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Abstract: In this paper Chen-Burr XII distribution is constructed and graphical description of the
probability density function, hazard rate and reversed hazard rate functions of the proposed model is
obtained. Also, some statistical characteristics of the Chen-Burr XII distribution are discussed and
some new models as sub-models from the Chen-Burr XII distribution are introduced. Moreover,
maximum likelihood estimation of the parameters, reliability, hazard rate and reversed hazard
rate functions of the Chen-Burr XII distribution are considered. Also, the asymptotic confidence
intervals of the distribution parameters, reliability, hazard rate and reversed hazard rate functions are
presented. Finally, three real life data sets are applied to prove how the Chen-Burr XII distribution
can be applied in real life and to confirm its superiority over some existing distributions.

Keywords: competing risks; additive model; Chen-Burr XII distribution; maximum likelihood
estimation; hazard shape
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1. Introduction

Many techniques are available in statistical literature for constructing, expanding,
and generalizing lifetime distributions. These include compound distributions, finite
and infinite mixed distributions, probability integral transforms, and transformations of
variables and distribution functions, see [1]. Researchers have proposed these methods to
provide more flexible modifications, extensions or generalizations of the existing lifetime
distributions. In life testing, human mortality research, engineering modelling, electronic
sciences, biological surveys, and reliability studies, there is a need for different shapes of
lifetime distributions with hazard rate functions (hrfs) that accommodate different patterns
of failure.

Comparing risks is a useful technique for creating new lifetime distributions. The
output model has a flexible hrf with bathtub shape and more intricate shapes, which
highlights the significance of the competing risks approach. The concept of competing risks,
which shows up in many life-testing studies where the failure of the tested item may be
linked to multiple causes or modes of failure, is the basis of the competing risks approach.
In a way, these failure modes compete to make the tested item fail. For this reason, this
is commonly referred to as competing risks in statistical literature. Also, competing risks
arise in series systems, in which the components are arranged in series. Each component
possesses a specified distribution with specified parameters and these components are
statistically independent of each other, therefore the lifetime of the series system is the
minimum of its components lifetimes. In reliability studies, demographic, medical, and
biological sciences, as well as in engineering applications, competing risks frequently
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happened. Additionally, the series model, additive model, and multi-risk model are other
names for the competing risks concept.

Several lifetime distributions, such as the additive Weibull (AW) distribution presented
by [2], have been introduced in literature based on the concept of competing risks, it is
constructed by combining two Weibull (W) distributions; one has an increasing hrf and
another has a decreasing hrf. The additive Burr XII (ABXII) distribution was presented
by [3] by adding two hrfs of Burr XII (BXII) distribution; one has a decreasing hrf and
another has an increasing hrf. Ref. [4] proposed a competing risks distribution, called the B
distribution. A new modified W (NMW) distribution was derived by [5] by combining the
W distribution with the modified W distribution presented by [6] in a series system. The
exponential-W distribution was constructed by [7]. The additive modified W distribution
was obtained by [8]. The log-logistic W distribution was introduced by [9], by considering
a series system with two components; one has the W distribution and another has the
log-logistic distribution. The additive Perks-W distribution was obtained by [10]. BXII
modified W (BXII-MW) distribution was derived by [11]. W-Chen (W-C) distribution
was introduced by [12]. The log-normal modified W distribution was proposed by [13].
Lomax-W distribution was constructed by [14]. The flexible W extension-BXII distribution
was presented by [15] by combining the flexible W extension distribution obtained by [16]
and BXII distribution in a series system. The additive Chen-W distribution was proposed
by [17] and the flexible additive W distribution was developed by [18] via the combination
of three W distributions. The Lindley-BXII distribution was suggested by [19]. The flexible
additive Chen-Gompertz distribution was introduced by [20] by combining Chen and a
special case of Gompertz distributions in a series system. The additive power-transformed
half-logistic model was proposed by [21] by combining two power-transformed half-
logistic distributions in a series system. The three-component additive W distribution was
considered by [22]. Recently, the additive flexible W extension-Lomax distribution was
presented by [23]. The additive Perks distribution was presented by [24] based on the sum
of the positive and negative hrfs of Perks distributions. More recently, the additive Chen
(AC) distribution was introduced by [25]. Also, ref. [26] suggested the additive Chen-Perks
(AC-P) distribution. Most recently, the Additive Xgamma-BXII Distribution was introduced
as a competing risks model between the xgamma and BXII distributions.

An important concept for lifetime distributions and lifetime data modelling is the hrf.
There are different shapes of the hrf, the most common are an increasing hrf, decreasing hrf,
constant hrf, unimodal (upside bathtub) and bathtub hrf. The most important hrf shapes,
that are very useful in practice and play an important role in reliability, are the bathtub,
unimodal and modified bathtub shapes. In statistical literature there are many lifetime
distributions that are introduced with bathtub and unimodal (upside bathtub) hrf, see [27].
A more complex pattern of the hrf is the generalized/modified bathtub hrf, which is a
modification of bathtub hrf. The behavior of bathtub and modified bathtub hrfs throughout
their infant mortality phase is the main distinction between them. The infant mortality
phase in the modified bathtub hrf was split into two stages by [28]. The first stage exhibits
an increasing failure rate, signifying failures resulting from rough faults, such as those
arising from inappropriate handling, inadequate manufacture, or defective control systems.
In this initial stage, the hrf pattern swiftly peaks, is followed by a period of decreasing hrf,
and subsequently increases hrf. (for more details see [27,29]).

This paper introduces the Chen-BXII (C-BXII) distribution, a new competing risks
model, by considering a series system consisting of two independent components operating
in series. The first component, X1’s lifetime, has a Chen distribution while the second
component, X2’s lifetime has a BXII distribution. The system’s lifespan X = min{X1, X2}
has the C-BXII distribution as a result. This distribution’s great degree of flexibility and
diversity in shape appear in its pdf and hrf, which indicates its significance. Three essential
shapes of the hrf are displayed: decreasing-unimodal, modified bathtub, and bathtub. These
shapes make the C-BXII distribution more useful for modelling lifetime data. Additionally,
the constructed distribution includes some novel additive models that are special cases
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that haven’t been presented in statistical literature. As special cases, it also includes some
well-known models.

A two-parameter lifetime distribution with bathtub or increasing hrf was presented
by [30]. The reliability function (rf) and the hrf of Chen distribution are given, respectively, by:

R1(x; α, β) = eα(1−exβ
), x > 0; α, β > 0, (1)

and
h1(x; α, β) = αβxβ−1exβ

, x > 0; α, β > 0, (2)

where α and β are shape parameters.
The BXII distribution is a component of the Burr continuous distribution system which

was proposed by [31]. The BXII distribution’s rf and hrf are provided, respectively, by:

R2(x; c, k) = (1 + xc)−k, x > 0; c, k > 0, (3)

and

h2(x; c, k) =
ckxc−1

(1 + xc)
, x > 0; c, k > 0, (4)

where c and k are shape parameters.
The structure of this paper is as follows: the C-BXII distribution is constructed in

Section 2. In Section 3, the pdf, hrf, and rhrf of the constructed model are graphically
described. Also, statistical characteristics of the C-BXII distribution are studied in Section 4
and some sub models as particular cases from the C-BXII distribution are introduced.
Maximum likelihood (ML) estimation and the asymptotic confidence intervals (ACI) of the
parameters, rf, hrf and rhrf of the C-BXII distribution are considered in Section 5. A simula-
tion study is conducted in Section 6 for evaluating the performance of the ML estimates.
Finally, In Section 7 three applications are considered to demonstrate the applicability of
the proposed model and its superiority over some existing distributions.

2. Model Construction

This section presents the construction of the suggested model using the idea of com-
peting risks. A Graphical description of the pdf, hrf and reversed hrf (rhrf) of the proposed
model is introduced. Furthermore, an explanation of the behavior of the hrf is provided.

The rf of the proposed model can be obtained by multiplying the rfs of Chen and BXII
distributions as follows:

R(x; θ) =
2

∏
i=1

Ri(x) =
eα(1−exβ

)

(1 + xc)k , x > 0; θ > 0, (5)

where θ = (α, β, c, k) is a parameter vector, R1(x) and R2(x) are the rfs of Chen and BXII
distributions, respectively.

The corresponding cumulative distribution function (cdf) of the C-BXII distribution is
given by:

F(x; θ) = 1 − R(x; θ) = 1 − eα(1−exβ
)

(1 + xc)k , x > 0; θ > 0. (6)

Also, the hrf of the C-BXII distribution can be expressed as the sum of the hrfs of Chen
and BXII distributions as using Equations (2) and (4) one obtains

h(x; θ) = h1(x; α, β) + h2(x; c, k)
= αβxβ−1exβ

+ ckxc−1

(1+xc)
, x > 0; θ > 0.

(7)

The pdf of the C-BXII distribution can be derived using the following relationship
between the pdf, rf and hrf (see [5])
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f (x; θ) = h(x; θ)R(x; θ).

Then

f (x; θ) =

[
αβxβ−1exβ

+
ckxc−1

(1 + xc)

]
eα(1−exβ

)

(1 + xc)k , x > 0; θ > 0. (8)

Also, the rhrf and the cumulative hazard rate function (chrf) of the C-BXII distribution
are given, respectively, as follows:

r(x; θ) =
f (x; θ)

F(x; θ)
=

[
αβxβ−1exβ

+ ckxc−1

(1+xc)

]
eα(1−exβ

)

(1 + xc)k − eα(1−exβ
)

, x > 0; θ > 0, (9)

and
H(x; θ) = −ln R(x; θ) = kln(1 + xc)− α

(
1 − exβ

)
, x > 0; θ > 0. (10)

The suggested model can be used to simulate the lifespan of an item or individual
which is subject to two independent failure modes, acting simultaneously on it and one of
these failure modes will cause the failure of this item or individual. The lifetime of one of
these failure modes has Chen distribution and the other has BXII distribution. Also, this
additive model can be interpreted as a lifetime of a series system with two parts functioning
independently, the lifetime of the first part has the Chen distribution and the latter has BXII
distribution. Hence, the lifetime of the series system is the minimum of the lifetimes of the
two items.

3. Graphical Description

In this subsection, graphical description of the pdf, hrf and rhrf of the C-BXII distribu-
tion are presented to demonstrate the adaptability of the proposed model.

Figure 1 displays the pdf of the C-BXII distribution for different parameter values, from
which one can observe that the pdf of the C-BXII distribution can be bimodal, decreasing-
unimodal, unimodal or decreasing. Figure 1 displays the pdf of C-BXII distribution for
different parameter values, from which one can observe that the pdf of C-BXII distribution
can be bimodal, decreasing-unimodal, unimodal or decreasing. Figure 2 exhibits the hrf of
C-BXII distribution for certain selected parameter values. The hrf of C-BXII distribution ex-
hibits different and important shapes, which are: increasing, decreasing, bathtub, modified
bathtub and decreasing-unimodal shapes. Figure 3a,b show that the hrf has the modified
bathtub shape, since the hrf increases then decreases and finally increases again. Also,
Figure 3a exhibits the hrf of C-BXII distribution is a decreasing hrf followed by unimodal
shape or a decreasing hrf and Figure 3b displays the bathtub hrf of C-BXII distribution.

While Figure 4 displays the rhrf of the C-BXII distribution for given parameter values.
The rhrf can be decreasing or decreasing followed by a unimodal shape. From these plots,
the flexibility and diversity in the shapes of the pdf and hrf of the C-BXII distribution can
be demonstrated. Therefore, the C-BXII distribution can present a better fit for several types
of lifespan data.
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Limiting behavior of the hrf, h(x; θ), and its first derivative with respect to x can be
taken into consideration to investigate the behavior of the hrf of the C-BXII distribution,
which is shown in Figure 3.

The first derivative of h(x; θ) with respect to x can be derived using (7) as given below:

′
h(x; θ) =

dh(x; θ)

dx
=

′
h1(x; α, β) +

′
h2(x; c, k),

where
′
h1(x; α, β) = αβxβ−2

(
βxβ + β − 1

)
exβ

,

and
′
h2(x; c, k) =

ck(c − 1)xc−2

(1 + xc)
− c2kx2c−2

(1 + xc)2 .

The shape of the hrf of the C-BXII distribution can be characterized as follows:

a. For β > 1 and c > 1:

lim
x→0+

h(x; θ) = 0, and lim
x→∞

h(x; θ) = ∞,

and for β = 1 and c > 1:

lim
x→0+

h(x; θ) = α, and lim
x→∞

h(x; θ) = ∞.

In this case h1(x; α, β) is an increasing hrf while h2(x; c, k) is a unimodal hrf. So, the
hrf of C-BXII distribution can be either increasing hrf so that the positive term for
′
h1(x; α, β) dominates the negative one for

′
h2(x; c, k) and

′
h(x; θ) > 0. Also, the hrf

of C-BXII distribution can show the modified bathtub shape. In this case let x∗0 and

x∗∗0 be two critical values of h(x; θ), so therefore for x < x∗0 , both
′
h1(x; α, β) > 0

and
′
h2(x; c, k) > 0. So, h(x; θ) is increasing for x < x∗0 , that is

′
h(x; θ) > 0. For

x∗0 < x ≤ x∗∗0 , there are two possibilities for h1(x; α, β) and h2(x; c, k). The first is that

the two functions are negative,
′
h1(x; α, β) < 0 and

′
h2(x; c, k) < 0, or one function of

them is negative and the other is positive, but the negative one dominates the positive
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one, therefore
′
h(x; θ) < 0, that is h(x; θ) is a decreasing hrf. For x∗∗0 < x, h(x; θ) is

increasing hrf again because
′
h1(x; α, β) > 0 is positive and dominates the negative

one
′
h2(x; c, k) < 0. In brief, the hrf of C-BXII distribution presents the modified

bathtub shape, that is, the hrf is increasing on [0, x∗0) , decreasing on (x∗0 , x∗∗0 ) and
finally takes an increasing pattern on ( x∗∗0 , ∞] . These two shapes of the hrf are
displayed in Figure 3a,b.

b. For β = 1 and c = 1:

lim
x→0+

h(x; θ) = α + k, and lim
x→∞

h(x; θ) = ∞,

and for β > 1 and c = 1:

lim
x→0+

h(x; θ) = k, and lim
x→∞

h(x; θ) = ∞,

In the present case, h1(x; α, β) is an increasing hrf whereas h2(x; c, k) is a decreasing
hrf. Therefore, the hrf of C-BXII distribution can be an increasing hrf so that the

positive term for
′
h1(x; α, β) dominates the negative one for

′
h2(x; c, k) and

′
h(x; θ) > 0.

c. For β ≥ 1 and c < 1:

lim
x→0+

h(x; θ) = ∞, and lim
x→∞

h(x; θ) = ∞.

In the present case,
′
h1(x; α, β) > 0 and

′
h2(x; c, k) < 0. For x < x0, where x0 is a

critical point at which
′
h(x; θ) = 0,

′
h(x; θ) < 0. For x > x0,

′
h(x; θ) > 0. Thus, the hrf

of C-BXII distribution is a bathtub hrf as shown in Figure 3b.
d. For β < 1 and c > 1 and for β < 1 and c ≤ 1:

Here in these two cases, the limiting behavior of the hrf, h(x; θ), is the same, that is:

lim
x→0+

h(x; θ) = ∞, and lim
x→∞

h(x; θ) = 0,

and the hrf of C-BXII distribution is decreasing followed by unimodal shape or a
decreasing hrf as shown in Figure 3a. For more explanation considers the case when:

• β < 1 and c > 1, In this case, h(x; θ) is a decreasing-unimodal hrf. Let x∗0 and x∗∗0 are

two critical values for h(x; θ). When x < x∗0 , h(x; θ) is a decreasing hrf,
′
h(x; θ) < 0,

and when x∗0 < x ≤ x∗∗0 , the hrf of C-BXII distribution is increasing hrf,
′
h(x; θ) > 0.

Finally, when x∗∗0 < x, h(x; θ) is decreasing again.
• β < 1 and c ≤ 1, here h(x; θ) is a decreasing hrf, since h1(x; α, β) is bathtub hrf and

h2(x; c, k) is a decreasing hrf and h2(x; c, k) dominates the increasing part in h1(x; α, β).

4. Statistical Properties

The quantile function and the mode, central and non-central moments, moment
generating function, rth incomplete moment and inequality curves, mean residual life
(MRL) and mean past life (MPL) are some important statistical characteristics of the C-
BXII distribution that are investigated in this section. Also, mean time to failure (MTTF),

mean time between failures (MTBF) and the availability (Av), R
′
enyi entropy and Tsallis

entropy (q-entropy), the order statistics and some sub-models of the proposed distribution
are studied.

i. The quantile function and the mode
One can obtain the quantile function of the C-BXII distribution by inverting

R(x; θ) = 1 − q, 0 < q < 1.



Axioms 2024, 13, 531 8 of 31

So, the quantile function can be acquired through the solution of the following nonlin-
ear equation

α

(
1 − exβ

q

)
− k ln

(
1 + xc

q

)
− ln(1 − q) = 0, 0 < q < 1. (11)

The median of the C-BXII distribution, expressed by xm , the first quartile, symbolized
by x0.25, and the third quartile, expressed by x0.75, can be derived as particular cases of the
quantile function by putting q = 0.5, q = 0.25 and q = 0.75 into (11), respectively.

The mode of the C-BXII distribution is the value of x0 which maximize f (x; θ).
So, the following nonlinear equation can be solved numerically to get the mode of the
C-BXII distribution,{

αβxβ−2
0 exβ

0

[
βxβ

0 + β − 1
]
+

ckxc−2
0

(1+xc
0)

2

[
(c − 1)

(
1 + xc

0
)
− cxc

0
]}

−
[

αβxβ−1
0 exβ

0 +
ckxc−1

0
(1+xc

0)

]2
eα(1−exβ

0 )

(1+xc
0)

k = 0.
(12)

The mathematical derivation of the mode of the C-BXII distribution is provided in
Appendix A.

Table 1 exhibits some numerical outcomes of the first quartile, x0.25, the median, xm,
and the third quartile, x0.75, as particular cases of the quantile and the mode of the C-
BXII distribution for various values for the parameter θ using R programming language
and software version 4.4.1. It is obvious from Table 1 that the C-BXII distribution can be
unimodal or bimodal, this is shown clearly in Figure 1.

Table 1. Some quartiles and modes of the C-BXII distribution for various values for the parameter.

α β c k x0.25 xm x0.75 Mode

2.6 2 1.2 1.8 0.1738 0.3213 0.4995 0.2057 -
0.05 4 0.15 0.8 0.0038 1.0691 1.2995 1.3373 -
0.15 6 1.5 2 0.2881 0.5529 0.9185 0.2511 1.1238
0.01 5 1.15 1.8 0.2178 0.5181 1.0980 0.0724 1.3608
0.25 3 5 2.3 0.6295 0.7694 0.9084 0.7712 -

ii. Central and non-central moments

The rth non-central moment of the C-BXII distribution is given by:

µ′
r =

r
c

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(
i
j

)
(−1)j

[
αi jk

i!k!
B
(

βk + r
c

, k − βk + r
c

)]
, r = 1, 2, . . . , (13)

where B(., .) is the beta function and 0 < βk+r
c < k.

The derivation of the rth non-central moment of the C-BXII distribution is given in
Appendix A.

By substituting r = 1 into (13), the mean of the C-BXII distribution can be obtained
as follows:

µ =
1
c

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(
i
j

)
(−1)j

[
αi jk

i!k!
B
(

βk + 1
c

, k − βk + 1
c

)]
, (14)

where 0 < βk+1
c < k.

Substituting r = 2 in (13), the second non-central moment of the C-BXII distribution
is given as:

µ′
2 =

2
c

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(
i
j

)
(−1)j

[
αi jk

i!k!
B
(

βk + 2
c

, k − βk + 2
c

)]
, (15)
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where 0 < βk+2
c < k.

The variance of the C-BXII distribution can be obtained by substituting (14) and (15)
into the following equation:

V(X) = µ2 = µ′
2 − µ2. (16)

The coefficients kurtosis (CK), skewness (CS) and variation (CV), are given, respec-
tively, by

CV =

√
µ2

µ
=

√
µ′

2 − µ2

µ
=

√
µ′

2
µ2 − 1, (17)

CS =
µ3

µ3/2
2

=
µ′

3 − 3µµ′
2 + 2µ3(

µ′
2 − µ2

)3/2 , (18)

and

Ck =
µ4

µ2
2
=

µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4(

µ′
2 − µ2

)2 , (19)

where µ, µ′
2 and µ2 are obtained, respectively, in (14), (15) and (16) and µ′

3 and µ′
4 can be

derived, respectively, by setting r = 3 and r = 4 into (13).
Table 2 provides numerical findings for the variance, CV, CS, CK, and first four non-

central moments of the C-BXII distribution for a certain parameter values. This indicates
that both left (negative) and right (positive) skewness are covered by the C-BXII distribution.

Table 2. Moments of the C-BXII distribution for different parameters values.

α β c k µ µ’
2 µ’

3 µ’
4 µ2 CV CS Ck

2.6 2 1.2 1.8 0.3513 0.1722 0.1010 0.0666 0.0487 0.6284 0.5808 2.7403
0.05 4 0.15 0.8 0.7455 0.9149 1.1585 1.4891 0.3591 0.8039 −0.2744 1.2299
0.15 6 1.5 2 0.5948 0.4774 0.4383 0.4317 0.1236 0.5912 0.1682 1.7465
0.01 5 1.15 1.8 0.6342 0.6180 0.7023 0.8536 0.2158 0.7325 0.3647 1.6800
0.25 3 5 2.3 0.7684 0.6331 0.5517 0.5041 0.0427 0.2689 −0.0323 2.8953

iii. The moment generating function

The moment generating function of a random variable X with the C-BXII distribution,
symbolized by MX(t), can be obtained as follows:

MX(t) = E
(
etx) = ∫ ∞

0 etx f (x; θ)dx =
∞
∑

r=0

tr

r!
µ′

r

=
∞
∑

i=0

i
∑

j=0

∞
∑

k=0

∞
∑

r=0

r
c

tr

r!
(i

j)(−1)j

[
αi jk

i!k!
B
(

βk + r
c

, k − βk + r
c

)]
,

(20)

where 0 < βk+r
c < k.

iv. Incomplete moments and inequality curves

For a random variable X with the C-BXII distribution, its rth incomplete moment may
be obtained using

µr(t) =
∫ t

0 xr f (x; θ)dx
= −trR(t; θ) +

∫ t
0 rxr−1R(x; θ)dx

=
−treα(1−etβ

)

(1 + tc)k +
r
c

∞
∑

i=0

i
∑

j=0

∞
∑

k=0
(i

j)(−1)j αi jk

i!k!
IB(tc)

(
βk + r

c
, k − βk + r

c

)
,

(21)

where IB(tc)

(
βk+r

c , k − βk+r
c

)
is a lower incomplete beta function and 0 < βk+r

c < k.
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The well-known Lorenz and Bonferroni curves are applied widely in several areas,
including insurance, demography, economics, reliability research, and life testing. These
curves are significant applications of the first incomplete moment. L(p) and B(p); the
corresponding symbols for the Lorenz and Bonferroni curves, are defined below:

L(p) =
1
µ

∫ q

0
x f (x)dx =

µ(q)
µ

, (22)

and

B(p) =
1

pµ

∫ q

0
x f (x)dx =

L(p)
p

. (23)

by substituting r = 1 and t = q into (21) and q = F−1(p) for 0 < p < 1, then µ(q) the first
incomplete moment can be obtained and µ is gotten from (14). (For more details see [32]).

For the C-BXII distribution, Lorenz and Bonferroni curves can be obtained, respectively,
by

L(p) =
∑∞

i=0 ∑i
j=0 ∑∞

k=0 (
i
j)(−1)j αi jk

i!k! IB(qc)

(
βk+r

c , k − βk+r
c

)
∑∞

i=0 ∑i
j=0 ∑∞

k=0 (
i
j)(−1)j αi jk

i!k! B
(

βk+1
c , k − βk+1

c

) , (24)

and

B(p) =
∑∞

i=0 ∑i
j=0 ∑∞

k=0 (
i
j)(−1)j αi jk

i!k! IB(qc)

(
βk+r

c , k − βk+r
c

)
p∑∞

i=0 ∑i
j=0 ∑∞

k=0 (
i
j)(−1)j αi jk

i!k! B
(

βk+1
c , k − βk+1

c

) , (25)

where 0 < βk+1
c < k.

v. The mean residual life and mean past life

The predicted extra life duration for a system or unit that is alive at age x0 is repre-
sented by the MRL function, also known as the life expectation at age t, which is denoted
by m(x0), it is provided by:

m(x0) = E(X − x0|X > x0) =
1

R(x0; θ)

∫ ∞
x0

R(x; θ)dx

=

(
1 + xc

0
)k

cexp
[
α
(

1 − exc
0

)] ∞
∑

i=0

i
∑

j=0

∞
∑

k=0
(i

j)(−1)j αi jk

i!k!
IB(xc

0)

(
βk + 1

c
, k − βk + 1

c

)
,

(26)

where IB(xc
0)
(

βk+1
c , k − βk+1

c

)
is an upper incomplete beta and 0 < βk+1

c < k.
The mean waiting time or mean inactivity time, which is known as the mean reversed

residual life function, or MPL, is denoted by M(x0). It is the amount of the time that has
passed since a system or unit has failed, if the failure happened in (0, x0) and is given by:

M(x0) = E[(x0 − X)|X ≤ x0 ] =
1

F(x0; θ)

∫ x0
0 F(x; θ)dx

=

(
1 + xc

0
)k(

1 + xc
0
)k − exp

[
α
(

1 − exc
0

)][x0 −
1
c

∞
∑

i=0

i
∑

j=0

∞
∑

k=0
(i

j)(−1)j αi jk

i!k!
IB(xc

0)

(
βk + 1

c
, k − βk + 1

c

)]
,

(27)

where IB(xc
0)

(
βk+1

c , k − βk+1
c

)
is a lower incomplete beta function and 0 < βk+1

c < k.
The MRL and MPL of the C-BXII distribution are computed numerically using R

software for some certain values of the parameters θ = (α, β, c, k) and for x0 = 0.1 and
x0 = 0.5. Table 3 presents the numerical values. It is clear from Table 3 that the results of
the MRL in the case of x0 = 0.5 are smaller than their corresponding for x0 = 0.1, whereas
the results of the MPL are larger for x0 = 0.5 than for x0 = 0.1.
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Table 3. Mean residual life and mean past life for selected values of the parameters and x0.

α β c k
x0=0.1 x0=0.5

MRL MPL MRL MPL

2.6
2

1.2
1.5 0.3094 0.0441 0.1621 0.2423
0.75 0.3523 0.0419 0.1738 0.2178
0.5 0.3687 0.0405 0.1780 0.2077

0.9

1.5

0.3035 0.0528 0.1660 0.2722
0.7 0.3049 0.0606 0.1693 0.2984

1.5

1.2

0.2643 0.0444 0.1582 0.2675
1.0 0.2152 0.0514 0.1650 0.3184

1.8
2

0.3541 0.0447 0.2014 0.2421
0.9 0.4400 0.0456 0.2865 0.2468

vi. Mean time to failure, mean time between failures and availability

Reliability terminologies for predicting the lifespan of components include the MTTF,
MTBF and the Av. These methods measure a failure rate and the consequent time of
expected performance based on a set of data by presenting numerical results. Forecasting
the MTTF, MTBF, and Av is also essential for developing and producing a maintainable
system. Furthermore, customers can apply these reliability terms to help them choose
which products to purchase.

The MTTF and MTBF for the C-BXII are determined, respectively, by:

MTTF =
∫ ∞

0
R(x; θ)dx = µ (28)

and
MTBF =

−x
ln R(x; θ)

=
x

H(x; θ)
=

x

kln(1 + xc)− α
(

1 − exβ
) . (29)

The Av is the probability that a component is effective at time x0 and is defined as:

Av =
MTTF
MTBF

. (30)

(See [33]).
Table 4 presents numerical results of MTTF, rf, MTBF, Av of the C-BXII for a certain

specific parameter values θ = (α, β, c, k) and for x0 = 0.1 and x0 = 0.5. From Table 4 it is
observed that:

Table 4. Mean time to failure, reliability, mean time between failure and availability for some values
of the parameters and x0.

α β c k MTTF

x0=0.1 x0=0.5

R
(

x0;θ
_

)
MTBF Av R

(
x0;θ

_

)
MTBF Av

2.6
2

1.2
1.5 0.3701 0.8888 0.8481 0.4364 0.2779 0.3905 0.9478

0.75 0.4249 0.9305 1.3885 0.3060 0.3644 0.4953 0.8578
0.5 0.4461 0.9449 1.7630 0.2530 0.3989 0.5440 0.8201

0.9

1.5

0.3378 0.8155 0.4902 0.6891 0.2510 0.3618 0.9337
0.7 0.3104 0.7415 0.3344 0.9282 0.2327 0.3429 0.9051

1.5

1.2

0.3147 0.8392 0.5704 0.5516 0.1931 0.3040 1.0000
1.0 0.2336 0.6940 0.2738 0.8533 0.1077 0.2244 1.0000

1.8
2

0.4126 0.8960 0.9102 0.4533 0.3488 0.4747 0.8691
0.9 0.4934 0.9041 0.9918 0.4975 0.4504 0.6268 0.7872
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• For fixed α = 2.6, β = 2 and c = 1.2, as k decreases, MTTF, rf and MTBF increase,
while Av decreases this is for x0 = 0.1 and 0.5.

• For x0 = 0.1 and 0.5 and for fixed α = 2.6, β = 2 and k = 1.5, as c decreases, MTTF, rf,
MTBF and Av decrease.

• For x0 = 0.1 and 0.5 and for fixed α = 2.6, c = 1.2 and k = 1.5, as β decreases, MTTF,
rf and MTBF decrease, while Av increases.

• For fixed β = 2, c = 1.2 and k = 1.5, as α decreases, MTTF, rf, MTBF and Av increase
for x0 = 0.1, while for x0 = 0.5, the MTTF, rf, MTBF also increase as α decreases,
except the Av decreases.

• For all parameters values, the results of the MTBF when x0 = 0.5 are smaller than the
case of x0 = 0.1, whereas the results of the Av for x0 = 0.5 are larger than the case of
x0 = 0.1.

vii. Entropy measures

A random variable’s uncertainty, randomness, or variation can be measured by entropy.
Rényi entropy which was proposed by [34] is considered one of the most significant entropy
metrics and is an expansion of Shannon entropy. It is defined by

Iδ(x) =
1

1 − δ
ln

∫ ∞

−∞
f δ(x)dx, δ ̸= 1, δ > 0. (31)

When X is having the C-BXII distribution, Rényi entropy is given by:

Iδ(x; θ) =
1

(1 − δ)
ln


1
c

δ

∑
m=0

∞
∑

i=0

i
∑

j=0

∞
∑

k=0
( δ

m)(
i
j)
(−1)iαi+m jkδiβm

i!k!

×B
(

1
c
[(c − 1)(δ + m) + βk + 1], δ(k + 1)− m − 1

c
[(c − 1)(δ + m) + βk + 1]

)
,δ ̸= 1, δ > 0, (32)

where 0 < 1
c [(c − 1)(δ + m) + βk + 1] < δ(k + 1)− m.

As δ → 1, Rényi entropy tends to Shannon entropy.
Another entropy measure is Tsallis entropy (also called q-entropy) introduced by [35]

is defined by:

Iq(x) =
1

(1 − q)

[
1 −

∫ ∞

−∞
( f (x))qdx

]
; q ̸= 1, q > 0. (33)

If X is a random variable which has the C-BXII distribution Tsallis entropy is given by:

Iq(x; θ)=
1

1 − q
× ln

1 −


1
c

q
∑

m=0

∞
∑

i=0

i
∑

j=0

∞
∑

k=0
( q

m)(
i
j)
(−1)i αi+m jkqiβm

i!k!

×B
(

1
c
[(c − 1)(q + m) + βk + 1], q(k + 1)− m − 1

c
[(c − 1)(q + m) + βk + 1]

)

,

q ̸= 1, q > 0,

(34)

where 0 < 1
c [(c − 1)(q + m) + βk + 1] < q(k + 1)− m.

viii. The order statistics

Given i.i.d. random variables X1, X2, . . . , Xn, which have the C-BXII distribution.
The associated order statistics are then X(1) ≤ X(2) ≤ . . . ≤ X(n), and the pdf of the sth
order statistic is as follows:

fs:n(x; θ) =
s−1

∑
j=0

Cs,n,jh(x; θ)[R(x; θ)]j+n−s+1, x(s) > 0, (35)

where Cs,n,j =
n!(−1)j

j!(s−j−1)!(n−s)! .
Therefore, the following is the pdf of the C-BXII distribution’s sth order statistic:
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Substituting (5) and (7) into (35), consequently the following is the pdf of the C-BXII
distribution’s sth order statistic:

fs:n(x; θ) =
s−1
∑

j=0
Cs,n,j

αβxβ−1
(s) exβ

(s) +
ckxc−1

(s)

1 + xc
(s)


×exp

{
(j + n − s + 1)

[
α

(
1 − exβ

(s)

)
− s ln

(
1 + xc

(s)

)]}
, x(s) > 0.

(36)

Special cases

a. When s = 1, the pdf of the smallest order statistics can be derived as

f1:n(x; θ) = n

αβxβ−1
(1) exβ

(1) +
ckxc−1

(1)

1 + xc
(1)

exp
{

n
[

α

(
1 − exβ

(1)

)
− kln

(
1 + xc

(1)

)]}
, x(1) > 0. (37)

b. If s = n, one can obtain the pdf of the largest order statistics as

fn:n(x; θ) =
n−1
∑

j=0
Cn,n,j

αβxβ−1
(n) exβ

(n) +
ckxc−1

(n)

1 + xc
(n)


×exp

{
(j + 1)

[
α

(
1 − exβ

(n)

)
− kln

(
1 + xc

(n)

)]}
, x(n) > 0,

(38)

where Cn,j =
n!(−1)j

j!(n−j−1)! .

ix. Some sub-models

There are some distributions that can be obtained as sub-models of the C-BXII distri-
bution and are summarized in Table 5.

Table 5. The C-BXII distribution’s sub-models.

Parameter The Resulting Distribution Pdf

c = 1 Chen-compound exponential distribution f (x; θ) =
[
αβxβ−1exβ

+ k
(1+x)

][
eα(1−exβ

)

(1+x)k

]
, x > 0; θ > 0.

c = 2 Chen-compound Rayleigh distribution f (x; θ) =
[
αβxβ−1exβ

+ 2xk
(1+x2)

][
eα(1−exβ

)

(1+x2)k

]
, x > 0; θ > 0.

k = 1 Chen-log logistic f (x; θ) =
[
αβxβ−1exβ

+ cxc−1

(1+xc)

][
eα(1−exβ

)

(1+xc)

]
, x > 0; θ > 0.

α → 0+ BXII distribution f (x; c, k) = ckxc−1

(1+xc)k+1 , x > 0; c, k > 0.

k → 0+ Chen distribution f (x; α, β) = αβxβ−1exβ
eα(1−exβ

), x > 0; α, β > 0.

α → 0+ and c = 1 Lomax distribution f (x; k) = k
(1+x)k+1 , x > 0; k > 0.

α → 0+ and c = 2 Compound Rayleigh distribution f (x; k) = 2kx
(1+x2)k+1 , x > 0; k > 0.

α → 0+ and k = 1 Log logistic distribution f (x; c) = cxc−1

(1+xc)2 , x > 0; c > 0.

5. Maximum Likelihood Estimation

In this subsection, point ML estimators of the parameters, rf, hrf and rhrf are obtained.
Furthermore, ACIs of the parameters, rf, hrf and rhrf are derived.

5.1. Point Estimation

Given a random sample of size n from the C-BXII distribution with the parameter
vector θ = (α, β, c, k) and x(1), x(2), . . . , x(n), the likelihood function is as follows:
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L(θ; x) =

[
n

∏
i=1

f
(

x(i); θ
)]

=
n

∏
i=1

αβ xβ−1
(i) exβ

(i) +
ckxc−1

(i)(
1 + xc

(i)

)
 e

α
n
∑

i=1
(1−e

xβ
(i) ) n

∏
i=1

(
1 + xc

(i)

)−k
. (39)

Below is the likelihood function’s natural logarithm:

l = lnL(θ; x) =
n

∑
i=1

ln

αβxβ−1
(i) exβ

(i) +
ckxc−1

(i)(
1 + xc

(i)

)
+ α

n

∑
i=1

(
1 − exβ

(i)

)
− k

n

∑
i=1

ln
(

1 + xc
(i)

)
. (40)

With respect to the parameters α, β, k and c, the natural logarithm likelihood function
l = ln L(θ; x) can be differentiated as follows:

∂l

∂α
=

n

∑
i=1

hα

(
x(i); θ

)
h
(

x(i); θ
) +

n

∑
i=1

(
1 − exβ

(i)

)
, (41)

∂l

∂β
=

n

∑
i=1

hβ

(
x(i); θ

)
h
(

x(i); θ
) − α

n

∑
i=1

xβ

(i)e
xβ
(i) lnx(i), (42)

∂l

∂c
=

n

∑
i=1

hc

(
x(i); θ

)
h
(

x(i); θ
) − k

n

∑
i=1

xc
(i)lnx(i)(

1 + xc
(i)

) , (43)

and

∂l

∂k
=

n

∑
i=1

hk

(
x(i); θ

)
h
(

x(i); θ
) −

n

∑
i=1

ln
(

1 + xc
(i)

)
, (44)

where h
(

x(i); θ
)

is defined in (7),

hα

(
x(i); θ

)
=

∂h(x(i);θ)
∂α = βxβ−1

(i) exβ
(i) ,

hβ

(
x(i); θ

)
=

∂h(x(i);θ)
∂β = αxβ−1

(i) exβ
(i)
[

βlnx(i)
(

xβ

(i) + 1
)
+ 1

]
,

hc

(
x(i); θ

)
=

∂h(x(i);θ)
∂c =

kxc−1
(i)

1+xc
(i)

[
xc
(i) − clnx(i) + 1

]
,

and

hk

(
x(i); θ

)
=

∂h
(

x(i); θ
)

∂k
=

cxc−1
(i)

1 + xc
(i)

.

Equating the nonlinear likelihood Equations (41)–(44) to zero and solving numerically
the maximum likelihood estimates can be evaluated.

Utilizing the invariance property of the ML estimators, where the parameters
θ = (α, β, c, k) can be replaced by their ML estimators, so the ML estimators of R(x; θ),
h(x; θ) and r(x; θ) can be derived.

5.2. Asymptotic Confidence Intervals

Since the ML estimators of the parameters, θ = (α, β, c, k), cannot be obtained in closed
forms, then exact distributions of the ML estimators θ̂ =

(
α̂, β̂, ĉ, k̂

)
cannot be obtained.

Hence, the asymptotic distribution of the ML estimators can be used to obtain the ACIs
of the parameters of the C-BXII distribution. The asymptotic variance-covariance matrix
is obtained by the inverse of the asymptotic Fisher information matrix in the following
manner: The ML estimators are asymptotically normal with mean (α, β, c, k).
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∼
I
−1

(θ)

∣∣∣∣
θ̂

≃



∼
var(α̂)

∼
cov

(
α̂, β̂

) ∼
cov(α̂, ĉ)

∼
cov

(
α̂, k̂

)
∼

cov
(
α̂, β̂

) ∼
var

(
β̂
) ∼

cov
(

β̂, ĉ
) ∼

cov
(

β̂, k̂
)

∼
cov(α̂, ĉ)

∼
cov

(
β̂, ĉ

) ∼
var(ĉ)

∼
cov

(
ĉ, k̂

)
∼

cov
(

α̂, k̂
) ∼

cov
(

β̂, k̂
) ∼

cov
(

ĉ, k̂
) ∼

var
(

k̂
)

, (45)

where the derivatives of the Iij elements of the asymptotic Fisher information matrix are
given in Appendix A.

Consequently, the (1 − ω)100% bounds of the ACIs of the parameters θ = (α, β, k, c)
are given by:

α̂ ± Z(1− ω
2 )

√
∼

var(α̂), β̂ ± Z(1− ω
2 )

√
∼

var
(

β̂
)
,ĉ ± Z(1− ω

2 )

√
∼

var(ĉ)andk̂ ± Z(1− ω
2 )

√
∼

var
(

k̂
)

, (46)

where Z(1− ω
2 )

is the (1 − ω)100% percentage point of the standard normal distribution.
To obtain the ACIs of the rf, hrf and rhrf of the C-BXII distribution, variances of the

ML estimators of the rf, hrf and rhrf are needed. Therefore, the delta method discussed
in [36] and used by [17,22,37–39] can be used to derive the asymptotic variances of R̂

(
x; θ̂

)
,

ĥ
(

x; θ̂
)

and r̂
(

x; θ̂
)
.

The asymptotic variances of R̂
(
x; θ̂

)
, ĥ

(
x; θ̂

)
and r̂

(
x; θ̂

)
can be obtained, respectively,

as:
∼

var
(

R̂
(

x; θ̂
))

=
′
ξ
∼
I
−1

(θ)ξ

∣∣∣∣
θ̂

,
∼

var
(

ĥ
(

x; θ̂
))

=
′
η
∼
I
−1

(θ)η

∣∣∣∣
θ̂

,

and
∼

var
(
r̂
(
x; θ̂

))
=

′
φ
∼
I
−1

(θ)φ

∣∣∣∣
θ̂

, (47)

where
′
ξ =

(
Rα(x; θ) Rβ(x; θ) Rc(x; θ) Rk(x; θ)

)
is the first partial differentiation

of the rf with respect to α, β, c and k,
′
η =

(
hα(x; θ) hβ(x; θ) hc(x; θ) hk(x; θ)

)
is the

first partial differentiation of the hrf with respect to α, β, c and k and
′
φ =

(
rα(x; θ) rβ(x; θ) rc(x; θ) rk(x; θ)

)
is the first partial differentiation of the rhrf

with respect to α, β, c and k.
Thus, the (1 − ω)100% bounds of the ACIs of the rf, hrf and rhrf are:

R̂
(

x; θ̂
)
± Z(1− ω

2 )

√
∼

var
(

R̂
(

x; θ̂
))

,ĥ
(

x; θ̂
)
± Z(1− ω

2 )

√
∼

var
(

ĥ
(
x; θ̂

))
,

and
r̂
(

x; θ̂
)
± Z(1− ω

2 )

√
∼

var
(
r̂
(
x; θ̂

))
. (48)

6. Simulation

Through a simulation study, the performance of the ML estimates of the parameters,
rf, hrf, and rhrf of the C-BXII distribution is assessed in this section as follows:

(a) Two sets of parameters are used in the simulation study.

I : (α = 2.6, β = 2, c = 1.2, k = 1.5),

and
I I : (α = 2, β = 0.5, c = 0.5, k = 0.05).

(b) Random samples are generated from the C-BXII distribution for various sample sizes
(n = 30, 60, 100, 200, 500)

(c) Using Mathematica 11, the simulation study is carried out with a number of replica-
tions NR = 1000.
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(d) The parameters’ ACI bounds, rf with their lengths, variances, ML averages estimated
risks (ER), relative errors (RE) and relative absolute biases (RAB) are shown in Tables 6
and 7. The estimated risks (ER), relative errors (RE), and relative absolute biases (RAB)
are calculated as follows:

Table 6. ML averages, estimated risks, relative errors, Relative absolute biases, variances and 95%
ACI bounds and their lengths of the parameters of the C-BXII distribution for different n, NR = 1000
and (α = 2.6, β = 2, c = 1.2, k = 1.5).

n θ
_

Average ER RE RAB Variance UL LL Length

30

α 2.5985 0.4114 0.2467 0.0006 0.4114 3.8557 1.3414 2.5143
β 1.9906 0.1071 0.1636 0.0047 0.1070 2.6318 1.3494 1.2824
c 1.2640 0.0537 0.1932 0.0533 0.0496 1.7006 0.8273 0.8733
k 1.6478 0.3750 0.4083 0.0985 0.3532 2.8126 0.4830 2.3297

60

α 2.5479 0.2846 0.2052 0.0200 0.2819 3.5886 1.5073 2.0813
β 1.9810 0.0729 0.1350 0.0095 0.0725 2.5089 1.4531 1.0558
c 1.2511 0.0365 0.1592 0.0426 0.0339 1.6120 0.8903 0.7217
k 1.6402 0.3603 0.4002 0.0934 0.3407 2.7841 0.4962 2.2879

100

α 2.5596 0.2156 0.1786 0.0156 0.2139 3.4661 1.6530 1.8130
β 2.0066 0.0598 0.1222 0.0033 0.0597 2.4856 1.5276 0.9579
c 1.2472 0.0288 0.1414 0.0393 0.0266 1.5667 0.9277 0.6389
k 1.6297 0.3546 0.3970 0.0865 0.3377 2.7688 0.4907 2.2781

200

α 2.5809 0.1299 0.1386 0.0074 0.1295 3.2862 1.8755 1.4107
β 2.0138 0.0484 0.1100 0.0070 0.0482 2.4442 1.5835 0.8608
c 1.2264 0.0177 0.1110 0.0220 0.0170 1.4822 0.9706 0.5116
k 1.5931 0.3067 0.3692 0.0621 0.2981 2.6632 0.5230 2.1401

500

α 2.5732 0.0642 0.0975 0.0103 0.0635 3.0672 2.0792 0.9880
β 2.0213 0.0463 0.1076 0.0106 0.0459 2.4410 1.6015 0.8395
c 1.2165 0.0112 0.0882 0.0137 0.0109 1.4215 1.0115 0.4100
k 1.5813 0.2689 0.3457 0.0542 0.2623 2.5850 0.5775 2.0075

Table 7. ML averages, estimated risks, relative errors, relative absolute biases, variances and 95%
ACIs and their lengths of the parameters of the C-BXII distribution for different n, NR = 1000 and
(α = 2, β = 0.5, c = 0.5, k = 0.05).

n θ
_

Average ER RE RAB Variance UL LL Length

30

α 2.0696 0.1523 0.1951 0.0348 0.1474 2.8222 1.3171 1.5051
β 0.5074 0.0061 0.1567 0.0148 0.0061 0.6603 0.3545 0.3059
c 0.5100 0.0149 0.2440 0.0201 0.0148 0.7483 0.2717 0.4766
k 0.0233 0.0155 2.4870 0.5349 0.0148 0.2613 0 0.2613

60

α 2.0389 0.0865 0.1471 0.0194 0.0850 2.6103 1.4675 1.1428
β 0.5062 0.0031 0.1111 0.0123 0.0031 0.6144 0.3979 0.2165
c 0.5067 0.0082 0.1809 0.0134 0.0081 0.6835 0.3299 0.3637
k 0.0242 0.0066 1.6297 0.5167 0.0060 0.1756 0 0.1756

100

α 2.0346 0.0478 0.1093 0.0173 0.0466 2.4578 1.6114 0.8464
β 0.5034 0.0019 0.0865 0.0068 0.0019 0.5880 0.4189 0.1691
c 0.5073 0.0072 0.1693 0.0145 0.0071 0.6726 0.3419 0.3307
k 0.0262 0.0090 1.8974 0.4762 0.0084 0.2062 0 0.2062

200

α 2.0261 0.0273 0.0827 0.0130 0.0267 2.3461 1.7061 0.6400
β 0.5007 0.0009 0.0605 0.0014 0.0009 0.5600 0.4414 0.1186
c 0.5022 0.0041 0.1284 0.0044 0.0041 0.6280 0.3764 0.2516
k 0.0333 0.0062 1.5804 0.3350 0.0060 0.1846 0 0.1846

500

α 2.0071 0.0107 0.0518 0.0036 0.0107 2.2095 1.8048 0.4048
β 0.4997 0.0004 0.0386 0.0007 0.0004 0.5375 0.4618 0.0757
c 0.5042 0.0035 0.1179 0.0083 0.0035 0.6194 0.3889 0.2304
k 0.0333 0.0028 1.0631 0.3333 0.0026 0.1323 0 0.1979
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ER
(
θ̂
)
=

NP
∑

i=1
(θ̂i−θ)

2

NR ,

RE
(
θ̂
)
=

√
ER
θ ,

and

RAB
(
θ̂
)
=

∣∣bias
(
θ̂
)∣∣

θ
,

where
bias

(
θ̂
)
= θ̂i − θ.

(e) The ML averages, ERs, REs, RABs variances of the rf, hrf and rhrf as well as with their
ACI bounds and the lengths of the ACIs at time x0 = 0.5 are shown in Tables 8 and 9.

(f) Tables 6–9 are graphically shown in Figures 5–8.

Concluding remarks

Table 8. ML averages, estimated risks, relative errors, Relative absolute biases, variances and
95% ACI bounds of the rf, hrf and rhrf of the C-BXII distribution for different n, NR = 1000,
(α = 2.6, β = 2, c = 1.2, k = 1.5) and x0 = 0.5.

n Function Average ER RE RAB Variance UL LL Length

30
R(x0; θ) 0.2738 0.0030 0.0905 0.0146 0.0029 0.3802 0.1675 0.2127
h(x0; θ) 4.5181 0.4940 0.0374 0.0198 0.4863 5.8849 3.1513 2.7336
r(x0; θ) 1.6864 0.1080 0.4123 0.0109 0.1076 2.3293 1.0434 1.2859

60
R(x0; θ) 0.2736 0.0015 0.1939 0.0156 0.0015 0.3494 0.1977 0.1517
h(x0; θ) 4.4843 0.2962 0.1578 0.0122 0.2933 5.5457 3.4229 2.1228
r(x0; θ) 1.6777 0.0546 0.3192 0.0160 0.0538 2.1324 1.2230 0.9094

100
R(x0; θ) 0.2760 0.0011 0.1401 0.0069 0.0011 0.3403 0.2117 0.1286
h(x0; θ) 4.4768 0.2072 0.1228 0.0105 0.2051 5.3643 3.5892 1.7751
r(x0; θ) 1.6973 0.0341 0.2670 0.0045 0.0340 2.0587 1.3359 0.7228

200
R(x0; θ) 0.2750 0.0006 0.1182 0.0106 0.0005 0.3207 0.2293 0.0914
h(x0; θ) 4.4727 0.1079 0.1028 0.0096 0.1061 5.1111 3.8342 1.2769
r(x0; θ) 1.6924 0.0207 0.1927 0.0074 0.0205 1.9729 1.4118 0.5611

500
R(x0; θ) 0.2759 0.0002 0.0555 0.0073 0.0002 0.3059 0.2459 0.0600
h(x0; θ) 4.4492 0.0457 0.0482 0.0043 0.0453 4.8664 4.0320 0.8344
r(x0; θ) 1.6932 0.0079 0.1254 0.0069 0.0077 1.8653 1.5211 0.3442

Table 9. ML averages, estimated risks, relative errors, relative absolute biases, variances and 95% ACI
bounds and their lengths of the rf, hrf and rhrf of the C-BXII distribution for different n, NR = 1000,
(α = 2, β = 0.5, c = 0.5, k = 0.05) and x0 = 0.5.

n Function Average ER RE RAB Variance UL LL Length

30
R(x0; θ) 0.1282 0.0024 0.3940 0.0036 0.0290 0.0024 0.2241 0.0323
h(x0; θ) 2.9844 0.4430 0.2304 0.0955 0.0331 0.4339 4.2755 1.6933
r(x0; θ) 0.4156 0.0119 1.6193 0.0045 0.0110 0.0119 0.6290 0.2021

60
R(x0; θ) 0.1278 0.0013 0.2861 0.0033 0.0262 0.0013 0.1974 0.0583
h(x0; θ) 2.9457 0.2527 0.1740 0.0568 0.0197 0.2495 3.9247 1.9666
r(x0; θ) 0.4179 0.0058 1.2231 0.0068 0.0166 0.0057 0.5663 0.2695

100
R(x0; θ) 0.1253 0.0006 0.2685 0.0007 0.0055 0.0006 0.1746 0.0759
h(x0; θ) 2.9347 0.1366 0.1663 0.0458 0.0159 0.1345 3.6536 2.2159
r(x0; θ) 0.4134 0.0035 0.8993 0.0023 0.0057 0.0035 0.5290 0.2977

200
R(x0; θ) 0.1240 0.0003 0.2022 −0.0006 0.0045 0.0003 0.1592 0.0888
h(x0; θ) 2.9205 0.0771 0.1280 0.0316 0.0110 0.0761 3.4612 2.3800
r(x0; θ) 0.4094 0.0017 0.6755 −0.0016 0.0039 0.0017 0.4893 0.3296

500
R(x0; θ) 0.1253 0.0001 0.1443 0.0007 0.0058 0.0001 0.1475 0.1030
h(x0; θ) 2.8916 0.0308 0.0961 0.0027 0.0009 0.0308 3.2353 2.5479
r(x0; θ) 0.4125 0.0006 0.4267 0.0015 0.0036 0.0006 0.4619 0.3632
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The simulation tables and figures lead to the following conclusions:

• As the sample size n increases, the ML averages of the estimates for the parameters of
the C-BXII distribution stabilize.

• As the sample size increases, the ERs and REs of the ML estimates of the parameters
θ = (α, β, c, k), rf, hrf and rhrf decrease.

• As the sample size increases, the RABs of the ML estimates of the parameters θ =
(α, β, c, k), rf, hrf and rhrf decrease.

• The variances of the parameters, rf, hrf and rhrf decrease, as the sample size increases.
• As the sample size increases, the lengths of the 95% ACIs of the parameters, rf, hrf and

rhrf decrease.

7. Applications

This section is devoted to show the applicability and flexibility of the C-BXII distribu-
tion for data modeling. Three applications are used to demonstrate the superiority of the
C-BXII distribution over some known distributions namely, AC-P, W-C, BXII-MW, AW, AC,
ABXII, Chen and BXII distributions.

The ML estimates of the parameters, rf, hrf and rhrf and their standard errors (SE),
Kolmogorov-Smirnov (K-S), Anderson Darling (A-D), Cramér-Von Mises (C-V) statistics
and their corresponding p-values, the −2log likelihood statistic (−2L), Akaike information
criterion (AIC), Bayesian information criterion (BIC) and corrected Akaike information
criterion (CAIC), are used to compare the fit of the competitor distributions, where

AIC = 2m − 2L,
BIC = mln(n)− 2L,

and

CAIC = AIC + 2
(

m(m + 1)
n − m − 1

)
,

where L is the natural logarithm of the value of the likelihood function evaluated at
the ML estimates, n is the number of the observations and m is the number of the
estimated parameters.

The best distribution corresponds to the lowest values of AIC, BIC and CAIC, also the
highest p-values.

7.1. Application 1

This application is given by [40]. In this application the survival times of patients
suffering from the COVID-19 epidemic in China is considered. The data represents the
survival times of patients from the time admitted to the hospital until death. Among them,
a group of 53 COVID-19 patients were found in critical condition in hospital from January to
February 2020. Among them, 37 patients (70%) were men and 16 women (30%), 40 patients
(75%) were diagnosed with chronic diseases, especially including high blood pressure, and
diabetes, 47 patients (88%) had common clinical symptoms of the flu, 42 patients (81%)
were coughing, 37 (69%) were short of breath, and 28 patients (53%) had fatigue. 50 (95%)
patients had bilateral pneumonia showed by chest computed tomographic scans.

The data are: 0.054, 0.064, 0.704, 0.816, 0.235, 0.976, 0.865, 0.364, 0.479, 0.568, 0.352,
0.978, 0.787, 0.976, 0.087, 0.548, 0.796, 0.458, 0.087, 0.437, 0.421, 1.978, 1.756, 2.089, 2.643,
2.869, 3.867, 3.890, 3.543, 3.079, 3.646, 3.348, 4.093, 4.092, 4.190, 4.237, 5.028, 5.083, 6.174,
6.743, 7.274, 7.058, 8.273, 9.324, 10.827, 11.282, 13.324, 14.278, 15.287, 16.978, 17.209, 19.092
and 20.083.

Figure 9 presents the plot of the empirical scaled TTT-transform of COVID-19 data of
China, this plot indicates that these data have a bathtub hazard function, boxplot and the
histogram of the data show that these data are right-skewed. The P-P plot, Q-Q plot and
the fitted pdf of the C-BXII distribution plots indicate that the C-BXII distribution provides
good fit for these data.
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Table 10 displays the K-S, A-D and C-V statistics and their corresponding p-values,
−2L statistic, AIC, BIC and CAIC and Table 11 presents the ML estimates of the parameters,
rf, hrf and rhrf of the C-BXII distribution along with their SEs for COVID-19 data of China.

Table 10. K-S, A-D and C-V statistics and the corresponding p-values (in square brackets), −2L, AIC,
BIC and CAIC of the fitted models for COVID-19 data of China.

Model K-S
(p-Value)

A-D
(p-Value)

C-V
(p-Value) −2L AIC BIC CAIC

C-BXII 0.0943
(0.9747)

0.4040
(0.8444)

0.0462
(0.8990) 278.116 286.116 293.997 286.95

AC-P 0.1698
(0.4327)

2.1492
(0.0763)

0.3178
(0.1205) 294.082 302.082 309.963 302.915

W-C 0.2076
(0.2045)

3.3996
(0.0173)

0.5385
(0.0318) 283.565 291.565 299.446 292.399

BXII-MW 0.2264
(0.1317)

2.3973
(0.0562)

0.3595
(0.0927) 975.042 985.042 994.894 986.319

AW 0.1132
(0.8898)

0.6363
(0.5700)

0.0533
(0.8560) 313.350 321.350 329.232 322.184

AC 0.1698
(0.4308)

1.6355
(0.1473)

0.1939
(0.2795) 357.847 365.847 373.728 366.68

ABXII 0.1321
(0.7471)

0.7992
(0.4811)

0.1007
(0.5817) 281.693 293.693 305.515 295.519

C 0.1887
(0.3042)

2.2943
(0.0638)

0.2833
(0.1508) 314.931 318.931 322.871 319.171

BXII 0.3019
(0.0155)

3.9657
(0.0091)

0.7486
(0.0097) 288.079 292.079 296.019 292.319

Table 11. ML estimates of the parameters, rf, hrf and rhrf of the C-BXII distribution and their relevant
SEs for COVID-19 data of China when x0 = 0.5.

θ
_
, rf, hrf and rhrf MLE SE

α 0.0412 0.0002
β 0.2562 0.0001
c 1.4104 0.0017
k 0.5354 0.0007

R(x0; θ) 0.7986 0.0001
h(x0; θ) 0.4536 0.0003
r(x0; θ) 1.7989 0.0003

7.2. Application 2

This application is given by [41]. The application represents COVID-19 data which
belongs to the United Kingdom of 76 days, from 15 April to 30 June 2020. The data are
formed of drought mortality rates.

The data are: 0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751,
0.2845, 0.2992, 0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690,
0.4954, 0.5139, 0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 1.0602,
1.1305, 1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324, 1.6998,
1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715,
3.7840, 3.9042, 4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 7.4456,
8.2307, 9.6315, 10.1870, 11.1429, 11.2019 and 11.4584.

Figure 10 exhibits the plot of the empirical scaled TTT-transform of COVID-19 data
of the United Kingdom, which implies that these data have a modified bathtub hazard
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function, boxplot and the histogram of the data. One can notice that these data are right-
skewed. P-P plot, Q-Q plot and the fitted pdf of the C-BXII distribution plots indicate that
the C-BXII distribution provides a good fit to these data.
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Table 12 displays the K-S, A-D and C-V statistics and their corresponding p-values,
−2L statistic, AIC, BIC and CAIC and Table 13 lists the ML estimates of the parameters,
rf, hrf and rhrf of the C-BXII distribution along with their SEs for COVID-19 data of the
United Kingdom.
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Table 12. K-S, A-D and C-V statistics and the corresponding p-values (in square brackets), −2L, AIC,
BIC and CAIC of the fitted models for COVID-19 data of the United Kingdom.

Model K-S
(p-Value)

A-D
(p-Value)

C-V
(p-Value) −2L AIC BIC CAIC

C-BXII 0.0921
(0.9068)

0.5252
(0.7209)

0. 0748
(0.7223) 283.318 291.318 300.640 291.881

AC-P 0.1184
(0.6643)

1.2924
(0.2346)

0.4306
(0.1373) 294.285 302.285 311.608 302.848

W-C 0.1447
(0.4057)

1.4633
(0.1855)

0.3961
(0.1479) 299.544 307.544 316.867 308.107

BXII-MW 0.1053
(0.7963)

0.8546
(0.4429)

0.0854
(0.6613) 376.489 386.489 398.143 387.346

AW 0.1316
(0.5291)

1.7241
(0.1310)

0.1734
(0.3257) 374.345 382.345 391.668 382.908

AC 0.1711
(0.2170)

2.3739
(0.0578)

0.3072
(0.1290) 516.645 524.645 533.968 525.208

ABXII 0.1579
(0.3012)

2.2556
(0.0668)

0.3096
(0.1270) 287.540 299.540 313.525 300.758

C 0.1974
(0.1036)

2.1916
(0.0723)

0.4073
(0.0691) 295.386 299.386 303.048 299.551

BXII 0.2105
(0.0687)

4.6664
(0.0042)

0.7933
(0.0076) 293.421 297.421 302.083 297.586

Table 13. ML estimates of the parameters, rf, hrf and rhrf of the C-BXII distribution and their relevant
SEs for COVID-19 data of the United Kingdom when x0 = 0.5.

θ
_
, rf, hrf and rhrf MLE SE

α 0.0779 0.0004
β 0.4452 0.0007
c 1.5611 0.0008
k 0.6595 0.0012

R(x0; θ) 0.7581 1.5022 × 10−5

h(x0; θ) 0.6274 0.0004
r(x0; θ) 1.9660 0.0012

7.3. Application 3

This application is given by [42,43] and used by [44]. The following 101 data points rep-
resent the stress-rupture life of kevlar 49/epoxy strands which were subjected to constant
sustained pressure at the 90% stress level until all had failed.

The failure times in hours are: 0.01, 0.01, 0.02, 0.02, 0.02,0.03, 0.03, 0.04, 0.05, 0.06, 0.07,
0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18,0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34,
0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60,0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72,
0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92,0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10,
1.10, 1.11, 1.15, 1.18,1.20, 1.29, 1.31, 1.33, 1.34,1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54,
1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69
and 7.89.

Figure 11 displays the plot of the empirical scaled TTT-transform of the kevlar
49/epoxy strands data, which implies that these data have a decreasing-unimodal hazard
function, boxplot and the histogram of the data. It is obvious that these data are right-
skewed. P-P plot, Q-Q plot and the fitted pdf of the C-BXII distribution plots indicate that
the C-BXII distribution presents a good fit to these data.
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fitted pdf for kevlar 49/epoxy strands data.

Table 14 provides the K-S, A-D and C-V statistics and their corresponding p-values,
−2L statistic, AIC, BIC and CAIC and Table 15 lists the ML estimates of the parame-
ters, rf, hrf and rhrf of the C-BXII distribution along with their SEs for kevlar 49/epoxy
strands data.
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Table 14. K-S, A-D and C-V statistics and the corresponding p-values (in square brackets), −2L, AIC,
BIC and CAIC of the fitted models for COVID-19 data for kevlar 49/epoxy strands data.

Model K-S
(p-Value)

A-D
(p-Value)

C-V
(p-Value) −2L AIC BIC CAIC

C-BXII 0.0792
(0.9103)

0.5774
(0.6694)

0.0835
(0.6719) 210.869 218.869 229.330 219.286

AC-P 0.1584
(0.1560)

2.1414
(0.0770)

0.3696
(0.0871) 212.157 220.157 230.618 220.574

W-C 0.1188
(0.4735)

1.1331
(0.2942)

0.1677
(0.3399) 215.749 223.749 234.209 224.165

BXII-MW 0.0990
(0.7042)

0.6346
(0.6156)

0.0712
(0.7446) 250.885 260.885 273.961 261.517

AW 0.1287
(0.3692)

1.1576
(0.2840)

0.2012
(0.2651) 266.897 274.897 285.357 275.314

AC 0.1089
(0.5860)

1.1622
(0.2822)

0.1877
(0.2926) 226.157 234.157 244.618 234.574

ABXII 0.1683
(0.1131)

2.8641
(0.0322)

0.4060
(0.0697) 218.453 230.453 246.144 231.347

C 0.1485
(0.2134)

1.2900
(0.2355)

0.2641
(0.1713) 267.435 271.435 276.665 271.557

BXII 0.1782
(0.0801)

4.9159
(0.0032)

0.6365
(0.0182) 223.879 227.879 233.109 228.002

Table 15. ML estimates of the parameters, rf, hrf and rhrf of the C-BXII distribution and their relevant
SEs for kevlar 49/epoxy strands data when x0 = 0.5.

θ
_
, rf, hrf and rhrf MLE SE

α 0.3696 0.0002
β 0.5234 0.0002
c 1.2435 0.0026
k 0.4516 0.0005

R(x0; θ) 0.5882 0.0001
h(x0; θ) 0.8733 0.0002
r(x0; θ) 1.2475 0.0009

7.4. Concluding Remarks

• The C-BXII distribution has the lowest K-S, A-D and C-V values and the highest
p-values for the three applications. Thus, it provides the best fit for this data compared
to the other competitor distributions.

• Moreover, the C-BXII distribution has the smallest values of the −2L statistic, AIC,
BIC and CAIC, which imply that the proposed model is the best among the other
competitor distributions (AC-P, W-C, BXII-MW, AW, AC, ABXII, Chen and BXII).

• The ML estimates of the parameters, rf, hrf and rhrf of the C-BXII distribution have
small SEs for the three applications.

8. Conclusions

In this paper, a new four-parameter competing risks model, called the C-BXII distribu-
tion is introduced by combining Chen and BXII distributions in a series system with two
components functioning independently. The proposed distribution has high flexibility and
diversity in the shapes of the pdf as well as the hrf. The pdf displays unimodal and bimodal
shapes, whereas the hrf exhibits important shapes: bathtub, modified bathtub and decreasing-
unimodal shapes. These shapes increase the applicability of the proposed distribution for
lifetime data modeling. Moreover, the proposed distribution has some new additive models
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as special cases these models have not been introduced in the statistical literature. Also, it has
some well-known models as special cases. Several statistical properties of the proposed model
are derived. The ML estimators of the parameters, rf, hrf and rhrf are presented. Moreover,
The ACIs of the parameters, rf, hrf and rhrf are obtained. The performance the ML estimates
is evaluated through a simulation study. Furthermore, three real applications are used to
demonstrate the applicability of the C-BXII distribution over some existing distributions. The
C-BXII distribution provides the best fitting compared with the used competitor distributions.
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Appendix A

Appendix A.1. The Mode

The mode of the C-BXII distribution can be obtained by differentiating the pdf in (8)
with respect to x and equating to zero as follows:

′
f (x0; θ) = 0.

Since
f (x; θ) = h(x; θ)R(x; θ) = h(x; θ)e−H(x;θ),

where H(x; θ) is the chrf defined in (10), then,

′
f (x; θ) = h(x; θ)

{[
− ∂

∂x
H(x; θ)

]
R(x; θ)

}
+

[
∂

∂x
h(x; θ)

]
R(x; θ), (A1)

where
∂

∂x
H(x; θ) = h(x; θ),

and
∂

∂x
h(x; θ) =

′
h(x; θ).

Hence, (A1) can be written as

′
f (x; θ) =

[ ′
h(x; θ)− h2(x; θ)

]
R(x; θ), (A2)

where
′
h(x; θ) = αβxβ−2exβ[

βxβ + β − 1
]
+ ckxc−2

(1+xc)2 [(c − 1)(1 + xc)− cxc],

h2(x; θ) =
[
αβxβ−1exβ

+ ckxc−1

(1+xc)

]2
.
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Therefore, Equation (A2) to zero, one can obtain the following nonlinear equation{
αβxβ−2

0 exβ
0

[
βxβ

0 + β − 1
]
+

ckxc−2
0

(1+xc
0)

2

[
(c − 1)

(
1 + xc

0
)
− cxc

0
]}

−
[

αβxβ−1
0 exβ

0 +
ckxc−1

0
(1+xc

0)

]2
eα(1−exβ

0 )

(1+xc
0)

k = 0.
(A3)

Equation (A3) is a nonlinear equation, which can be solved numerically to obtain the
mode of the C-BXII distribution.

Appendix A.2. The rth Non-Central Moment

Since
µ′

r =
∫ ∞

0
xr f (x; θ)dx = −

∫ ∞

0
xrdR(x; θ).

Integration by parts can be used to get the following equation:

µ′
r =

∫ ∞

0
rxr−1R(x; θ)dx =

∫ ∞

0
rxr−1 eα(1−exβ

)

(1 + xc)k dx.

Since the power series expansion of eα(1−exβ
) is as follows:

eα(1−exβ
) =

∞

∑
i=0

(−1)iαi

i!

(
1 − exβ

)i
,

and by using the binomial expansion of
(

1 − exβ
)i

(
1 − exβ

)i
=

i

∑
j

(
i
j

)
(−1)jejxβ

,

then

µ′
r =

∞

∑
i=0

∞

∑
j=0

(
i
j

)
(−1)i+jαi

i!

∫ ∞

0
rxr−1 ejxβ

(1 + xc)k dx,

Using the power series expansion of ejxβ
,

µ′
r =

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+j jkαir
i!k!

∫ ∞

0

xβk+r−1

(1 + xc)k dx.

Using integration by substitution, we get

µ′
r =

r
c

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(
i
j

)
(−1)j

[
αi jk

i!k!
B
(

βk + r
c

, k − βk + r
c

)]
, r = 1, 2, . . . ,

where
0 <

βk + r
c

< k.

Appendix A.3. Asymptotic Fisher Information Matrix

For the C-BXII distribution the asymptotic Fisher information is given by:

∼
I (θ) ≃

[
Iij
]
, i, j = 1, 2, 3, 4, (A4)

where
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I11 = − ∂2l

∂α2 =
n
∑

i=1

h2
α

(
x(i); θ

)
h2
(

x(i); θ
) ,

I12 = − ∂2l

∂α∂β
= −

n
∑

i=1

 h
(

x(i); θ
)

hαβ

(
x(i); θ

)
− hα

(
x(i); ψ

)
hβ

(
x(i); ψ

)
h2
(

x(i); θ
)

+
n
∑

i=1
xβ

(i)e
xβ
(i) lnx(i),

I13 = − ∂2l

∂α∂c
=

n
∑

i=1

hα

(
x(i); θ

)
hc

(
x(i); θ

)
h2
(

x(i); θ
) ,

I14 = − ∂2l

∂α∂k
=

n
∑

i=1

hα

(
x(i); θ

)
hk

(
x(i); θ

)
h2
(

x(i); θ
) ,

I22 = − ∂2l

∂β2 = −
n
∑

i=1

 h
(

x(i); θ
)

hββ

(
x(i); θ

)
− h2

β

(
x(i); θ

)
h2
(

x(i); θ
)

+ α
n
∑

i=1

(
lnx(i)

)2
xβ

(i)e
xβ
(i)
(

xβ

(i) + 1
)

,

I23 = − ∂2l

∂β∂c
=

n
∑

i=1

hβ

(
x(i); θ

)
hc

(
x(i); θ

)
h2
(

x(i); θ
) ,

I24 = − ∂2l

∂β∂k
=

n
∑

i=1

hβ

(
x(i); θ

)
hk

(
x(i); θ

)
h2
(

x(i); θ
) ,

I33 = −∂2l

∂c2 = −
n
∑

i=1

 h
(

x(i); θ
)

hcc

(
x(i); θ

)
− h2

c

(
x(i); θ

)
h2
(

x(i); θ
)

+ k
n
∑

i=1

xc
(i)

(
lnx(i)

)2

(
1 + xc

(i)

)2 ,

I34 = − ∂2l

∂c∂k
= −

n
∑

i=1

 h
(

x(i); θ
)

hkk

(
x(i); θ

)
− h2

k

(
x(i); θ

)
h2
(

x(i); θ
)

+
n
∑

i=1

xc
(i)lnx(i)(

1 + xc
(i)

) ,

and

I44 = − ∂2l

∂k2 =
n

∑
i=1

h2
k

(
x(i); θ

)
h2
(

x(i); θ
) ,

where

hαβ

(
x(i); θ

)
=

∂hα(x(i);θ)
∂β = xβ−1

(i) exβ
(i)
[

βlnx(i)
(

xβ

(i) + 1
)
+ 1

]
,

hββ

(
x(i); θ

)
=

∂2h(x(i);θ)
∂β2 =

∂hβ(x(i);θ)
∂β

= αlnx(i)x
β−1
(i) exβ

(i)
[

βxβ

(i)lnx(i) + xβ

(i) + 1

+
(

βlnx(i)
(

xβ

(i) + 1
)
+ 1

)(
xβ

(i) + 1
)]

,

and

hcc

(
x(i); θ

)
=

∂2h
(

x(i); θ
)

∂c2 =
∂hλ

(
x(i); θ

)
∂c

= kxc−1
(i) lnx(i).
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