382.345 | 391.668 | 382.908 |
AC | 0.1711 (0.2170) | 2.3739 (0.0578) | 0.3072 (0.1290) | 516.645 | 524.645 | 533.968 | 525.208 |
ABXII | 0.1579 (0.3012) | 2.2556 (0.0668) | 0.3096 (0.1270) | 287.540 | 299.540 | 313.525 | 300.758 |
C | 0.1974 (0.1036) | 2.1916 (0.0723) | 0.4073 (0.0691) | 295.386 | 299.386 | 303.048 | 299.551 |
BXII | 0.2105 (0.0687) | 4.6664 (0.0042) | 0.7933 (0.0076) | 293.421 | 297.421 | 302.083 | 297.586 |
, rf, hrf and rhrf | MLE | SE |
---|---|---|
0.0779 | 0.0004 | |
0.4452 | 0.0007 | |
1.5611 | 0.0008 | |
0.6595 | 0.0012 | |
0.7581 | 1.5022 × 10−5 | |
0.6274 | 0.0004 | |
1.9660 | 0.0012 |
Model | K-S (p-Value) | A-D (p-Value) | C-V (p-Value) | AIC | BIC | CAIC | |
---|---|---|---|---|---|---|---|
C-BXII | 0.0792 (0.9103) | 0.5774 (0.6694) | 0.0835 (0.6719) | 210.869 | 218.869 | 229.330 | 219.286 |
AC-P | 0.1584 (0.1560) | 2.1414 (0.0770) | 0.3696 (0.0871) | 212.157 | 220.157 | 230.618 | 220.574 |
W-C | 0.1188 (0.4735) | 1.1331 (0.2942) | 0.1677 (0.3399) | 215.749 | 223.749 | 234.209 | 224.165 |
BXII-MW | 0.0990 (0.7042) | 0.6346 (0.6156) | 0.0712 (0.7446) | 250.885 | 260.885 | 273.961 | 261.517 |
AW | 0.1287 (0.3692) | 1.1576 (0.2840) | 0.2012 (0.2651) | 266.897 | 274.897 | 285.357 | 275.314 |
AC | 0.1089 (0.5860) | 1.1622 (0.2822) | 0.1877 (0.2926) | 226.157 | 234.157 | 244.618 | 234.574 |
ABXII | 0.1683 (0.1131) | 2.8641 (0.0322) | 0.4060 (0.0697) | 218.453 | 230.453 | 246.144 | 231.347 |
C | 0.1485 (0.2134) | 1.2900 (0.2355) | 0.2641 (0.1713) | 267.435 | 271.435 | 276.665 | 271.557 |
BXII | 0.1782 (0.0801) | 4.9159 (0.0032) | 0.6365 (0.0182) | 223.879 | 227.879 | 233.109 | 228.002 |
, rf, hrf and rhrf | MLE | SE |
---|---|---|
0.3696 | 0.0002 | |
0.5234 | 0.0002 | |
1.2435 | 0.0026 | |
0.4516 | 0.0005 | |
0.5882 | 0.0001 | |
0.8733 | 0.0002 | |
1.2475 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantan, Z.I.; Binhimd, S.M.S.; Salem, H.N.; AL-Dayian, G.R.; EL-Helbawy, A.A.; Elaal, M.K.A. Chen-Burr XII Model as a Competing Risks Model with Applications to Real-Life Data Sets. Axioms 2024, 13, 531. https://doi.org/10.3390/axioms13080531
Kalantan ZI, Binhimd SMS, Salem HN, AL-Dayian GR, EL-Helbawy AA, Elaal MKA. Chen-Burr XII Model as a Competing Risks Model with Applications to Real-Life Data Sets. Axioms. 2024; 13(8):531. https://doi.org/10.3390/axioms13080531
Chicago/Turabian StyleKalantan, Zakiah I., Sulafah M. S. Binhimd, Heba N. Salem, Gannat R. AL-Dayian, Abeer A. EL-Helbawy, and Mervat K. Abd Elaal. 2024. "Chen-Burr XII Model as a Competing Risks Model with Applications to Real-Life Data Sets" Axioms 13, no. 8: 531. https://doi.org/10.3390/axioms13080531
APA StyleKalantan, Z. I., Binhimd, S. M. S., Salem, H. N., AL-Dayian, G. R., EL-Helbawy, A. A., & Elaal, M. K. A. (2024). Chen-Burr XII Model as a Competing Risks Model with Applications to Real-Life Data Sets. Axioms, 13(8), 531. https://doi.org/10.3390/axioms13080531