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Abstract: We consider the concept of fuzzy H-quasi-contraction (FH-QC for short) initiated by Ćirić
in tripled fuzzy metric spaces (T -FMSs for short) and present a new fixed point theorem (FPT
for short) for FH-QC in complete T -FMSs. As an application, we prove the corresponding results
of the previous literature in setting fuzzy metric spaces (FMSs for short). Moreover, we obtain
theorems of sufficient and necessary conditions which can be used to demonstrate the existence
of fixed points. In addition, we construct relevant examples to illustrate the corresponding results.
Finally, we show the existence and uniqueness of solutions for integral equations by applying our
new results.
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1. Introduction

In 1965, in [1], Zadeh introduced the theory of fuzzy sets. From then on, many re-
searchers have discussed and developed this theory and applied the results to various
different areas, such as mathematical programming, multi-attribute decision making, cy-
bernetics, neural networks, statistics, computational science, and engineering (for example,
see [2–7]). In 1975, Kramosil and Michalek [8] first proposed the concept of FMSs. In
1988, Grabiec [9] initiated studying Banach and Edelstein’s FPT in an FMS . In 1994,
George and Veeramani [10] slightly modified the conditions of the notion to obtain a Haus-
dorff topology. The modified definition, called George and Veeramani’s type of fuzzy
metric space (GV-FMS for short), is now considered to be the appropriate concept for a
fuzzy metric. Since then, many types of FPT s and related results have been presented
by different authors (for example, see [11–22]). In 2002, Gregori and Sapena [23] defined
fuzzy contraction in an FMS and obtained a fuzzy Banach contraction theorem. In
2013, Wardowski [24] introduced a new concept of fuzzy H-contraction by mapping η,
which is a generalization of fuzzy contractive mapping. Inspired by the notion of quasi-
contraction introduced by Ćirić [25], in 2015, Amini-Harandi and Mihet [26] introduced the
concept of FH-QC and obtained FPT s for this mapping in a complete FMS . In 2020,
Jing-Feng Tian et al. [27] gave the notion of a T -FMS , which is a new generalization of
the GV-FMS , and deduced FPT s for fuzzy ψ-contraction. Moreover, Jing-Feng Tian
et al. [27] introduced the concept of a neighborhood into the T -FMS and obtained a
first-countable Hausdorff topology. Recently, many authors have obtained FPT s and
other results in the setting of T -FMSs (for example, refer to [28,29]).

Motivated by the above works, we present the notion of FH-QC which involves
ten metrics in a T -FMS . First, we construct examples of T -FMSs. Second, we establish
a FPT for FH-QC in such a space. Third, as an application, we clarify Amini-Harandi
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and Mihet’s results [26] in the setting of an FMS using our new results. In addition, we
give another form to the theorems of sufficient and necessary conditions which can be used
to demonstrate the existence of fixed points. In the meantime, we provide two illustrative
examples in support of our new results. Finally, we discuss the existence of a solution for
the integral equations formulated in the T -FMS .

2. Preliminaries

Some related concepts and conclusions will be recalled below. Throughout the paper,
we always denote sets of real numbers, sets of all non-negative integers and sets of all
positive integers as R, N and N+, respectively.

Definition 1 ([30]). A function ∗ : [0, 1]× [0, 1] → [0, 1] is said to be a continuous t-norm if the
following conditions satisfy

(i) s ∗ l = l ∗ s and s ∗ (l ∗ τ) = (s ∗ l) ∗ τ for 0 ≤ s, l, τ ≤ 1;
(ii) s ∗ 1 = a, for 0 ≤ s ≤ 1;
(iii) s ∗ l ≤ τ ∗ λ whenever s ≤ τ and l ≤ λ for 0 ≤ s, l, τ, λ ≤ 1;
(iv) ∗ is continuous.

According to Definition 1, we know that for 0 ≤ s and l ≤ 1, ∗m(s, l) = min{s, l} and
∗p(s, l) = sl are continuous t-norms.

The notion of a T -FMS was introduced by Tian et al. [27], defined as follows.

Definition 2 ([27]). A triple (X ,L, ∗) is called a T -FMS if X is an arbitrary non-empty set, ∗
is a continuous t-norm and L is a fuzzy set on X ×X ×X × (0, ∞) such that for all α, β, γ, δ ∈ X
and all τ, σ > 0, the following conditions hold:

(T -FMS-1): Lα,β,γ(τ) > 0;
(T -FMS-2): Lα,β,γ(τ) = 1 if and only if α = β = γ;
(T -FMS-3): Lα,α,β(τ) ≥ Lα,β,γ(τ) for γ ̸= β;
(T -FMS-4): Lα,β,γ(τ) = Lα,γ,β(τ) = Lγ,β,α(τ) =...;
(T -FMS-5): Lα,β,γ(·) : (0, ∞) → (0, 1] is continuous;
(T -FMS-6): Lα,β,γ(τ + σ) ≥ Lα,δ,δ(τ) ∗ Lδ,β,γ(σ).

We can construct an example of a T -FMS by an FMS in the setting of a GV-FMS .

Example 1. Let (X ,F , ∗) be an FMS . For α, β, γ ∈ X and τ > 0, we define

Lα,β,γ,(τ) = min{F (α, β, τ),F (α, γ, τ),F (γ, β, τ)},

and (X ,L, ∗) is a T -FMS .

Proof. It is not difficult to see that L satisfies (T -FMS-1)-(T -FMS-5). Next, we verify
that L satisfies (T -FMS-6). If α, β, γ, δ ∈ X and τ, θ > 0, we have

Lα,β,γ(τ + θ) = min{F (α, β, τ + θ),F (α, γ, τ + θ),F (β, γ, τ + θ)}
≥ min{F (α, δ, τ) ∗ F (δ, β, θ),F (α, δ, τ) ∗ F (δ, γ, θ),F (β, γ, θ)}
≥ min{F (α, δ, τ) ∗ F (δ, β, θ),F (α, δ, τ) ∗ F (δ, γ, θ),F (α, δ, τ) ∗ F (β, γ, θ)}
= F (α, δ, τ) ∗ min{F (δ, β, θ),F (δ, γ, θ),F (β, γ, θ)}
= Lα,δ,δ(τ) ∗ Lδ,β,γ(θ).

Therefore, L satisfies (T -FMS-6), and then (X ,L, ∗) is a T -FMS .
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Example 2. Let ξ, η ∈ N+, ξ > η, and ∗ = ∗p; we define

Lα,β,γ(τ) = (
n + τ

ξ + τ
)µ(|α−β|+|β−γ|+|α−γ|) ∀α, β, γ, δ ∈ (−∞,+∞), τ > 0.

Then, (X ,L, ∗) is a T -FMS .

Proof. It is not difficult to ascertain that L satisfies (T -FMS-1)-(T -FMS-5). Next, we
verify that L satisfies the condition (T -FMS-6). In fact, if α, β, γ, δ ∈ (−∞,+∞), τ > 0
and θ > 0, we have

Lα,β,γ(τ + θ) = (
n + t + s
ξ + t + s

)µ(|α−β|+|β−γ|+|α−γ|)

≥ (
η + τ + θ

ξ + τ + θ
)µ(2|α−δ|+|β−δ|+|β−γ|+|δ−γ|)

= (
η + τ + θ

ξ + τ + θ
)2µ|α−δ|) × (

η + τ + θ

ξ + τ + θ
)µ(|β−α|+|β−γ|+|δ−γ|)

≥ (
η + τ

ξ + τ
)2µ|α−δ| × (

η + θ

ξ + θ
)µ(|β−δ|+|β−γ|+|δ−γ|)

= Lα,δ,δ(τ) ∗ Lδ,β,γ(θ).

Hence, L satisfies (T -FMS-6), and (X ,L, ∗) is a T -FMS .

Tian et al. [27] obtained a Hausdorff topology by defining an open neighborhood,

ℜ(α0, r, τ) = {β ∈ X : Lα0,β,β(τ) > 1 − r,Lα0,α0,β(τ) > 1 − r},

and then the concepts of convergence and L-Cauchy sequences (L-CSs for short), related
propositions, were given as follows.

Definition 3 ([27]). Let (X ,L, ∗) be a T -FMS and {zn} ⊆ X be a sequence.
(1) zn → z0 ∈ X (n → ∞)⇐⇒ ∀τ > 0, 0 < r < 1, ∃Nτ,r ∈ N∗ s.t. ∀n > Nt,r

zn ∈ ℜ(z0, r, τ), i.e., Lz0,zn ,zn(τ) > 1 − r, and Lz0,z0,zn(τ) > 1 − r.
(2) {zn} is an L-CS or a Cauchy sequence (CS for short). ⇐⇒ ∀τ > 0, 0 < r < 1,

∃Nτ,r ∈ N∗ s.t. ∀m, n, l > Nt,r, Lzm ,zn ,zl (τ) > 1 − r.
(3) A T -FMS is L-complete, or complete. ⇐⇒ ∀L-CS {zn} ⊆ X , ∃ z0 ∈ X s.t. zn → z0.

Proposition 1 ([27]). Let (X ,L, ∗) be a T -FMS and {zn} ⊆ X be a sequence. Then,

(1) zn → z0 ∈ X . ⇐⇒ ∀τ > 0, 0 < r < 1, ∃Nτ,r ∈ N∗ s.t. ∀n > Nt,r, Lz0,zn ,zn(τ) > 1 − r.

⇐⇒ ∀τ > 0, 0 < r < 1, ∃Nτ,r ∈ N∗ s.t. ∀n > Nt,r, Lz0,z0,zn(τ) > 1 − r.

⇐⇒ Lzn ,zn ,z0(t) → 1 or Lzn ,z0,z0(t) → 1(n → ∞) ∀t > 0.

(2){zn} is an L− CS ⇐⇒ ∀τ > 0, 0 < r < 1, ∃Nτ,r ∈ N∗s.t. ∀m, n > Nt,r,

Lzm ,zn ,zn(τ) > 1 − r.

⇐⇒ Lzn ,zm ,zm(t) → 1(n, m → ∞) ∀t > 0.

Proposition 2 ([27]). Let (X ,L, ∗) be a T -FMS . Then, if α and β ∈ X, Lα,β,β(·) is
non-decreasing.

Proposition 3 ([27]). Let (X ,L, ∗) be a T -FMS and α0, β0 and γ0 ∈ X. Let sequences
{αn}, {βn} and {γn} be in X . If αn → α0, βn → β0 and γn → γ0 as n → ∞, then, for any
t > 0, Lαn ,βn ,γn(t) → Lα0,β0,γ0(t) as n → ∞.
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The following notion of fuzzy H-contraction was introduced by Wardowski in [24], as
a generalization of the fuzzy contractions of Gregori and Sapena [23].

Definition 4 ([24]). Denote by H the class of mappings η : (0, 1] → [0, ∞) such that η is strictly
decreasing, and η transforms (0, 1] into [0, ∞).

Note that if η ∈ H, then η is continuous, and η(1) = 0. Combining the concepts of a
T -FMS and η, we have the following proposition.

Proposition 4. Let (X ,L, ∗) be a T -FMS and η ∈ H. With a sequence {αn} in X, then the
following are valid.

(1) {αn} is an L-CS . ⇐⇒ lim
n,m→∞

η(Lαn ,αm ,αm(t)) = 0 ∀t > 0;

(2) αn → α ⇐⇒ lim
n→∞

η(Lαn ,α,α(t)) = 0 or lim
n→∞

η(Lαn ,αn ,α(t)) = 0 ∀t > 0.

Proof. (1) Let any ϵ > 0 be fixed. According to the definition of η, then η−1(ϵ) ∈ (0, 1); for
ϵ′ ∈ (0, 1 − η−1(ϵ)), we have 1 − ϵ′ > η−1(ϵ), so we deduce that η(1 − ϵ′) < ϵ. Remarking
that {αn} is an L-Cauchy sequence, for above ϵ′ and any t > 0, we see n0 ∈ N+ such that
Lαn ,αm ,αm(t) > 1 − ϵ′ for all n, m > N0. Hence, η(Lαn ,αm ,αm(t)) < η(1 − ϵ′) < ϵ.

For any r ∈ (0, 1), then η(1− r) > 0. Applying this condition, for ϵ = η(1− r) and any
t > 0, we see n0 ∈ N+ such that η(M(αn, αm, αm)) < η(1 − r) for all m, n > n0. Therefore,
M(αn, αm, αm)) > 1 − r. The proof is completed.

(2) The proof for (2) is analogous.

3. The Main Results

Now we give the definition of FH-QC in a T -FMS below.

Definition 5. Let (X ,L, ∗) be a T -FMS . A mapping P : X → X is called FH-QC relating
to η ∈ H if we can find k ∈ (0, 1) such that the following conditions satisfy

η(LPα,Pβ,Pγ(τ)) ≤k max{η(Lα,β,γ(τ)), η(Lα,Pα,Pα(τ)), η(Lβ,Pβ,Pβ(τ)),

η(Lγ,Pγ,Pγ(τ), η(Lα,Pβ,Pβ(τ)), η(Lβ,Pγ,Pγ(τ)), η(Lγ,Pα,Pα(τ)),

η(Lα,Pγ,Pγ(τ)), η(Lβ,Pα,Pα(τ)), η(Lγ,Pβ,Pβ(τ))} (1)

for any α, β, γ ∈ X and τ > 0.
Our main theorem is related to FH-QC in a T -FMS .

Theorem 1. Let (X ,L, ∗) be a complete T -FMS and let P : X → X be FH-QC relating to
η ∈ H such that

(a) α ≥ β ∗ γ ⇒ η(α) ≤ η(β) + η(γ), ∀ α, β, γ ∈ {LTiz,Tjz,Tjz(τ) : z ∈ X , τ > 0, i, j ∈ N};
(b) for ∀ γ ∈ X and each sequence {τn} ⊆ (0, ∞), which is decreasing and convergent to 0,

{η(Lγ,Tγ,Tγ(τi)) : i ∈ N} and {η(Lγ,γ,Tγ(τi)) : i ∈ N} are bounded.
Then, T has a unique FP in X .

Proof. For any α ∈ X, take α := α0 and define {αn} in X by αn = Pαn−1, n ∈ N+.
Denote a set {(ω, n) : ω ∈ N, n ∈ N+ and ω < n} by D. For any τ > 0 given, define
Pτ : D → [0, ∞) by

Pτ(ω, n) = max{η(Lαi ,αj ,αj(τ))) : ω ≤ i, j ≤ n}.

Now, we will show that {αn} is a Cauchy sequence in four steps.
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Step 1. We prove that for any τ > 0,

Pτ(ω + 1, n) ≤ kPτ(ω, n) for any (ω, n) ∈ D with n > ω + 1. (2)

Let (ω, n) ∈ D with n > ω + 1 be given. For any i, j ∈ N+ with ω + 1 ≤ i, j ≤ n and
τ > 0, by Equation (1), we have

η(Lαi ,αj ,αj(τ)) = η(LTαi−1,Tαj−1,Tαj−1(τ))

≤ k max{η(Lαi−1,αj−1,αj−1(τ)), η(Lαi−1,αi ,αi (τ)), η(Lαj−1,αj ,αj(τ)),

η(Lαj−1,αj ,αj(τ)), η(Lαi−1,αj ,αj(τ)), η(Lαj−1,αj ,αj(τ)), η(Lαj−1,αi ,αi (τ)),

η(Lαi−1,αj ,αj(τ)), η(Lαj−1,αi ,αi (τ)), η(Lαj−1,αj ,αj(τ))}
≤ kPτ(ω, n), (3)

which shows that Pτ(ω + 1, n) ≤ kPτ(ω, n) < Pτ(ω, n).
Step 2. We verify that for each τ > 0,

Pτ(ω, n) = max{η(Lαω ,αp1 ,αp1
(τ)), η(Lαω ,αω ,αp2

(τ)) : ω < p1, p2 ≤ n}. (4)

Let (ω, n) ∈ D be given. If n − ω = 1, then n = ω + 1, and hence

Pτ(ω, n) = max{η(Lαω ,αn ,αn(τ)), η(Lαω ,αω ,αn(τ))}
= max{η(Lαω ,αp1 ,αp1

(τ)), η(Lαp2 ,αω ,αω (τ)) : ω < p1, p2 ≤ n}.

We now suppose that n − ω > 1. For any i, j ∈ N+ with ω + 1 ≤ i, j ≤ n, by Equation (3),
we obtain η(Lαi ,αj ,αj(τ)) ≤ Pτ(ω + 1, n) ≤ kPτ(ω, n) < Pτ(ω, n). Thus,

Pτ(ω, n) = max{η(Lαω ,αp1 ,αp1
(τ)), η(Lαω ,αω ,αp2

(τ)) : ω < p1, p2 ≤ n}.

Step 3. We shall show that for every τ > 0, we can find M > 0 satisfies

Pτ(0, n) ≤ M ∀n ∈ N+.

We find a sequence {bl} which is positive, strictly decreasing and ∑∞
l=1 bl = 1. By Equation (4),

we obtain Pτ(0, n) = max{η(Lα0,αp1 ,αp1
(τ)), η(Lα0,α0,αp2

(τ)) : 0 < p1, p2 ≤ n}.
Let us consider the following two cases.

Case 1. We can find that the positive integer p1 ≤ n satisfies

Pτ(0, n) = η(Lα0,αp1 ,αp1
(τ))

= η(Lα0,αp1 ,αp1
(

∞

∑
l=1

blτ))

≤ η(Lα0,α1,α1(
∞

∑
l=q+1

blt)) + η(Lα1,αp1 ,αp1
(

q

∑
l=1

blt)), ∀j

According to condition (b) and the continuity of η and Lα,β,γ(·), we have

Pτ(0, n) ≤ lim sup
q→∞

η(Lα0,α1,α1(
∞

∑
l=q+1

blτ)) + η(Lα1,αp1 ,αp1
(τ))

≤ lim sup
q→∞

η(Lα0,α1,α1(
∞

∑
l=q+1

blτ)) + kPτ(0, n).
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Hence,

Pτ(0, n) ≤ 1
1 − k

lim sup
q→∞

η(Lα0,α1,α1(
∞

∑
l=q+1

blτ).

Case 2. We can choose for the positive integer p2 ≤ n to satisfy

Pτ(0, n) = η(Lα0,α0,αp1
(τ))

= η(Lα0,α0,αp1
(

∞

∑
l=1

blτ))

≤ η(Lα0,α0,α1(
∞

∑
l=q+1

blτ)) + η(Lα1,α1,αp1
(

q

∑
l=1

blτ)).

Similarly,

Pτ(0, n) ≤ 1
1 − k

lim sup
q→∞

η(Lα0,α0,α1(
∞

∑
l=q+1

blτ)).

Let

M =: max{ 1
1 − k

lim sup
q→∞

η(Lα0,α1,α1(
∞

∑
l=q+1

blτ)),
1

1 − k
lim sup

q→∞
η(Lα0,α0,α1(

∞

∑
l=q+1

blτ))}.

We conclude that

Pt(0, n) ≤ M ∀n ∈ N+.

Step 3. We shall prove that {αn} is an L-CS .
For each τ > 0 and ω, n ∈ N+ and ω < n, by applying Equation (2), we have

η(Lαω ,αn ,αn(τ)) ≤ Pτ(ω, n)

≤ kPτ(ω − 1, n)

≤ ...

≤ kωPτ(0, n)

≤ kω M

Therefore, η(Lαω,αn,αn(τ)) → 0 as ω, n → ∞. We know that {αn} is an L-CS from Proposition 4.
Next, we shall show that α′ ∈ X is the FP of P .

Since (X ,L, ∗) is complete, x′ ∈ X such that xn → x′ ∈ X (n → ∞). By Equation (1),
we have

η(Lαn+1,Tα′ ,Tα′(τ)) ≤k max{η(Lαn ,α′ ,α′(τ)), η(Lαn ,αn+1,αn+1(τ)), η(Lα′ ,Tα′ ,Tα′(τ)),

η(Lα′ ,Tα′ ,Tα′(τ)), η(Lαn ,Tα′ ,Tα′(τ)), η(Lα′ ,Tα′ ,Tα′(τ)),

η(Lα′ ,αn+1,αn+1
(τ)), η(Lαn ,Tα′ ,Tα′(τ)),

η(Lα′ ,αn+1,αn+1
(τ)), η(Lα′ ,Tα′ ,Tα′(τ))}

=k max{η(Lαn ,α′ ,α′(τ)), η(Lαn ,αn+1,αn+1(τ)), η(Lα′ ,Tα′ ,Tα′(τ)), )

η(Lαn ,Tα′ ,Tα′(τ)), η(Lα′ ,αn+1,αn+1
(τ))}.

Letting n → ∞ in the previous inequality, according to Proposition 3 and the continuity of
η, we have η(Lα,Tα′ ,Tα′(τ)) ≤ kη(Lα,Tα′ ,Tα′(τ)) for ∀ τ > 0; therefore, η(Lα′ ,Tα′ ,Tα′(τ)) = 0
for ∀ τ > 0, and it follows that Lα′ ,Tα′ ,Tα′(τ) = 1 for ∀ τ > 0, and so α′ = Tα′.
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Finally, we shall verify that α′ is the unique FP of P . If β′ is also an FP of T, then
for ∀ τ > 0, by Equation (1), we see

η(Lα′ ,β′ ,β′(τ)) =η(LTα′ ,Tβ′ ,Tβ′(τ))

≤k max{η(Lα′ ,β′ ,β′(τ)), η(Lα′ ,Tα′ ,Tα′(τ)), η(Lβ′ ,Tβ′ ,Tβ′(τ)),

η(Lβ′ ,Tβ′ ,Tβ′(τ)), η(Lα′ ,Tβ′ ,Tβ′(τ)), η(Lβ′ ,Tβ′ ,Tβ′(τ)), η(Lβ′ ,Tα′ ,Tα′(τ)),

η(Lα′ ,Tβ′ ,Tβ′(τ)), η(Lβ′ ,Tα′ ,Tα′(τ)), η(Lβ′ ,Tβ′ ,Tβ′(τ))}
=k max{η(Lα′ ,β′ ,β′(τ)), η(Lα′ ,α′ ,β′(τ))}.

Similarly, η(Lα′ ,α′ ,β′(τ)) ≤ k max{η(Lα′ ,α′ ,β′(τ)), η(Lα′ ,β′ ,β′(τ))}
Hence, ∀ τ > 0

max{η(Lα′ ,α′ ,β′(τ)), η(Lα′ ,β′ ,β′(τ))} ≤ k max{η(Lα′ ,α′ ,β′(τ)), η(Lα′ ,β′ ,β′(τ))}

max{η(Lα′ ,α′ ,β′(τ)), η(Lα′ ,β′ ,β′(τ))} = 0. Therefore, α′ = β′.

Note that P is not required to be continuous in Theorem 1; now, we construct the
following example to illustrate this.

Example 3. Let X = [0, 2] and ∗ = ∗p. Define

Lα,β,γ(τ) = (
3 + τ

4 + τ
)|α−β|+|γ−β|+|γ−α| for α, β, γ ∈ X and τ > 0.

From Example 2, we see that (X ,L, ∗) is a T -FMS ; furthermore, (X ,L, ∗) is L-
complete. Now, we consider the following mapping:

Pδ =

{
1
8 , δ = 0,
1
4 , δ ∈ (0, 2].

For η(t) = ln 1
t , t ∈ (0, 1], obviously, η(t) ∈ H. Then, the following holds:

(1) P : X → X is FH-QC related to η = ln 1
t ∈ H;

(2) P is not continuous on X , and P allows for a unique FP in X .

Proof. (1) It is sufficient to prove that η(LTα,Tβ,Tγ(τ)) ≤ 1
2M(α, β, γ) for any α, β, γ ∈ X

and τ > 0, where

M(α, β, γ) =max{η(Lα,β,γ(τ)), η(Lα,Tα,Tα(τ)), η(Lβ,Tβ,Tβ(τ)),

η(Lγ,Tγ,Tγ(τ)), η(Lα,Tβ,Tβ(τ)), η(Lβ,Tγ,Tγ(τ)), η(Lγ,Tα,Tα(τ)),

η(Lα,Tγ,Tγ(τ)), η(Lβ,Tα,Tα(τ)), η(Lγ,Tβ,Tβ(τ))}.

Let us discuss three cases:
Case 1. If α = 0, β, γ ∈ (0, 2], then for any τ > 0,

LTα,Tβ,Tγ(τ) = L 1
8 , 1

4 , 1
4
(τ) = (

τ + 3
τ + 4

)
1
4 = (L0, 1

4 , 1
4
(τ))

1
2 = (Lα,Tβ,Tβ(τ))

1
2 .

Hence, η(LTα,Tβ,Tγ(τ)) = − 1
2 ln(Lα,Tβ,Tβ(τ)) =

1
2 η(Lα,Tβ,Tβ(τ)). Therefore, for any t > 0,

η(LTα,Tβ,Tγ(τ)) ≤
1
2
M(α, β, γ).
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Case 2. If α = β = 0, γ ∈ (0, 2], then for any τ > 0,

LTα,Tβ,Tγ(τ) = L 1
8 , 1

8 , 1
4
(τ) = (

t + 3
t + 4

)
1
4 = (L0, 1

4 , 1
4
(τ))

1
2 = (Lβ,Tγ,Tγ(t))

1
2 .

Similarly, for any τ > 0,

η(LTα,Tβ,Tγ(τ)) ≤
1
2
M(α, β, γ).

Case 3. If α = β = γ = 0 or α = β = γ ∈ (0, 2], then η(LTα,Tβ,Tγ(τ)) = 0, and apparently,
for any τ > 0,

η(LTα,Tβ,Tγ(τ)) ≤
1
2
M(α, β, γ).

Note that η(t) = ln 1
t (t ∈ (0, 1]) and ∗p satisfy (a),(b) of Theorem 1; hence, all the

conditions of Theorem 1 are fulfilled.
(2) P is not continuous at δ = 0. In fact, for any τ > 0, L 1

n , 1
n ,0(τ) = ( 3+τ

4+τ )
2
n → 1 as

n → ∞; hence, 1
n → 0 as n → ∞. However, P( 1

n ) ≡
1
4 ̸= P(0) = 1

8 . Therefore, P is not
continuous on X .

Obviously, δ = 1
4 is a unique FP of P .

In 2015, Amini-Harandi, A. and Mihet, D. considered the concept of FH-QC in an
FMS-(X ,F , ∗) as follows.

The mapping P : X → X is called FH-QC related to η ∈ H if k ∈ (0, 1) satisfies

η(F (Pα, Pβ, τ)) ≤λ max{η(F (α, β, τ)), η(F (α, Pα, τ)), η(F (β, Pβ, τ)),

η(F (α, Pβ, τ)), η(F (Pα, β, τ))} for all α, β ∈ X and τ > 0.

We will clarify their results in [26] using Theorem 1 as a consequence of our
theorem shortly.

Corollary 1 (See Theorem 2.3 of [26]). Let (X ,F , ∗) be a complete FMS and let P : X → X
be FH-QC relating to η ∈ H such that

(a) α ≥ β ∗ γ ⇒ η(α) ≤ η(β) + η(γ), ∀ α, β, γ ∈ {F(Piz,P jz, t) : z ∈ X , τ > 0, i, j ∈ N};
(b) for ∀ γ ∈ X and each sequence {τn} ⊆ (0, ∞) which is decreasing and convergent to 0,

{η(F (γ, Pγ, τi)) : i ∈ N} is bounded.
Then, P has a unique FP in X .

Proof. For all α, β, γ,∈ X and τ > 0, define

Lα,β,γ,(t) = min{F (α, β, τ),F (α, γ, τ),F (γ, β, τ)}.

By Example 1, we know that (X ,L, ∗) is a T -FMS . Moreover, it is obvious that (X ,L, ∗)
is L-complete due to the completeness of (X , M, ∗). Since

LP iα,P jα,P jα(τ) =min{F (P iα, P jα, τ),F (P jα, P iα, τ),F (T jα, P jα, τ)}

=F (P iα, T jα, τ)

and Lα,Tα,Tα(τ) = Lα,Tα,Tα(τ) = M(α, Tα, τ), it follows that T satisfies (a), (b) of Theorem 1
in the T -FMS (X,L, ∗).

Next, we will prove that P : X → X is FH-QC relating to η ∈ H in (X ,L, ∗). In fact,
for any α, β, γ ∈ X and τ > 0, according to the definition of Lα,β,γ(τ) and Equation (1),
we obtain
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η(LPα,Pβ,Pγ(τ)) = η(min{F (Pα, Pβ, τ),F (Pα, Pγ, t),F (Pγ, Pβ, t)})
= max{η(F (Pα, Pβ, τ)), η(F (Pα, Pγ, τ)), η(F (Pγ, Pβ, τ))}
≤ k max{η(F (α, β, τ)), η(F (α, Pα, τ)), η(F (β, Pβ, τ)), η(F (α, Pβ, t)),

η(F (Pα, β, τ)), η(F (α, γ, τ)), η(F (α, Pα, τ)), η(F (γ, Pγ, τ)),

η(F (α, Tγ, τ)), η(F (γ, Tα, τ)), η(F (γ, β, τ)), η(F (γ, Tγ, τ)),

η(F (β, Pβ, τ)), η(F (γ, Pβ, τ)), η(F (β, Pγ, τ))}
= kη min{Lα,β,γ(τ),Lα,Pα,Pα(τ),Lβ,Pβ,Pβ(τ),Lγ,Pγ,Pγ(t),Lα,Pβ,Pβ(τ),

Lβ,Pγ,Pγ(τ),Lγ,Pα,Pα(τ),Lα,Pγ,Pγ(τ),Lβ,Pα,Pα(τ),Lγ,Pβ,Pβ(τ)}
= k max{η(Lα,β,γ(τ)), η(Lα,Pα,Pα(τ)), η(Ly,Py,Py(tτ)), η(Lγ,Pγ,Pγ(τ),

η(Lα,Pβ,Pβ(τ)), η(Lβ,Pγ,Pγ(τ)), η(Lγ,Pα,Pα(τ)), η(Lα,Pγ,Pγ(τ)),

η(Lβ,Pα,Pα(τ)), η(Lγ,Pβ,Pβ(τ))}.

Therefore, applying Theorem 1, we find that P has an FP x′ ∈ X in the context of the
T -FMS (X ,L, ∗).

This shows that T has a unique FP in the context of the FMS (X ,F , ∗).

In the next proposition, we will give an equivalent form of condition (b) in
Theorem 1.

Proposition 5. Let (X ,L, ∗) be a T -FMS , η ∈ H and P : X → X a mapping. Given γ ∈ X ,
the following statements are equivalent:

(1)
∧

τ>0 Lγ,Pγ,Pγ(τ) > 0.
(2) For each sequence {τn} ⊆ (0, ∞) which is decreasing and convergent to 0,

{η(Lγ,Pγ,Pγ(τi)) : i ∈ N} is bounded.

Proof. According to Proposition 2, we see Lγ,Pγ,Pγ(·) is non-decreasing. Hence,∧
τ>0

Lγ,Pγ,Pγ(τ) = lim
t→0+

Lγ,Pγ,Pγ(τ).

Suppose
∧

τ>0 Lγ,Pγ,Pγ(τ) > 0, and let
∧

τ>0 Lγ,Pγ,Pγ(τ) = a > 0; then, a ∈ (0, 1] and
Lγ,Pγ,Pγ(τi) ≥ a for every i ∈ N. Remarking that η is strictly decreasing, it is obvious that

η(Lγ,Pγ,Pγ(τi)) ≤ η(a) ∀ i ∈ N.

For any sequence {τn} ⊆ (0, ∞), τn ↓ 0, we can find M > 0 such that

η(Lγ,Pγ,Pγ(τi)) ≤ M for every i ∈ N.

Since η is strictly decreasing, we have

Lγ,Pγ,Pγ(τi) = η−1(η(Lγ,Pγ,Pγ(τi))) ≥ η−1(M) > 0 for every i ∈ N.

Therefore, ∧
t>0

Lγ,Pγ,Pγ(τ) = lim inf
i

Lγ,Pγ,Pγ(τi) ≥ η−1(M) > 0.

Similarly, we can deduce the following result.
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Proposition 6. Let (X ,L, ∗) be a T -FMS , η ∈ H and P : X → X a mapping. Given γ ∈ X ,
the following statements are equivalent:

(1)
∧

τ>0 Lγ,γ,Pγ(τ) > 0.
(2) For each sequence {τn} ⊆ (0, ∞) which is decreasing and convergent to 0,

{η(Lγ,γ,Pγ(τi)) : i ∈ N} is bounded.

Theorem 1 can be written in a more elegant way, as follows:

Theorem 2. Let (X ,L, ∗) be a complete T -FMS and let P : X → X be FH-QC relating to
η ∈ H such that

(a) α ≥ β ∗γ ⇒ η(α) ≤ η(β)+ η(γ), ∀ α, β, γ ∈ {LPiz,P jz,P jz, (τ) : z ∈ X , τ > 0, i, j ∈ N};
(b)

∧
τ>0 Lγ,γ,Pγ(τ) > 0 and

∧
τ>0 Lγ,Pγ,Pγ(τ) > 0 for all γ ∈ X .

Then, P has a unique FP in X .

Remark 1. From the proof of Theorem 1, we know that for any α ∈ X , sequence {Tnα} is
convergent to the FP . We will give another idea of the theorem of sufficient and necessary
conditions which are more widely used for the existence of FPs.

Theorem 3. Let (X ,L, ∗) be a complete T -FMS and let P : X → X be FH-QC relating
to η ∈ H such that α ≥ β ∗ γ ⇒ η(α) ≤ η(β) + η(γ), ∀ α, β, γ ∈ {LP iz,P jz,P jz, (τ) :
z ∈ X , τ > 0, i, j ∈ N}; then, T has a unique FP in X if and only if γ ∈ X such that∧

τ>0 Lγ,γ,Pγ(τ) > 0 and
∧

τ>0 Lγ,Pγ,Pγ(τ) > 0.

The following example is constructed to illustrate that Theorem 3 has wider applica-
tions in the existence of FPs to some extent.

Example 4. Let X = [0, 4], and define Lα,β,γ(τ) = [e
|β−α|+|γ−β|+|γ−α|

τ ]−1 for any α, β and γ ∈ X
and τ > 0; then, (X ,L, ∗) is a T -FMS (refer to [Example 2.8] of [27]). Furthermore, (X,L, ∗)
is L-complete. Consider P : X → X as follows.

Pδ =

{
2
3 δ, δ ∈ [0, 4)

1, δ = 4.

Then, the following holds:
(1) P is not continuous on X ;
(2) P is FH-QC relating to η = ln 1

t , t ∈ (0, 1] ∈ H;
(3) Condition (b) of Theorem 1 is not fulfilled;
(4) For η(t) = ln 1

t , T satisfies all the conditions of Theorem 3, and P has a unique FP .

Proof. (1) It is not difficult to prove that P is not continuous at δ = 4. Hence, P is not
continuous on X .
(2) Now, we will prove that for η = ln 1

t ∈ H, k = 2
3 ∈ (0, 1), satisfying the

following condition:

η(LPα,Pβ,Pγ(τ)) ≤
2
3
M(α, β, γ)

for any α, β, γ ∈ X and τ > 0, where

M(α, β, γ) =max{η(Lα,β,γ(τ)), η(Lα,Pα,Pα(τ)), η(Lβ,Pβ,Pβ(τ)),

η(Lγ,Pγ,Pγ(τ), η(Lα,Pβ,Pβ(τ)), η(Lβ,Pγ,Pγ(τ)), η(Lγ,Pγ,Pγ(τ)),

η(Lα,Pγ,Pγ(τ)), η(Lβ,Pα,Pα(τ)), η(Lγ,Pβ,Pβ(τ))}.
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In fact, for η = ln 1
t ∈ H and α, β, γ ∈ X , we have

η(Lα,β,γ(τ)) =
|β − α|+ |γ − β|+ |γ − α|

τ
.

We consider the following two cases:
Case 1. Suppose α ∈ [0, 4).

If β ∈ [0, 4), γ ∈ [0, 4), then

η(LPα,Pβ,Pγ(τ)) =
2
3 |β − α|+ 2

3 |γ − β|+ 2
3 |γ − α|

τ
=

2
3

η(Lα,β,γ(τ)).

Thus, for any τ > 0, we have

η(LPα,Pβ,Pγ(τ)) ≤
2
3
M(α, β, γ).

If β ∈ [0, 4), γ = 4, then

η(LPα,Pβ,Pγ(τ)) = η(L 2
3 α, 2

3 β,1(τ)) =
2
3 |β − α|+ | 2

3 β − 1|+ | 2
3 α − 1|

τ
.

If α ∈ [0, 3
2 ], β ∈ [0, 3

2 ], without a loss of generality, we assume α ≥ β; then,

η(LPα,Pβ,Pγ(τ)) =
2
3 (β − α) + (1 − 2

3 β) + (1 − 2
3 α)

τ
=

2 − 4
3 β

τ
,

η(Lγ,Pγ,Pγ(τ)) = η(L4,1,1(τ)) =
6
τ

.

Thus, for any τ > 0, we have

η(LPα,Pβ,Pγ(τ)) ≤
2
τ
≤ 4

τ
=

2
3

η(Lγ,Pγ,Pγ(τ)) ≤
2
3
M(α, β, γ).

If α ∈ [ 3
2 , 4], β ∈ [ 3

2 , 4], without a loss of generality, we assume α ≥ β; then,

η(LPα,Pβ,Pγ(t)) =
2
3 (β − α) + ( 2

3 β − 1) + ( 2
3 α − 1)

τ
=

4
3 α − 2

τ
.

Thus, for any τ > 0, we have

η(LPα,Pβ,Pγ(τ)) ≤
4
3 × 4 − 2

τ
=

10
3
τ

≤
12
3
τ

=
2
3

η(Lγ,Pγ,Pγ(τ)) ≤
2
3
M(α, β, γ).

If α ∈ [ 3
2 , 4], β ∈ [0, 3

2 ], then

η(LPα,Pβ,Pγ(τ)) =
2
3 (β − α) + (1 − 2

3 β) + ( 2
3 α − 1)

τ
=

4
3 (β − α)

τ
,

η(Lα,β,γ(τ)) = η(Lα,β,4(τ)) =
8 − 2β

τ
.

Thus, for any τ > 0, we have

η(LPα,Pβ,Pγ(τ)) ≤
4
3 (4 − β)

τ
=

2
3 (8 − 2β)

τ
=

2
3

η(Lα,β,γ(τ)) ≤
2
3
M(α, β, γ).
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If β = 4, γ = 4, then

η(LPα,Pβ,Pγ(τ)) = η(L 2
3 α,1,1(τ)) =

2| 2
3 α − 1|

τ
.

If α ∈ [0, 3
2 ), then

η(LPα,Pβ,Pγ(τ)) =
2 − 4

3 α

τ
,

Thus, for any τ > 0, we have

η(LPα,Pβ,Pγ(τ)) ≤
2
τ
≤ 4

τ
=

2
3
× 6

τ
=

2
3

η(Lβ,Pβ,Pβ(τ)) ≤
2
3

M(α, β, γ).

If α ∈ [ 3
2 , 4), then

η(LPα,Pβ,Pγ(τ)) =
4
3 α − 2

τ
.

Thus, for any τ > 0, we have

η(LPα,Pβ,Pγ(τ)) ≤
4
3 × 4 − 2

τ
=

10
3
τ

≤
12
3
τ

=
2
3
× 6

τ
=

2
3

η(Lγ,Pγ,Pγ(τ)) ≤
2
3
M(α, β, γ).

Case 2. Suppose α = 4.
If β ∈ [0, 4), γ ∈ [0, 4), then we can conclude that η(LPα,Pβ,Pγ(τ)) ≤ 2

3 M(α, β, γ)
from a similar argument in Case 1.

If β ∈ [0, 4), γ = 4, then we can prove that η(LPα,Pβ,Pγ(τ)) ≤ 2
3 M(α, β, γ), as in the

proof for Case 1.
If β = 4, γ = 4, then η(LPα,Pβ,Pγ(τ)) ≤ 2

3 M(α, β, γ) for any τ > 0 apparently.

(3) In fact, for α = 4, we see
∧

t>0 Lα,α,Pα(τ) =
∧

τ>0 L4,4,1(τ) =
∧

τ>0[e
6
τ ]−1 = 0, and∧

τ>0 Lα,Pα,Pα(τ) = 0. Hence, condition (b) of Theorem 1 is not fulfilled.
(4) For η(t) = ln 1

t , condition (a) of Theorem 3 is clearly fulfilled. In addition, γ = 0
such that ∧

τ>0
Lγ,γ,Pγ(τ) =

∧
τ>0

Lγ,Pγ,Pγ(τ) = 1 > 0,

and thus, P and η meet all the conditions of Theorem 3 and T has a unique FP . Indeed,
that is γ = 0.

Similarly, Corollary 1 (or Theorem 2.3 in [26]) can be written as follows.

Theorem 4. Let (X , M, ∗) be a complete FMS and let P : X → X be FH-QC relating to
η ∈ H such that α ≥ β ∗γ ⇒ η(α) ≤ η(β)+ η(γ), for all α, β, γ ∈ M(Tiz, Tjz, t) : z ∈ X , τ > 0,
i, j ∈ N; then, T has a unique FP in X if and only if γ ∈ X such that

∧
τ>0 M(γ, Pγ, τ) > 0.

4. Application to the Existence of Solutions to Integral Equations

In this section, by using Theorem 2, we discuss the existence of solutions to the
following integral equations:

x(t) = µ
∫ b

a
G(t, v) f (v, x(v))dv, (5)

where G : [a, b]× [a, b] → R, f : [a, b]×R → R are continuous functions.
Let X = C[a, b] be a set of all real continuous functions on [a, b], and ∗ = ∗p. Define

L : X ×X ×X → (0, 1] by

Lα,β,γ(τ) = e−
max{∥α−β∥,∥β−γ∥,∥α−γ∥}

τ for all α, β, γ ∈ X , τ > 0,
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where ∥α− β∥ = max
a≤t≤b

|α(t)− β(t)|, ∥β−γ∥ = max
a≤t≤b

|β(t)−γ(t)|, ∥α−γ∥ = max
a≤t≤b

|α(t)−

γ(t)|. Apparently, (X ,L, ∗) is a complete T -FMS .
Consider the self-mapping T : X → X defined by

Tx(t) = µ
∫ b

a
G(t, v) f (v, x(v))dv

Clearly, x(t) is a solution of Equation (5) if and only if x is a fixed point of T. Suppose the
following conditions are satisfied:

(1) |µ| < 1;
(2) max

a≤t≤b

∫ b
a G(t, v)dv ≤ 1;

(3) max
a≤t≤b

| f (t, α)− f (t, β)| ≤ ∥α − β∥.

Hence, we have

|Tα − Tβ| =|µ
∫ b

a
G(t, v)[ f (v, α(v))− f (v, β(v))dv]|

≤|µ|
∫ b

a
G(t, v)| f (v, α(v))− f (v, β(v)|dv

≤|µ|
∫ b

a
G(t, v)dv · ∥α − β∥

≤|µ|∥α − β∥,

and then, we obtain ∥Tα − Tβ∥ ≤ |µ|∥α − β∥ for all α and β ∈ X . Similarly, ∥Tβ − Tγ∥ ≤
|µ|∥β − γ∥ for all β and γ ∈ X and ∥Tα − Tγ∥ ≤ |µ|∥α − γ∥ for all α, β, γ ∈ X . Therefore,

max{∥Tα − Tβ∥, ∥Tβ − Tγ∥, ∥Tα − Tγ∥} ≤ |µ|max{∥α − β∥, ∥β − γ∥, ∥α − γ∥},

for all α, β, γ ∈ X . We show that LTα,Tβ,Tγ(τ) ≥ |µ|Lα,β,γ(τ) for all α, β, γ ∈ X .
For η = −lnt, η(LTα,Tβ,Tγ(τ)) ≤ |µ|η(Lα,β,γ(τ)) ≤ |µ|M(α, β, γ), for all α, β, γ ∈ X ,

we know that T is FH-QC relating to η ∈ H, and condition (a) of Theorem 2 is satisfied; if
condition (b) of Theorem 2 is also satisfied, then we can conclude that T has a unique fixed
point in X using Theorem 2, and then Equation (5) has a unique solution, x(t) ∈ X .

5. Conclusions

In this paper, we present the notion of FH-QC in a T -FMS and derive FPT s for
this contraction. Satisfyingly, we can obtain Amini-Harandi and Mihet’s results using
our theorem in the setting of a GV-FMS . We propose the conditional equivalence of the
theorem and give another form of the theorem which is more widely used. Moreover, we
construct interesting examples to illustrate our results. As an application, we show the
existence of solutions to integral equations in a T -FMS .

In addition, because we took only one type of function η, the examples we constructed
in this paper lack variety. Whether richer examples exist is worthy of further investigation.

As future research direction, we point out the following:
1. To study the relationship between the fixed point theorems in T -FMSs and

GV-FMSs and whether all fixed point results in GV-FMSs can be derived from the
corresponding results in T -FMSs.

2. To study more applications of fixed point theorems in T -FMSs, especially numeri-
cal examples with the help of real-life applications.
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7. Hussain, A.; Ullah, K.; Pamucar, D.; Haleemzai, I.; Tatić, D. Assessment of solar panel using multiattribute decision-making

approach based on intuitionistic fuzzy Aczel Alsina Heronian Mean operator. Int. J. Intell. Syst. 2023, 2023, 6268613. [CrossRef]
8. Kramosil, I.; Michalek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 15, 326–334.
9. Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [CrossRef]
10. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [CrossRef]
11. Saleh, O.; Al-Saadi, H.S. Some notes on metric and fuzzy metric spaces. Int. J. Adv. Appl. Sci. 2017, 4, 41–43.
12. Zheng, D.; Wang, P. Meir-Keeler theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2019, 370, 120–128. [CrossRef]
13. Azam, A.; Arshad, M.; Beg, I. Fixed points of fuzzy contractive and fuzzy locally contractive maps. Chaos Solitons Fractals 2009, 42,

2836–2841. [CrossRef]
14. Dinarvand, M. Some fixed point results for admissible Geraghty contraction type mappings in fuzzy metric spaces. Iran. J. Fuzzy

Syst. 2017, 14, 161–177.
15. Mihet, D. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2008, 159, 739–744. [CrossRef]
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