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W N e

Abstract: In this paper, we derive a new generic equality for the first-order differentiable functions.
Through the utilization of the general identity and convex functions, we produce a family of up-
per bounds for numerous integral inequalities like Ostrowski’s inequality, trapezoidal inequality,
midpoint inequality, Simpson’s inequality, Newton-type inequalities, and several two-point open
trapezoidal inequalities. Also, we provide the numerical and visual explanation of our principal
findings. Later, we provide some novel applications to the theory of means, special functions, error
bounds of composite quadrature schemes, and parametric iterative schemes to find the roots of linear
functions. Also, we attain several already known and new bounds for different values of o and
parameter C.

Keywords: convex function; inequality; trapezoidal; midpoint; Simpson; Newton; quadrature
schemes

MSC: 26A33; 26A51; 26D07; 26D10; 26D15; 26D20

1. Introduction

Among all of the fundamental functions in mathematical analysis, convexity-preserving
functions exhibit numerous fascinating geometrical and analytical properties. They play
a vital role in various scientific domains, including optimization, topology, functional
analysis, economics, neural networking, and differential equations. However, its impact on
the development of integral inequalities is unparalleled, as it provides a straightforward
approach for estimating various mathematical quantities, making it particularly useful for
error estimations in the form of inequalities. The theory of inequalities is extensively stud-
ied from multiple perspectives, including fractional calculus, quantum calculus, interval
analysis, and functions of bounded variation. Many well-known results in inequalities are
directly or indirectly linked to convex functions. Dynamic and error inequalities, such as
the Hermite-Hadamard inequality, Jensen’s inequality, Jensen—-Mercer inequality, Hardy
inequality, Ostrowski’s inequality, and Simpson’s inequality, have been examined via
convex functions. The error analysis of the quadrature rule is investigated for various
purposes, often with the aim of determining tight bounds or upper bounds. One key
research problem is how to find the error term for certain functions that are not sufficiently
differentiable. For instance, deriving error terms for Newton—Cotes formulas when only
first-order differentiable functions are available presents a challenge. To address this, sev-
eral approaches have been developed using integrable kernels and other mathematical
tools such as functions of bounded variation, Lipschitz continuous functions, generalized
variation, Montgomery identity, and Taylor series. In 1998, Dragomir and Agarwal [1]
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introduced a systematic approach for developing upper bounds for the trapezoidal rule
using first-order differentiable identity and convex functions. Following this approach,
numerous inequalities have been explored for convex functions and their generalizations.
For more details, see references [2—-4].

Here, we revisit the famous Ostrowski’s inequality, which is explored as follows: Let
S : [a,w] — Rbe a differentiable function and &’ € £(a, w). If |S’| < M, then

1
w—a

/awS(u)du <M

st -

This inequality predicts the error estimates of one one-point rule and mid-point rule.
Furthermore, it has a significant impact on probability theory, special functions, and
numerical analysis as well. It is investigated from approaches involving bounded variation,
Lipschitzian, convex, and n times differentiable functions in the frame of classical calculus,
fractional calculus, and time scale calculus.

Bohner and Matthews [5] examined the Ostrwoski-like inequalities via time scale
concepts. In [6], the author formulated some versions of Ostrowski’s inequalities through
the mean value theorem. In 2002, Anastassiou [7] analyzed the novel Ostrowski-type
inequalities and Montgomery identities for nth-order differentiable functions. For detailed
information, see [8-10].

First, we recollect the error inequality of Simpson’s rule, which is stated as:

If S : [a,w] — Ris four times continuously differentiable on (4, w)

18W |0 = 5P e (g0) ISW (1] < o0,

then

‘E[S(a)+4s(“+2“’>+s ]—/ ‘_2880|s<4||00( a)t.

Also, we recover the error inequality of the Simpson, s%, or Newton inequality.
If S : [a,w] — Ris four times continuously differentiable on (4, w)

18 |eo = sUP. ¢ (40 ISP < o0,

then

) pas (M) e stw)] - oy [T st < giglls¥lle(@ - ot

These inequalities are explored through various approaches to find more accurate and
refined bounds. In 1998, Dragomir et al. [11] initiated a new way of thinking about
these inequalities for first-order differentiable functions to determine upper bounds.
Following this, Liu [12] developed Simpson-like inequalities for nth order differen-
tiable functions to generalize previous results. In 2009, Alomari et al. [13] discussed
Simpson-type inequalities via generalized convex functions. Sarikaya et al. [14] de-
rived several new estimates of Simpson’s inequality through differentiable s-convex
functions. For more information, see [15,16]. In [17], the authors introduced a new
technique to investigate various inequalities by generalized kernels based on parameters.
In 2000, Hanna et al. [18] constructed the two-dimensional Ostrowski’s inequality over
the rectangular domain. In [19], Alomari and Dragomir unified the error inequalities of
two-, three-, and four-point quadrature rules via a new generic kernel involving three
parameters. In 2022, Iftikhar et al. [20] established a fresh two-dimensional lemma and
computed new coordinated Newton-like inequalities associated with convex functions.
In [21], the authors utilized quantum calculus to evaluate both kinds of Simpson’s in-
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equality. Moreover, in [22], Butt and colleagues proved the majorized Simpson- and
Newton-type inequalities with applications. In 2023, Meftah [23] studied Maclaurin-like
inequalities incorporated with convex functions in the setting of multiplicative calculus.
In 2023, Peng and Du [24] constructed some multiplicative analogues of Maclaurin’s
inequality involving a p class of functions. Furthermore, In the same year, Hezenci [25]
studied the conformable fraction analogues of corrected Euler-Maclaurin-like inequal-
ities through convexity. In 2013, Alomari [26] for the first time estimated the bounds
for Milne’s quadrature rule by lowering the derivative and using convex functions.
Budak et al. [27] established the fractional counterparts of Milne’s schemes via convex
functions. Bin-Mohsin et al. [28] utilized the Mercer approach and quantum calculus to
derive the bounds for Milne’s inequality. In [29], Tseng et al. computed the Bullen-type
inequalities by taking into account Lipschitzian function and presented some applica-
tions. In [30], Cakmak developed Bullen-type inequalities by making use of conformable
fractional operators. The conformable operators satisfy several properties that other
operators do not satisfy. In [31], Du and Cao established the fractional general family of
Bullen’s inequality with implications. Cortez et al. [32] investigated the Bullen-Mercer-
type inequalities and explored their efficacy by presenting novel applications to the
iterative method. In 2012, Xi and Qi [33] investigated a unified governing equation for
first-order differentiable function and deduced several new and interesting inequalities.
Nwaeze and Tameru [34] investigated the blended form of inequalities through #-quasi
convexity in the quantum setting. For further details, see [35-37].

This paper will establish a new general class of error bounds incorporated with convex
functions. To achieve our goal, we distribute our study into four major parts: We initiate
our study by revisiting the essential facts and previous work to discuss the problem’s
background. In the next section, we build a new parametric equality, which plays a vital
role in the further proceedings. Due to the generic nature of this identity, several new and
known identities can be achieved to deduce bounds for numerical quadrature strategies.
Then, we will construct unified bounds of error inequalities by considering the key auxiliary
result, well-known inequalities, and convexity of first-order differentiable functions. Also,
we will deliver several new and known consequences of the primary findings. Next, we
will present numerous graphical visualisations of the main results. Finally, we will deliver
the implementations of primary findings in terms of numerical integration, modified Bessel
functions, theory of means, and novel iterative scheme as well as its convergence analysis.

2. Main Results

In the subsequent part, we derive the new unified error boundaries of both open
and closed Newton—Cotes integration schemes through convex functions. Here, L[a, w]
represents the space of all integral functions.

2.1. Auxiliary Result

We now prove a new unified identity for first-order differentiable functions depending
on parameter (.

Lemmal. Let S : [a,w] — R be a differentiable function and S’ € L[a, w]; then

(Y -1+ g>$’((1 —Y)a+ Yw)dY

L-9S@tw-n+S() 1 /“’s(u)du

2 w—a

2

/O‘”‘ (Y - §>S’((1 —Y)a+ Yw)dY + o (Y — 1>S’((1 —Y)a+ Yw)dy

w—
y—a
w—a

, 1)

where 1y € [a,w] and & € [0,1], satisfying the condition a 4+ {452 <y < <,
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Proof. From the right-hand side of (1), we have
I=(w—a) [/0“’ (Y — g)s’((l —Y)a+ Yw)dY + /ﬁ <Y - ;)8’((1 —Y)a+ Yw)dY
+/ ( 14 )s'(( )+t Yw)d\(]
=[h+ L+, (2)
where
L = (w—a) /0“’:“ (Y - g)s’((l —Y)a+ Yw)dY
_ 20y 2‘2{}55;" “Ds() + $8a) - [ st
Also,

L = (w—a) /E;Z (Y - ;)S’((l —Y)a+ Yw)dY

w—a

(ST stk w -+ W2 ) - L T St

w—a

And

Iz = (w—a) /wlf7

w—a

W —a Jatw—y

(Y —1+ g)s’(a —Y)a+ Yw)dY

Adding I, I, and I3, we achieve our desired result. [

Now, we report some novel consequences of Lemma 1:
*  Choosing ¢ = 0in (1), we obtain

Sa+w—79)+S8(y) 1 w
5 _w—a/a S(u)du

= (w—a) l/oz YS'((1—Y)a+ yw)dY + /;:’7 <Y - ;)g’((l —Y)a+ Yw)dY

+ /. 7( - 1S (1 —=Y)a+ yw)dY|.

Choosing { = 0 and v = %5 in (1), it coincides with the result of [38],

5(“2“’) - [" s

1
= (w—a) [/0 Y;S/((l—Y)a+¥w)d¥+/l (¥ =18 (1—-Y)a+ yw)dY|.

W= 8
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Choosing & = 0 and v = 24 in (1),

SCH) TS 1,

2 w—a

= (w—a) l/j YS'((1=Y)a+ Yw)dY + /ﬁ (Y — ;)S’((l —Y)a+ Yw)dY

+ﬁ%vnsu1vm+vwmv}

Choosing ¢ = 0 and y = 3 in (1),

SCH) ESER) 1 s,

2 w—a

= (w—a) l/o‘l‘ YS'((1=Y)a+ Yw)dY + /1i (Y — ;)S’((l —Y)a+ Yw)dY

+ﬁ%vnsm1vm+vwmv}

Choosing ¢ = 0 and v = #£% in (1),

(=) -s()
2 w—a
1

/Og YS'(1—Y)a+ Yw)dY + /j (Y —~ ;)S’((l = Y)a+ Yw)dy

stoodu

= (w—a)

1
+A(Y—U8ﬂ1—vw+vwwv}

e Choosing ¢ = 1 and v = 5%, we then obtain the trapezium equation established

in [1].

e Choosing ¢ = } and v = “5% in (1), we then obtain the Simpson’s equality established
in [13].

¢ Choosing ¢ = % andy = 2”% in (1), we then obtain the Newton's equality established
in [39].

2.2. Bounds for Several Error Inequalities Involving Convex Functions
Theorem 1. Presume that all conditions of Lemma 1 are fulfilled. If |S’| is a convex function, then
— — w
S5 +S() | (-Sere-DTSa) 1 [ g,
2 2 w—aJa
< (w—a)[(E1+ Bz + E3) S (a)| + (B4 + Es + E6) S ()],

where
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R R L . A R 1=
e R (e e
153:/:77 Y—l—l—%(l—Y)dY

_& _&)e2
:(1 §) rv—ay? (1 2)c+1 w1\ (1 6V L2 E) lfw-7) 1
w—a 4 2\ w—a 2 3 2 3\w—a 6
y—a 3 3 2
_ fwal, € & 1fy—a\" G(y—a
E4_/(, ‘Y z‘YdY_24+3(w—a 4 w—a)
= 1 1 1/(y—a)+(w-—7)2\ 1/(w—9)°%+(y—a)
= [ g =g s (e ) ()
! ¢
Eé:/‘;’,Z Y14 2 vdy
(8 2, ¢ 2 (1-5) fo—y Pol(w—g 3+1_(1_%)
- 2 3 2 2 w—a 3\w—a 3 2
Proof. Through Lemma 1 and implementing the convexity of |S’|, we have
’¢<S<a> £ | A-DSlero-N+S@) 1[5,
2 2 w—ala
10 & = 1
<(w—a)/0 Y—2‘|S’((1—Y)a+Yw)|dY+ e Y—2‘|8/((1—Y)a+Yw)|dY
! ¢
Sl Y—1+2‘|S’((1—Y)a+Yw)|dY
NI =N
g(w—a)/o Y—2’[(1—Y)|5’(a)|+‘(|$’(w)|]d‘(+ e Y—z‘[(l—v)w/(a)+Y|3/(w)|]dY
! 4
+ﬂ_w Y—1+2‘[(1—Y)|8’(a)+Y|S’(w)|]dY
=i z e 1 1 g /
~w-a( [ v2’(1v)dv+/“ v2’(1v)dv+./f)zv1+2‘(1wdv ' (a)

y—a

+</O‘“"

Y—g’wrd\(+

w—y

w—a
r—a
w—a

1 1 4 /
Y—Z‘vdv+/“‘v—1+2’vdv>|s ()]

Some simple computations yield the required result. [

Now, we discuss some consequences of Theorem 1.

Corollary 1 ([38]). By selecting & = 0 and v = 5%, we have

2
s(itw) 1 /wS(u)du
2 w—aJ,

(w—a)
8

<

18" ()] + |8 (w)]].
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’;{S(a)—l-BS(

2a+ w
3

Corollary 2. By selecting { = 0and vy = 2‘”“’ , we have
S PSR L [ stuau] < X018 a)) + 1 w))
Corollary 3. By selecting ¢ = 0 and y = 3F we have
ST PSR L swan < Co D15+ 15wl
Corollary 4. By selecting ¢ = 1, we have
‘S(a) J;S(w) _ wl_a /uwS(u)du

< (w—a)[(Ef + E2 + E3)|S'(a)|(E§ + E5 + E¢)|S'(w)]],
where

pro L 1(r—a\* 1(y—a)’ 1/w—9)*

L7 24 "2\ w—a 3\w—a 4\ w—a

pro L 1(r=a\? 1lw—0\" 1(w—7)’

378 "4a\w—a 2\w—a 3\w—a

pro L 1(r=a) _1/y-a)?

4724 "3\ w—u 4\w—a

and Ep and Es are defined in Theorem 1.

Corollary 5. By selecting & = 1 and v = 5%, we have
S(a) + S(w) 1 w (w—a)r o ,
S L [ swan] < 20 1861+ 18 @)
Corollary 6. By selecting ¢ = 1 and y = 225 we have
S(a) + S(w) 1 w (w—a) , ,
— <
‘ > w_a/a S(u)du| < == [5]8'(a)| +11|8"(w)]].
Corollary 7. By selecting ¢ = 1 and v = 5%, we have
‘1[5(a)+43(“+“’>+3 ]—/ (wdu| < XD (15101 + 18" (@)]].
6 2 72
Corollary 8. By selecting ¢ = 1 and v = 5%, we have
1[S(a) + S(w) a+w 1 w (wW—a) o ,
= — < :
P s (1)) - oL [ swa < CE sl 418 @)
Corollary 9. By selecting ¢ = } and y = 225 we have
a+2w 1 w (w—a) ,
— <
>+33( . )+3(w)} w_a/a S(uydu| < 1318 (@)] + 2518 (@)1];
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Theorem 2. Presume that all conditions of Lemma 1 are fulfilled. If | S’ |7 is a convex function, then

’§(s<a>+s<w>>+<l—¢><8(a+w—v>+8<7>> [ s

2 W —aJa

1-1 1 1-1 1
[E7 "(E1S" (@) |7 + E4|S"(w)|) 1 + Eg " (E2|S"(a)|T + E5|S' (w)|T) ¥
1
q

-

+(Eo)' 1 (E|S'(a) 7 + Eq|S' (w W],

where (E1—Eg) are proved in Theorem 1 and

o 2 _ N2 _
=gy |-t -5 (=) -6GE)

w—y 2 2
w—a 1 1 Y—a

Eg = v tay=-141

i /g‘i‘ 2’ it 2\wo ﬂ) ( )

¢ _ w—y

! ¢ (1—z—w) &

Ey = 2ldy = 5

9 /‘:}_ZY + ‘Y > +8

Proof. Through Lemma 1, using power mean inequality and implementing the convexity

of |S'|, we have

(S +Sw) , =0 Sla+w—7)+S8(7)) e
> + 5 _w—a/u S(u)du

W*W

y—a

s(w—a)[/o'“’_” Y
+/zlz v

S(w_a)[</ozzy_g‘dy> </0
) (]

w—a

z 17% 1
Y—1+2'dY> (/MY

w—a

- ;’s’(u —Y)at Yw)ldy

—a

—E‘IS’( Vit Y@)dY + |,

14 g’s’(u —Y)a+ Yw)|dy

q
Y—‘|S' Y)a+‘(w)|qu>

- ;’|S’((1 —Y)a+ Yw)|‘7dY> q

-1+ §‘|S’((1 —Y)a+ Yw)|’4dY) q]

Y - g‘[(l — IS @)+ YIS’(W)IﬂdY> E

1

Y- ][(1 IS @)+ v|s’<w>mdv>q

Y -1+ g’[(l —Y)|S (a)|7 + Y|S'(w)|q]dY> 1 .

Some simple computations determine the required result. [

Now we discuss some consequences of Theorem 2.
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Corollary 10 ([38]). By selecting ¢ = 0 and y = 5%, we have
a+w 1 w
‘5( . ) - w—a/u S(u)du

< (@ —a)(;)l_ [<3|S’< i |3/<w>|q>2, (i +83|S’(w)|q>$].

Corollary 11. By selecting ¢ = 0 and y = 2252 we have
S 204w S a+2w w
‘ ( 3 )+ (3 )_ 1 /S(u)du
2 w—aJa

=l Kfss)l (IS @r A @), (1) (1@ ISy

+(118>1‘3 <2|S'<a>|ﬂ1+627|s'<w>w>3].

Corollary 12. By selecting & = 0 and y = 35 we have
S 3a+w S a+3w w
‘ (4)+ (4)_ 1 /S(u)du
2 w—aJa

< (w—a) l(;z)l_é (5|5’<ﬂ>l”1;2|8’(w>|’1)5 . (116>1—$ (|s'<a>|ﬂ ys'(w)wy

(3 (mgsery]

Corollary 13. By selecting ¢ = 1, we have

‘S()+S( w) 1 /wS(u)du

w—a

1 1-1 1
[ E1|5'( N7+ E;|S (w)|7) 1 4+ Eg " (E2|S'(a)|7 4 E5|S'(w)|T) 7
1
q

+(E5) 1 (E1S (@)1 + E2|S! (w w)ﬂ,

where

where EJ, E3, E}, and E¢ are defined in Corollary 36, and E; and Es are defined in Theorem 1.
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Corollary 14. By selecting ¢ =1 and v = “5%, we have

’S(a);S(w) 1 /‘wS(u)du

W —a g

< (@ —a>(;)l [(SIS% >|q4; |S’<w>|q>3 . (IS’(a)W Z;|5’(w)|'1>3]'

2a+w

Corollary 15. By selecting ¢ = 1and v = , we have

‘S(a)—l—S(w) 1 /wS(u)du

2 w—aJg

: (w_a)[(356)1—(19|5/( )|q62817|3,(ww); + (316>1_<|5’( a)|? ~7|»2|S/(w)|q>}]

NE 17/8/(a) |7 + 73| S () |1\ 7
36 648 ‘

H+(1J

, we have

Corollary 16. By selecting & = 3 Land y =

E[S(a)v;é’(w) +S<a—;w)] - wl_a/awS(u)du

5\'1 [ /61|18 (a)]7 +29|S"(w)|1\T (298 (a)|7 + 61]S" ()] 7
S (w- “)<72> [( 129 ) +( 1296 )]

Corollary 17. By selecting ¢ = % and v = =52, we have

‘;[S(Q)J;S(w) +S(azwﬂ — wl—a /awS(u)du

< (W—a)(116)1_ KBM i+ |S’(w)|q>5 . (|S'<a)|q+6§|s'<w)|q)5]_

2a+w

Corollary 18. By selecting & = 3 Land y = , we have

‘;{S(a) +35<2“;r‘”) +3s<”+32“’> +S(w)] _ wl_a /LIW‘S(”)d”

< (w—2) [(51776>1‘ <109|8'< >|le72251|8'<w>|q>5 .\ (316)1—% <|5'<a>|q ;2|8'<w>w>%

+ (”)1‘17 (251|3’(a)|‘7 + 973|5'(w)|q) 31] |

576 41472

Theorem 3. Presume that all conditions of Lemma 1 are fulfilled. If |S’|7 is a convex function, then
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§(S@)+Sw))  A-¢)(Satw—7)+S(7)) e
‘ az d + 4 620 i i _w—a/a S(u)du

1 w—a)? — (w—)? —a\? i
R
1 _~)2 _ )2 %
o (U=t is @+ 1 @)
1 1
2

< ( (a=5) st 5( _?z:iﬁ_”z)|‘9’<w>w>1,

where
4 Z p+1 a ¢ p+1
Clz/oza‘Y gde:<2> +1(_‘E’p?l 2)
TN =) M €= et )
2_/(1‘; ‘Y_ = 1+p
gp-‘rl _g_;r’-*-l
o [ v fav - W UioE)

Proof. Through Lemma 1, using H6lder’s inequality and implementing the convexity of
|S’]9, we have

’C(S(LI) +S8w) A= Sa+tw-—1+S) 1
2

2 w—a

+ /awS(u)du

y—a

s<w—a>[/0“’“
+/:7
S(“’_”)K/o“

w=y

+</wa
%

a

(L

—a

v - g‘|s'((1 —Y)a+ Yw)dy +

w=y

w—a
y—a
w—a

v - ;’5’((1 —Y)a+ Yw)ldy

Yl+§’8’((1¥)a+¥w)|dv
PN Y
dY) (/O |3((1—v)a+m)dv>
MR :
dY) (/7 |S’((1—Y)a+Yw)|‘7dY>

Cp % 1 %
Y—1+§ dY) ( . |S'((1—Y)a—|—Yw)|qu>

a pooN\P [ g §
dY) (/O [(1—Y)|8’(u)|q+YS(w)de)

- (w_a)[</oz,a

g
T2

+ (/f7 Y — % de) E </}7 (A=) (a) 7+ YIS(w)”’]dY> ﬁ
A(ffrredfar) (Lo -sors Y"S(“’)'”dy)q]'

Some simple computations provide the required result. [



Axioms 2024, 13, 533

12 of 31

Now, we discuss some consequences of Theorem 3.

Corollary 19 ([38]). By selecting & = 0 and v = £

5, we have
a—+w 1 w
‘S( . )—w_u/a S(u)du

< (w—a) (M) l(3l3’<ﬂ>lq : IS’(w)qu . (|s'<a>|q +3|S’(w)q> ]

8

Corollary 20. By selecting ¢ = 0 and y = 2252 we have

S(HL)+S(He) 1 e
‘ > _w—a/a S(u)du

< (w—a) ngﬁ +p))?<5|8'<a>w1; |s'<w>|q)$ . (z(awl )é(maﬂu |s'<w>q>$

)(1+p) 6
T p))i CEELED ]

Corollary 21. By selecting ¢ = 0and y = 3ﬂ+w

, we have

SCH)ESEE) 1 g,
2 w—aJa

< w-a) [(wé +p)>117(7|s'<a>|‘f3+2 S’(wm)% . ( 1 >%<|s'<a>|q - S’(w)ﬁ)%

21427 (14 p) 4
(L (IS @ 4TI @) 7
4147 (1 + p) 32 ‘
Corollary 22. By selecting ¢ = 1, we have

‘S( a)+8w) 1 /wS(u)du
N [ ST )
+cv((< o () 2’ )[|s'<a>|q+|s’<w>m)’l’

(225) 5@+ (Ll =) |S’<w>q> ]
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where

1+p
L) ey
2 1_'_p
OIS
3 T+p

a+w

Corollary 23. By selecting & = 1 and y = 5%, we have

w—a

‘S(a)—;S(w) 1 /awS(u)du

Corollary 24. By selecting ¢ = 1 and vy = 2"%, we have

‘S(a)J;S(w)_ 1 /;S(u)du

w—a

()7 2\ s @i 1 IS @+ S @)
1+p ( 18 ) +<%B”M1+w) ( 6 )

(?>1+P+2—1—p p<|8’(a)|‘7+5|5'(w)|q>; |
18

Corollary 25. By selecting ¢ = % and v = 252, we have

P{8@%+SMO+S<“+W>}_ 1 Awswym

2 2 2 w—a

6717 (14+219)\ 7 [ (3|8 (@)1 + S (@) \ T [ |S"(a)] 43| (w)[7\ ¥
1+p ) [( 18 ) *’( 18 > }

< (-

_ atw

Corollary 26. By selecting & = 1 and v = 5%, we have

HS(Q)ZS(W) +S<a+2w>] _wia/LIwS(u)du

1 )>;l<MS%ww+JS%wﬂq>$+(Lywﬂq+ﬂsww)q>q.

< _ - -
< (w a>(21+,,(1+p : .

Corollary 27. By selecting ¢ = % and v = 2"%, we have
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’;{3@)+35<21:w>+33(”f;w>-%8@»}— ! Awsogdu

w —a

1

(2) 487\ (518! (a)]7 + |8 (w)]7 7 1 P 1S (@)1 + S (@)1 7
(oo (BTHTY BSOS (b (S i)

1
(G 2\ 1S @) + 518 @)1 *
1+p 18 ‘

Theorem 4. Presume that all conditions of Lemma 1 are fulfilled. If |S’|1 is a convex function, then

(S +Sw)) , =98 Sla+tw—7)+S8(7) 1w
‘ > + 5 _w—a/a S(u)du
< (om0 [AECHG @IS

where Cq, Cy, and Cs are obtained in Theorem 3.

Proof. Through Lemma 1, using Young’s inequality and implementing the convexity of
|S’]9, we have

¢S +Sw) 1= tw-—71+S(x) 1 ¢
‘ 5 + > 7 T _a}—a/a S(u)du

y—a

< (w—a) [/0‘”
+/jw

w—y
w—a

Y — g‘|8’((1 —Y)a+ Yw)|dY +

v |V ;'S’((l —Y)a+ Yw)ldY

Y -1+ g’S’((l ~ )+ Yw)ldy

i s e v
< (w—a) + =0
p q
o 1|? ot G q
S =4ay LIS (=t Yew)lidy
4 w—a + w—a
p q
L, \(_14_%‘]0(1‘( Joqy |8/((1 = Y)a+ Yw)|1dY
+ w—a + w—a
q
S e R IS+ YIS )
<(w-—a) + =0
p q
o 1|P ] "(a)]9 ! q
S =3y L= IS @)+ YIS (@) 7)Y
+ w—a + w—a
p q
p
Jiglr-tadfay ala- IS @+ vis )y

q

Some simple computations provide the required result. [
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Now, we discuss some consequences of Theorem 4.

Corollary 28. By selecting ¢ = 0 and y = “5%, we have
a+w 1 w

’5( : ) —w_a/u S(u)du

g [

Corollary 29. By selecting ¢ = 1, we have

‘5(@ = ALY
< (w—a) {<Ci‘ +i72 +G) |, [S' @)L ;w’(w)q,

where C, C5, and C; are defined in Corollary 22.
Corollary 30. By selecting ¢ = % and v = 252, we have

msw;&w) +$<a+2w>} _wl_a/uwS(u)du

< (w—a) 1+2M7 |8"(a)|7 +|S" (w)|?
N 2v31+Pp(1 4 p) 2 '

Corollary 31. By selecting ¢ = % and v = 252, we have

’1 [S(ﬂ) +S(w) +5<ﬂ+w>} - /uwS(u)du

2 2 2 —a
1 |S"(a) |7 + |8 (w) |7
< (w—a) [4PP(1 +p) 2 }

Corollary 32. By selecting ¢ = % and v = 2”%, we have

‘;[S(HHBS(ZQ;(U)+3S<a+32w>+5<w)}_ : /,,wS(u>du

w—a

277230 p(p+1) 2

< (-1 [(3?“ A5 1S (@) + |s'<w>|q1.

Theorem 5. Presume that all conditions of Lemma 1 are fulfilled. If |S'| is a convex function and
|S’| < M such that M > 0, then

2 2 w—a
322 1 Y—a 29 w— 2 C(r—a 1 ¢ w-—v 2
<M(w_a>[8_4+(a}—a) +2(w—a> _Z(w—a)+2<1_2_w—a) '

Proof. The proof is contained for curious readers. [J

’¢<s<a> +8w) , (1-OS@tw-—1+81) 1 [ St

Now, we discuss some consequences of Theorem 5.
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Corollary 33. By selecting ¢ = 0 and y = 5%, we have
a+w 1 w M(w —a)
_ <= 7
‘S( 2 ) w—a./ﬂ Sludu) < —=
Corollary 34. By selecting ¢ = 0 and y = 2252 we have
S(H) +8(%5) 1 @ 5M(w — a)
_ <=7 7
’ 2 w—a /a Sluydu) < ==
Corollary 35. By selecting ¢ = 0and y = 3“%, we have
S 3a+w S a+3w w .
( 4 )_'_ ( 4 )_ 1 / S(M)dMSM(w LZ)'
2 w—4a Jg 8
Corollary 36. By selecting ¢ = 1, we have
w
’S(a)—kS(w)_ 1 / S(u)du
2 w—a.Ja
1 Yy—a S| w— S| Y—a 1/1 w—v 2
< —a)|= = — = —(=- .
< M(w—a) 8+(wa> +2<wa) 2\w—a +2 2 w-—a
Corollary 37. By selecting ¢ = 1and v = 5%, we have
w —
‘S(a)—i—S(w)_ 1 / S(u)du SM(w a)'
2 w—aJa 4
Corollary 38. By selecting ¢ = 1and y = 2252 we have
S(a) + S(w) 1 w 1IM(w — a)
- < A
‘ 2 w—a./u Slu)du < 36
Corollary 39. By selecting ¢ = % and y = “52, we have

1 a+w 1 w 5M(w — a)
- - < ——
‘6[S(a)+48( . >+S(w)] w_a/a S(u)du| < 252
Corollary 40. By selecting ¢ = § and y = “52, we have
1[S(a)+ S(w) a+w 1 w M(w —a)
il Bt A et Sl — <
‘2{ 2 82 w—a/a S(u)du| < —=3
Corollary 41. By selecting ¢ = } and y = 2252 we have

’; {S(”) +33<2a;w> +3S<a+32w) —l—S(w)} - wl—a /ﬂwS(u)du‘ < %.

Remark 1. By different choices of ¢ and corresponding -y in Theorems 1-5, we can generate several
novel error boundaries for Newton—Cotes schemes.

3. Visual Analysis

In the current portion of the study, we showcase the correctness of our primary find-
ings aided with convex functions. First, we discuss Theorem 1.
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1
__ _»nn 3
my = —2 n<72<3§

We take S(7y) = 9" ¢ in Theorem 1; then,

my < my < mz, where

e 0509 50D

n>2a=0w=2andy =

+2" e (1-9).

™=
3
m3:2”n[214(§3+10)+:13(1—g) —2(1—5) 156 +2r e (1-0).

2u+w

We take S(y) = " in Theorem 1; then,

my < my < mz, where

) 31-8) B 0-5) ) Q) (0o

27’!
n+1°

n>2a=0w=2and vy =

nmyp =

R S R (GRTOD IR

For Figure 1a, we choose ¢ and n to develop a visual explanation of Theorem 1 at

r)/ — M

For Flgure 1b, we choose ¢ and n to a develop visual explanation of Theorem 1 at
_ 2u+w

y =

(b)

Figure 1. Here, the purple, green, and brown colors represent 111, 1y, and ms, respectively.

Now, we discuss Theorem 2.

We take S(y) = "
my < my < mz, where

= \re oo 3(-5) - 3(-) 5
\/(CZ \/ (@ +1) - 156

2}’[
n+1

n>2a=0w=2andy = in Theorem 2; then,

a+tw
2

+2" e 4 (1-9).

myp =
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my =2"n {\/é(ézﬂl—ﬁ)z)\/;(l—g>3—2<1 g) +292
Wi o L L

e Wetake S(7) = 9" n >2,a=0,w =2 and v = 22 in Theorem 2; then,
mq < my < mz, where

ml——Z”n(ﬁﬁz@—S@Zﬁ( T

L [ +;<(§>"+<§)")<1—¢>+znlg

+2"71E 4 (1-9).

o n(\5 4 w315 -5 (- 5) 4
e G -Ee e F) (B (0) o

*  For Figure 2a, we choose ¢ and n to develop a visual explanation of Theorem 2 at

v = a+w
e For Flgure 2b, we choose ¢ and n to develop a visual explanation of Theorem 2 at
_ 2a+w
y =

“ T

Figure 2. Here, the purple, green and brown colors represent my, my, and m3, respectively.

Now, we discuss Theorem 3.

e WetakeS(y)=9" n>2,a=0,w=2,9= “E“’,andp = g = 2 in Theorem 3;
then, m; < my < mg3, where

m = —nﬂ((\/g + \@ @+ cm) #2771+ (1-8).

2”
n+1

mz = n2"<<\/g+ \/g) \/214(§3+ (1 —5)3)> +21 g4 (1-9).

myp =
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We take S(7) = 9" n>2,a=0,w =2,7 = 2% and p = q = 2 in Theorem 3;
then, m; < my < mgz, where

SV ek () () oo

2}’[
n+1

myp =

(Vi Va8 () (e

For Figure 3a, we choose ¢ and n to develop a visual explanation of Theorem 3 at

,)/ — HJFCU

For Flgure 3b, we choose ¢ and 7 to develop a visual explanation of Theorem 3 at
2u+w

’)/ =

(b) o :

Figure 3. Here the purple, green, and brown colors represent m, 1,, and ms3, respectively.

Now, we discuss Theorem 4.

Wetake S(7) = 9" n>2,a=0,w =27 =2,
then, m; < my < mgz, where

and p = q = 2 in Theorem 4;

m=2 () - (@ a-8?) a0
271
my = Tl—f—l'
my =242 () o (@4 (1-0°) + (-

We take S(7) =9" n>2,a=0,w =2, = 2 and p = g = 2 in Theorem 4,
then my < my < ms, where

my = ;((g)n + (g)n>(1 —E) F2nlE - %(;«2“*1)2 i (27;3 (2—3@)3+1).

2”
n+1

;((i)n+<§)n>(1§)+2"1§+;(n2"1)2 324(2753 (2—3@)3+1).

myp =

ms3 =~

For Figure 4a, we choose ¢ and n to develop a visual explanation of Theorem 4 at
’Y — m



Axioms 2024, 13, 533

20 of 31

*  For Figure 4b, we choose ¢ and n to develop a visual explanation of Theorem 4 at

_ 2+w
i o

(b)
Figure 4. Here, the purple, green, and brown colors represent 1, my, and mg3, respectively.

Now, we discuss Theorem 5.
e Wetake S(y)=9" n>2,a=0w=2,7= “E“’,andp = g = 2 in Theorem 4;
then, m; < my < mgz, where

my = —”én (3§2+(1—g)2—2g+1) +2171lE 4 (1-9).
=T

s = %(3§2+(1—5)2—2§+1) +2 ey (1-¢).

e WetakeS(y)=9" n>2,a=0,w=2,7= 2”‘%,amdp = g = 2 in Theorem 5;
then, my < myp < mg3, where

my = —n2" (% (352 +(2- 35)2) - g + %) + % <(§>n + (§>n> (1-¢)+2" ¢

271

nmyp =

R RIS R (RO NI

e  For Figure 5a, we choose ¢ and n to develop a visual explanation of Theorem 5 at

7=
*  For Figure 5b, we choose ¢ and n to develop a visual explanation of Theorem 5 at
_ 2a+w
Y="3

(b)

Figure 5. Here, the purple, green, and brown colors represent 11, 1y, and ms, respectively.
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4. Applications

Finally, we address some novel applications of our produced results to the theory of
means, error inequalities of composite quadrature rules, special functions, and generalized
iterative schemes.

4.1. Error Boundaries of Composite Newton—Cotes Schemes

LetA:a=7<0 <0 <...<0 <0it1 <...0n = w be a partition of [a,w] and
hi = 0iy1 —0;, i=0,1,2,...n —1; then, using the unified composite Newton—Cotes formula,
n—1 hi
Ya(B,8) =) 5 16{5(0)) +S(0i11)} + (1 = E){S (i + i1 — O) +S(On)}],
=0

satisfying the conditions ¢; + %h’ <0O; < Qﬁ# Also,
w
Yu(B,8) + Ru(A,S) = / S(u)du.
a

Proposition 1. From Theorem 1, we have

n—1
IRa(A,S)| < Y hZ[(E1o+ En1 4 E12)[S'(0i)| + (E13 + E1a + E15)[S' (0i41) ],
i=0

Elo:w+ ( Ql) _1(01'_@1‘)3_’_5(@1'“—01')2.
24 Qi1 — 0i 3\ 0iy1— 0 4\ 0i41—0i

<(Oi —0i)* + (i1 — Oz‘)2> 1 ((Qi+1 -0+ (0; — Qi)g’).
(0iv1 — @i)? 3 (0it1 —@i)?

where

[ _g\x2
<Oi—ei)2_(l 2)5+1(ei+1—0i>2_(1_€>2+2(l_6)3_1<em—<’)i)3+1,
2 0i+1— 0 4 2\ 0iy1—0i 2 3 2 3\ 0ir1— 0 6
3 N3 2
Eys — €+1(@z) 5( )
3\ Qi1 — 0 4\ 0iy1— 0

Ei = - 1((Oi =01+ (0141 — Oi)z) n ;((QHl -0+ (0 - Qi)3>'

24 4 (0it1— 0:)? (0iv1—0:)®

_ ¢ _ ¢
E15:(1C>32<1§)3(1 2) (Qi+1—oi>2+1<9i+l_oi>3+1(l 2>'
2 3 2 2 0it1— 0 3\ 0i+1 — 0 3 2

Proof. Employ Theorem 1 on [g;, 0;11] such that O; € [¢;, 0;+1] and take the sum from
i=0ton—-1. 0O

Proposition 2. From Theorem 1, we have
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n—1

Ra(A,S)| <MY 12
i=0

|

?>€2_1+(M>2+1(M>2_C(M>+1<1_€_M)2.
8§ 4 0iy1 — 0i 2\ 0i+1— 0 2\ 0iy1— 0 2 2 0iy1—0i

Proof. Employ Theorem 4 on [o;, 0;+1] such that O; € [o;, 0;11], and then take the sum
fromi=0ton—1. O

Remark 2. For different choices of ¢ and O;, we can obtain various known and new error in-
equalities for composite closed- and open-type Newton—Cotes formulas. For example, by choosing
&=0and O; = Qi+29i+1 , ZQ"EQ"“ , 39129"“ , ..., we obtain the error estimate of the midpoint in-
equality and open trapezoidal-type inequalities, respectively. Furthermore, for ¢ = %, %,%
O; = &tdn, 29#39"“ , 90 e acquire the error bound of the composite Simpson’s inequality,
Newton-type inequality, and Bullen's inequality, respectively.

and

4.2. Applications for the Linear Combination of Means

In the subsequent part, we explore the impact of our study on the theory of means. To
accomplish our goal, first we recapture the well-known binary means of positive real num-
bers.

_ at
1. A(aw) =4«
2. H(aw)= 20

a+tw*

3. Le,w) = miThm

1
4. Ln(a,a)) — [wn+17gn+l ] n,l”l c7— {0, _1}

(w—a)(n+1)
Proposition 3. From Theorem 3, we have

A", ")+ (1 =8 A((a+w—7)" 7") —Ly(a,w)|

1

1 N2 A2 B 2 q
et (‘g w35 )

*CE(”“WfI”%Mﬁlww(ﬁu_iiiiﬁ‘”V)>;

+c3% (;(Z):z>2|nan_1|q+;<(w_iz_£32_7)2>|nbn_lq>q]‘

cH (0, @)+ 1 - OH  (a+w—7,7) — L7 (a,0)|
Hw=a?—(@=17 1 (1-a\
< ( 2021 (w — a)? MR (w—a) )

el (o oo (et

el (e (22 ()

where Cy1, Cy, and Cs are defined in Theorem 3.

< (w—a)

Also

= =

< (w—a)

=
—_ 1
~
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IP(IS(U) = m

Pono), LW w2 (1 4 g, (

Proof. Applying the convex function S(y) = 9", n>2,and S(y) = % on Theorem 3, we
achieve our desired relations. O

Proposition 4. From Theorem 4, we have

ICA@@", ")+ (1-0)A((a+w—7)", 7") — Ly(a,w)|
< (w—a) [Cl +Cy+Cs n A(|na" g, |nb"‘1|‘7)}
p q

Also

eH (0, w)+(1-OH  (a+w—7,7) —E 7 (a,w)

—1(,2q 2q
S(w_a){clJr(;erCngH (aq,w )}

where Cq1, Cy, and Cs are defined in Theorem 3.

Proof. Applying the convex function S(y) = 9", n > 2,and S(7y) = % on Theorem 4, we

achieve our desired relations. [

4.3. Application for Special Functions
Let ¢5 : R — (0, 1] be defined by

¥5(v) = 2°T(1 + 6)v 21, (v),

For this, we retrospect the representation of modified Bessel functions, which is given as
detailed in [40]:
( v ) 6+2u

2
v) = —_
¥s() Lg) ulT(6+u+1)

The first and nth-order derivative formula’s 15(v), which are given as detailed in [41]:

1 _ _ 2
+(5,2+(5;1—|—(5 n,2—|—(5 n11+(5;vi ’
d"v 2 2 2 2 4
where »F3(., ., .) is a hypergeometric function, and its integral and summation representation
are given as:

2F3( 2 ' 2 ' 2 ' 2 r(1+6)}4)2k20(1+g_n) (z+g_n> YT
k

=

Proposition 5. For any [a,w] € Rand 6 > 1, then

Slaps1(a) + wipsia(w)) + (1 —E)((a+ w —1psa(a+w —7) +1P511 (7))  Ys(w) — ps(a)
4(1+49) w—a
2
< (w—a)2'"2\/7T(1 +6) [(El + Ep + Es)a5—12p3(1 ;“5, 242”5; ; 1;5, (1+9); ’1)
2
+(E4+E5+E6)2F3(1;5,2;5;; ! ;5,(1+5);z>],

where (E1—Eg) are defined in Theorem 1.
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Proof. To attain the final outcome, we implement S(7y) = () in Theorem 1. [

4.4. Family of Iterative Methods to Find the Roots of Non-Linear Equations

Now, we provide another significant implication of the proposed results to evaluate
the roots of non-linear equations.
Consider

S(y) =0. 3)

It is a very interesting research topic in the realm of numerical analysis to derive the roots
of non-linear equations. In the following context, various approaches have been deployed
to construct new methodologies like quadrature formulae, interpolating polynomials,
Taylor’s series, and decomposition procedures. Methods like Newton’s, Halley’s, and
Householder’s are the best classical methods, which still served as a base point for further
proceedings. Now, we construct a novel family of iterative methods by using the general
error bounds obtained in Theorem 5.

Proposition 6. For any [, ;3] C R such that S(y) = 0 is a non-linear equation, then

28(7n)

Yn+1 = Yn — 4)
T S )+ S + (- (81 () 4 &7 (1))
where
_ _ S(n)
T S
Remark 3.

* By taking ¢ = 0 in Proposition 6, we then have the following iterative scheme

28(7n>
S/ (47n+“rn) + 8 (%1+4’Yn)

Yn+1l = Tn —

where 7yy, is already defined in Proposition 6.
* By taking ¢ = 1 in Proposition 6, we then have the following iterative scheme

_ _ 28(1n)
Tnt = T S'(vn) + S (vn)’

where vy, is already defined in Proposition 6.
e Bytaking ¢ = % in Proposition 6, we then have the following iterative scheme

65 (7n)
S'(vn) + 8 (vn) + 2(3 <4w+w) N S,<%+54W)) '

Yn+1 = Yn —

where yy, is already defined in Proposition 6.
e By taking ¢ = } in Proposition 6, we then have the following iterative scheme

48(')’11)
S'(yn) +S' (v )+Sl(47n+7n) _i_S/(%ng%)'

Yn+1 = Yn —

where vy, is already defined in Proposition 6.
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* Bytaking ¢ = % in Proposition 6, we have the following iterative scheme

10S ()
S () + 8" (7n) +4(8’(4"”%) +S(%>)

Yn+1l = Yn —

where vy, is already defined in Proposition 6.
e Bytaking ¢ = % in Proposition 6, we then have the following iterative scheme

68(')’11)
28 () + 8" (7)) + &' (A1) + & (i)

Yn+1 = Yn —

where 7y, is already defined in Proposition 6.

e [tis worth noting that for different choices of «y and ¢ in Theorem 5, we can generate a family
of iterative methods, as well as by making use of another method in place of Newton's method
as corrector methods.

Now, we investigate the convergence analysis of (4).

Theorem 6. Let r € I be a simple zero of sufficiently differentiable function S on I°. If v, is
sufficiently close to r, then Equation (4) has a third order of convergence for any & € [0,1].

Proof. Let r be a zero of differentiable S; by expanding S(y,,) and S’(7y,) about r, we have
S(yn) = S'(r)[en + c26? + cz3e + cyet 4. . (5)
Also,

S'(yn) = S'(r)[1 + 2cpey + 3c3€% + deged + 5eger 4., (6)

where c; kl (( ,k=1,2,3,..., where e, = v, — r. Now, from (5) and (6), we have

Yn = Un— g,((?;z)) = [r+c2e2 +2(c3 — c3)es + (—7cocs +4c3 +3cq)er +...].  (7)
This implies
S(vn) = 8'(r)[c2e? +2(c3 — c3)es + (—7cacs + 5¢3 + 3cg)et + ..., (8)
and
S'(yn) = S'(r)[1 4 2c262 + 4(cac3 — ¢3)ed 4 (—11cke3 + 8¢5 +6cacq)er +....  (9)
Also

8 48 3 256 24 23 2¢
r c1+5c1czen+c1<ZSC3+ 5>e§+c1<1z5C4+ 5CZC3+2c2<—52+53>>e?,+...], (10)

r)|c1 + =c1c0e, + €1

2 2 8c3 4oy 24 85 8c3\ )\ 3
5 (25C3—|— 5 )e +c 1<125 5C2€3—|—2C2< 5 —i-? ey +...]. (A1)
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By using (7)—(11), we achieve

24¢ +1)c
Y1 = <( 650 Jes +C%)€2+O(efz)-

Hence, the result is acquired. O

4.5. Examples and Visual Analysis of Equation (4)

Initially, we explore some physical examples in light of Equation (4).
In our first example, we consider the problem related to the plug flow of Casson fluids

of blood in the rheology and fractional non-linear equations model [42]. The fall in
flow rate can be estimated through the following equation

.16 4 1
¢ =1= =1+ 37577 — G

here, we choose G = 04, and by selecting the initial guess of vy = 0.1, Equation (4)
with & = 1 results in the required root 7 = 0.1046986515365482281163926975 in the
third iteration.

Now, we consider the problem related to permeability in Biogels [42]. The dependence
of pressure and velocity is demonstrated by the following equation:

P(7) = Ry —20x(1 —7)?,

where R, = 1078, ¥ = 0.3655, and Yo = 2 as the initial guess. Then, Equation (4)
with ¢ = % predicts the desired solution v = 1.000037003578296426668052574 in
13 iterations.

To showcase the efficiency of our proposed scheme, we offer the comparative study with

classical methods such as Newton’s method (NM) [43], Abbasbandy’s method (AM) [44],
Halley’s method (HM) [43], and Chun’s method (CM) [45]. To proceed further, we consider
the following non-linear equations:

1.

2.
3.
4

N o=

¢(7) =7 +49% - 15,

p(y) = xe?” — sin? v+3cosy+5,
$(7) =107 — 1,

$(y) =e 7 +cosr.

We fix the tolerance of € = 10~ and

[Yne1 — Tnl <e,
[Pp(ni1)| <e.

The numerical results were performed on an Intel(R) Core(TM) i5 processor with

1.60 GHz and 16 GB of RAM. Maple 2018 was considered for coding, while the visual
display was processed by Matlab 2021.

After performing the numerical tests on the software, we present tabular as well as

visual illustrations of Equation (4) for the above-mentioned examples.

Methods Y0 1T Tn S(vn) 6
NM 2 5 1.6319808055660635175 0 4.77035 x 10~ 14
AM 2 4 1.6319808055660635175 0 0
HM 2 4 1.6319808055660635175 0 0
CM 2 4 1.6319808055660635175 0 0
ALG 2 4 1.6319808055660635175 0 0
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Methods Y0 IT Tn ¢(vn) )

NM -1 6 —1.2076478271309189270 4.0 x 10712 758 x 10~17
AM -1 5 —1.2076478271309189270 4.0 x 10712 0

HM -1 4 —1.2076478271309189270 4.0 x 10~ 0

CM -1 5 —1.2076478271309189270 4.0 x 10712 0

ALG -1 5 —1.2076478271309189270 4.0 x 10~ 0

Methods Y0 IT YT ¢(rn) )

NM 1.8 5 1.6796306104284499407 —9 x 10720 4.7395 x 10~ 1°
AM 1.8 4 1.6796306104284499407 —9x 10720 1.0x 1071
HM 1.8 4 1.6796306104284499407 —9x10-20 0

CM 1.8 4 1.6796306104284499407 2.0x 10717 0

ALG 1.8 4 1.6796306104284499407 —9x 10720 0

Methods 7 IT Yn ¢ (rn) )

NM 2 4 1.7461395304080124177 6.0 x 10720 1.611907606 x 10~1?
AM 2 4 1.7461395304080124177 —6x10"20 1.0x 1071

HM 2 4 1.7461395304080124176 6.0 x 10720  1.0x 1071

CM 2 3 1.7461395304080124177 —6x 10720 463 x 1017

ALG 2 4 1.7461395304080124177 —6x10"20 1x 10~

*  Figure 6a describe the comparative study of our proposed Algorithm with classical
schemes with respect to number of iterations and root values for ¢(7y) = > +49% — 15.

*  Figure 6b describe the comparative study of our proposed Algorithm with classical
schemes with respect to number of iterations and root values for ¢(y) = xe” —
siny + 3 cosy + 5.

*  Figure 6¢ describe the comparative study of our proposed Algorithm with classical
schemes with respect to number of iterations and root values for ¢(y) = 1076‘”2 -1

e  Figure 6d describe the comparative study of our proposed Algorithm with classical
schemes with respect to number of iterations and root values for ¢(y) = e~ 7 + cos 7.
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Figure 6. Graphical visuals of nonlinear equations.
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4.6. Basin of Attraction

Here, we briefly describe Equation (4) through the basin of attraction and some
illustrations corresponding to CPU time to generate the basin of attractions (Figures 7-9).
We deploy our proposed Algorithm on [—2,2] x [—2,2] with a 500 x 500 points grid by
fixing the tolerance |S(7y,)| < 1 x 10719, and the maximum number of iterations is 20. For
this purpose, we consider the extensively known problem S(y) = 7" —1, n € N. We take
onlyn = 2,3.

CPU Time per Iteration

0 5 10 15 20

@) = b L * (b) oon

Figure 7. (a) is the basin of attraction for 9? — 1 and (b) illustrates the CPU time to produce the basin
of attraction.

2

CPU Time per Iteration

5 10 15 20
Iteration

Figure 8. (a) is the basin of attraction for 9 — 1 and (b) illustrates the CPU time to produce the basin
of attraction.

CPU Time per Iteration
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CPU Time (seconds)
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0 5 10 15 20
Iteration

Figure 9. (a) is the basin of attraction for 9° — 593 + 4 and (b) illustrates the CPU time to produce
the basin of attraction.
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5. Conclusions

In recent years, multiple approaches such as fractional calculus, quantum calculus,
different generalizations of convexity, and majorization theory have been deployed to
establish the error inequalities of numerical quadrature schemes. In this article, we have
derived the parametric integral inequalities via convex functions. The benefit of our study
is that we can generate a blend of integral inequalities by choosing the different values
of ¢ and <. It is evident that our results reduce to Ostrowski’s, midpoint, trapezoidal,
Simpson’s, Newton'’s, Bullen’s, and other two-point open integral inequalities for certain
values of parameters. To ensure the correctness of our findings, we have presented various
graphical visuals. Furthermore, to enhance the significance of results, we have reported an
abundant amount of applications to linear combinations of means, composite quadrature
formulas, modified Bessel functions, and novel parametric iterative schemes having cubic
order of convergence. Also, we have investigated the iterative scheme through physical
examples. Most importantly, the results obtained in this article are beneficial to compute
the bounds of several other special functions, such as gamma function, beta function,
and hypergeometric functions. In the future, we will try to extend the idea for non-
convex functions, quantum and symmetric calculus, fractional calculus, and fuzzy valued
functions as well. By employing a similar procedure, we investigate two-dimensional
unified inequalities and their applications. One of the important research questions is to
unify Milne’s and Maclaurin’s and correct Euler-type inequalities by developing a new
identity. We hope this will be an effective contribution to the literature and will pave a new
way of thinking.
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