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1. Introduction

A family J of meromorphic functions in a subset S ⊂ C is considered normal on S if
every sequence {rn} ⊂ J has a subsequence

{
rnj

}
that converges locally and uniformly

with respect to the spherical metric to r on S, where the limit function r may also be equal
to ∞. (see [1,2])

It is well known that there is a strong connection between normal families and normal
functions, leading us to naturally anticipate the criteria for normal functions aligning
with established criteria for normal families. Developed by the French mathematician
Paul Montel [3], the concept of normal families of meromorphic functions has played a
significant role in complex analysis since its inception in 1912. Montel’s theorem establishes
that a family of meromorphic functions J is considered normal on a domain S if there are
three distinct points, c, d, e, in the extended complex plane such that each r(z) ∈ J omits
c, d, e on S. Schiff [4] documented this result as the Fundamental Normality Test (FNT).
Subsequently, Carathéodory [5] proved that the omitted values do not need to be fixed
and they may depend on the particular function in the family as long as these omitted
values are uniformly separated (see [6]). In 2021, Beardon and Minda [7] revealed that
Montel had presented an expansion of his three-excluded-values theorem, providing a
necessary and sufficient condition for a family of meromorphic functions to be normal:
a family of meromorphic functions J is considered normal on a domain S if there are
four ε-separated values in the extended complex plane such that their preimages are equi-
separated on compacta. However, this finding was not extensively documented, and there
was a minor flaw in Montel’s proof that Beardon and Minda addressed (see [7]). The
corresponding result for normal functions was presented by Lehto and Virtanen [8], stating
that a function meromorphic r on S is deemed normal if there are three distinct points,
c, d, e, in the extended complex plane such that r(z) ̸= c, d, e on S.

We use the notation r = φ ⇒ l = ϕ to indicate that l(z) = ϕ whenever r(z) = φ. If we
write r = φ ⇔ l = ϕ, it means that l(z) = ϕ if and only if r(z) = φ. We can characterize
the sharing of φ on S between functions r and l by stating that they are equivalent when
the following relation holds: r = φ ⇔ l = φ. When both r − φ for function r and l − φ for
function l have identical zeros with the same multiplicity, we express this as saying that
the value of φ is shared by functions r and l counting multiplicities (CMs), as denoted by
r = φ ⇌ l = φ.

The concept of normality with respect to shared values was first studied by Schwick [9],
who demonstrated the following result:
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Theorem 1. If every meromorphic function r in a family J on a domain S shares three separate
complex numbers, c, d, and e, that are finite with its derivative r′, then we can conclude that J
constitutes a normal family on S.

In this conclusion, the sharing relationship requires three times. Is it possible to
reduce the sharing relationship to two times? The above-mentioned result has been further
improved in [10], which yielded the following results:

Theorem 2. Let J be a collection of meromorphic functions on a domain S and suppose that the
complex numbers a, b, c, and d are mutually distinct, subject to the conditions that a ̸= c and b ̸= d.
If each function r in J satisfies the conditions r(z) = a ⇔ r′(z) = b and r(z) = c ⇔ r′(z) = d,
then we can conclude that J forms a normal family on S.

This result mainly expresses the fact that r(z) and r′(z) share the complex numbers; at
this point, the most obvious idea is to generalize the first derivative in the conclusion to the
k derivative.

In 2001, Fang [11] demonstrated that for a nonzero complex number d representing
a finite quantity, J is a set of meromorphic functions defined on a domain S ⊂ C, with
roots all having at least multiplicity k + 2, where k is a non-negative integer. If for every
r(z), l(z) ∈ J , such that r(z) = 0 ⇔ l(z) = 0 and r(k)(z) = d ⇔ l(k)(z) = d, then it follows
that J forms a normal family on S.

If we desire to diminish the multiplicity of zeros in the aforementioned conclusion
to k + 1, it suffices to append the stipulation that all functions have multiple poles. In
2001, Zalcman [11] considered the case of sharing one value, changed the form of the
function on the left, and proved that for the two finite complex numbers c ̸= 0, d, J is a
set of meromorphic functions defined on a domain S ⊂ C, with roots all having at least
multiplicity k, where k is a non-negative integer. If for every r(z) ∈ J , r(z)r(k)(z) = c ⇔
r(k)(z) = d, then J forms a normal family on S. In 2002, Fang and Zalcman [12] proved
that for the two finite distinct complex numbers c ̸= 0, d ̸= 0, J is a set of meromorphic
functions defined on the domain S ⊂ C, with roots all having at least k + 1 multiplicity,
where k is a non-negative integer. If for every r(z) ∈ J , r(z) = c ⇔ r(k)(z) = d, then J
forms a normal family on S.

In 2008, Zhang [13] considered the form of function rn(z)r′(z) and proved that if J is
a set of meromorphic functions defined on the domain S ⊂ C, n(⩾ 2) is a positive integer.
Suppose that for two the functions r(z), l(z) ∈ J , rn(z)r′(z) and ln(z)l′(z) share a nonzero
value d, then J forms a normal family on S.

In 2015, Meng [14] conducted an examination of the scenario involving rnr(k)(n ≥ 2)
sharing a function that is holomorphic and proved that, assuming the existence of the three
integers n(≥ 2), k(≥ 1), and m(≥ 0), we examine a function h(z)( ̸≡ 0) that is analytic on
domain S. This function ensures that all its zeros have a maximum multiplicity of m and are
all divisible by n + 1. Additionally, let J represent a collection of meromorphic functions
on domain S, where each function r ∈ J possesses zeros with minimum multiplicity of
k + m and possesses poles with minimum multiplicity of m + 1. If any pair of functions
r, l ∈ J satisfy the condition that rn(z)r(k)(z) and ln(z)l(k)(z) share the same value as
h(z)(IM) on domain S, it can be concluded that J forms a normal family on S.

In 2019, Deng [15] replaced the requirement that "all its zeros have a maximum
multiplicity of m and are divisible by n+ 1 and all poles of f possesses poles with minimum
multiplicity of m + 1", resulting in the derivation of a new theorem, and proved that,
given the three integers n(≥ 2), k(≥ 1), and m(≥ 0), h(z)( ̸≡ 0) denotes a function that is
analytic on domain S with zeros of multiplicity at most m. Additionally, let J represent a
collection of meromorphic functions on domain S, where each function r ∈ J has zeros
with minimum multiplicity of k + m. If every pair of functions r and l from set J satisfy
the condition that they share h(z) (IM) on domain S under the operations rn(z)r(k)(z) and
ln(z)l(k)(z), then J forms a normal family on S.
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The starting point of the above conclusion is to change the form of the function, and
there are many examples of this (see [16–18]).

In 2007, Liu [19] considered the case of sharing a set and established the following theorem:

Theorem 3. Let J be a collection of meromorphic functions on a domain S ⊂ C and a, b, c be
three distinct finite complex numbers. If for every function r(z) ∈ J , both the function r(z) and
r′(z) share the set D = {a, b, c}, then it follows that J forms a normal family on S.

In 2016, Xu [20] demonstrated that for the two sets E1 = {a1, a2} and E2 = {b1, b2}
in C with the conditions of a1a2 ̸= 0 and b1

b2
/∈ N− ∪ 1

/
N−, N− denotes the set of all

negative integers, and 1
/

N− stands for the set
{

1
k , k ∈ N−

}
. Furthermore, J is a collection

of meromorphic functions on a domain S ⊂ C, and for every r(z) ∈ J on S satisfies
|r′(z)| ⩽ A whenever r(z) = 0. If r(z) ∈ E1 ⇔ r′(z) ∈ E2 on S, then it follows that J
forms a normal family on S. In 2020, Yuan [21] investigated the expression

(
r(k)(z)

)p

and demonstrated that if J is a set of meromorphic functions on the domain S ⊂ C,
E1 = {a1, a2, a3}, E2 = {b1, b2, b3}, with both E1 and E2 being made up of finite complex
numbers, and given that k is greater than or equal to 2 and p is positive integers, c represents
a finite complex number. Assuming that for the functions r(z) ∈ J , (i) r(z) = E1 ⇔(

r(k)(z)
)p

= E2, (ii) both zeros and poles of r(z)− c have multiplicities of at least k, then it
follows that J forms a normal family on S.

In the above background description, most of the conclusions are about one family of
meromorphic functions sharing a value.

In 2013, Liu [22] investigated the transitivity of normality between two sets of mero-
morphic functions under specific assumptions regarding shared values, culminating in the
subsequent established findings.

Theorem 4. Suppose J and L are two collections of meromorphic functions defined on the domain
S ⊂ C and the complex numbers a, b, c, and d are mutually distinct. Furthermore, suppose that L
forms a normal family, if for every r(z) ∈ J , there is l(z) ∈ L, such that r(z) and l(z) share the
values a, b, c, d, then it follows that J forms a normal family on S.

Theorem 5. Suppose J and L are two collections of holomorphic functions defined on the domain
S ⊂ C, the roots of which all possess a multiplicity of no less than k + 1, where the value of k
is a non-negative whole number. d( ̸= 0) represents a complex number that is finite in nature.
Furthermore, supposing that L forms a normal family for any sequence {ln} in L, such that ln ⇒ l,
it holds that l ̸≡ ∞ and l(k) ̸≡ d on S. If there is l ∈ L for every r ∈ J such that

a The equation holds true: r(z) = 0 ⇔ l(z) = 0;
b The equation holds true: r(k)(z) = d ⇔ l(k)(z) = d.

then it follows that J forms a normal family on S.

Theorem 6. Suppose J and L are two collections of meromorphic functions defined on a domain
S ⊂ C, the roots of which all possess a multiplicity of no less than k + 1, where the value of k
is a non-negative whole number. d( ̸= 0) represents a complex number that is finite in nature.
Furthermore, supposing that L forms a normal family for any sequence {ln} in L, such that ln ⇒ l,
it holds that l ̸≡ ∞ and l(k) ̸≡ d on S. If there is l ∈ L for every r ∈ J such that

a The equation holds true: r(z) = 0 ⇔ l(z) = 0;
b The equation holds true: r(z) = ∞ ⇔ l(z) = ∞;
c The equation holds true: r(k)(z) = d ⇌ l(k)(z) = d (CM).

then it follows that J forms a normal family on S.
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In 2021, Xu [23] suggested replacing the values a, b, c, d with the functions a(z), b(z), c(z),
d(z) in Theorem 4. Subsequently, Xu established the following theorem, which improved and
generalized Theorem 4.

Theorem 7. Suppose J and L are two collections of meromorphic functions defined on the
domain S ⊂ C and let a1(z), a2(z), a3(z), a4(z) be four distinct holomorphic functions such that
#{a1(z), a2(z), a3(z), a4(z)} ⩾ 3 for z ∈ S, where #E denotes the number of distinct complex
number of the set E. Furthermore, supposing that L forms a normal family, if for every r(z) ∈ J ,
there is l(z) ∈ L such that r(z) = ai(z) ⇒ l(z) = ai(z)(i = 1, 2, 3, 4), then it follows that J
forms a normal family on S.

According to the above research ideas, an inherent question arises: does Theorem 5
remain valid when the constant b is substituted with h(z)? This paper introduces our
discoveries, which enhance and extend the scope of Theorem 5.

Theorem 8. Suppose J and L are two collections of holomorphic functions defined on a domain
S ⊂ C, the roots of which all possess a multiplicity of no less than k + 1, where the value of k is
a non-negative whole number. t(z)( ̸≡ 0) represents a function that is holomorphic. Furthermore,
Suppose that L forms a normal family, for any sequence {ln} in L, such that ln ⇒ l, it holds that
l ̸≡ ∞ , l(k)(z) ̸≡ t(z) on S. If there exists l ∈ L for every r ∈ J such that

a the equation holds true: r(z) = 0 ⇔ l(z) = 0;
b the equation holds true: r(k)(z) = t(z) ⇔ l(k)(z) = t(z).

then it follows that J forms a normal family on S.

This considered, we have demonstrated the following properties of meromorphic
functions.

Theorem 9. Suppose J and L are two collections of meromorphic functions defined on the domain
S ⊂ C, the roots of which all possess a multiplicity of no less than k + 1, where the value of k is
a non-negative whole number. t(z)( ̸≡ 0) represents a function that is holomorphic. Furthermore,
supposing that L forms a normal family, for any sequence {ln} in L, such that ln ⇒ l, it holds that
l ̸≡ ∞ , l(k)(z) ̸≡ t(z) on S. If there exists l ∈ L for every r ∈ J such that

a the equation holds true: r(z) = 0 ⇔ l(z) = 0;
b the equation holds true: r(z) = ∞ ⇔ l(z) = ∞;
c the equation holds true: r(k)(z) = t(z) ⇌ l(k)(z) = t(z)(CM).

then it follows that J forms a normal family on S.

In the forthcoming section, we will present three examples to demonstrate the indis-
pensability of all the conditions in Theorem 9.

Example 1. Assume that t(z) = 1 − z and k is a non-negative whole number. Consider
two families

J =

{
rn =

nzk+1

(k + 1)!

∣∣∣∣∣ n ∈ N
}

and L =

 ln =

(
1 − 2z + 1

n+1

)(k+1)

(−2)k(k + 1)!

∣∣∣∣∣∣∣ n ∈ N


on the unit disk ∆. Obviously, the functions rn and ln are holomorphic on ∆, which means the
condition (b) of Theorem 9 holds for the families J and L. Since

rn
(k)(z) = nz, ln(k)(z) = 1 − 2z +

1
n + 1

.

It is apparent that rn
(k)(z) = t(z) ⇌ ln(k)(z) = t(z). Thus, the condition (c) of Theorem 9 also

holds for the families J and L.
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It is readily apparent that ln(z) ⇒ (1−2z)k+1

(−2)k(k+1)!
, thereby indicating the normality of the family

L on ∆. However, it is straightforward to verify that the family J does not exhibit normality at the
point 0. Hence, this example vividly illustrates the indispensable role of condition (a) in Theorem 9.

Example 2. Assume that t(z) = z, k ∈ N. Consider two families J =
{

rn(z) = 1
nz

∣∣∣ n ∈ N
}

and

L =

{
ln(z) =

z2k+2

(2k + 2) · · · (k + 3)
+

zk+1

(k + 1)!
− (−1)kzk

n
+ (k + 3)! + 2

∣∣∣∣∣ n ∈ N
}

on the unit disk ∆. It follows that |ln(z)| > 1 for z ∈ ∆ and n ∈ N, so rn and rn omit 0 on ∆. Thus,
condition (a) of Theorem 9 holds for the families J and L. Since

rn
(k)(z) =

(−1)kk!
nzk+1 , ln(k)(z) = zk+2 + z − (−1)kk!

n
,

then rn
(k)(z) = z ⇌ ln(k)(z) = z. Then, the condition (c) of Theorem 9 also holds for the families

J and L.
Meanwhile, it is readily evident that

ln(z) ⇒
z2k+2

(2k + 2) · · · (k + 3)
+

zk+1

(k + 1)!
+ (k + 3)! + 2 ̸≡ ∞,

which means that L is normal on ∆. However, it is evident the family J does not exhibit normality at
point 0. Hence, this example vividly illustrates the indispensable role of condition (b) in Theorem 9.

Chang [24] provided an example demonstrating the necessity of condition (c) in
Theorem 9. In the interest of completeness, we present Chang’s example here.

Example 3 ([24]). Let J = {rn = tan(nz)} and let zn,1, zn,1, · · · , zn,kn be the zeros of rn in the
unit disk ∆. It is clear that rn(z) omit the values i, and −i on ∆. Define L = {ln}, where

ln =
1
2

kn

∏
i=1

z − zn,i

1 − zn,iz
.

It is straightforward to verify that |ln(z)| ≤ 1/2 for z ∈ ∆. So, the function ln(z) fails to take
on the values of i and −i on the domain ∆. Obviously, one has rn(z) = 0 ⇔ ln(z) = 0. But L
conforms to normality on ∆, and J fails to satisfy the conditions of normality on ∆. Hence, this
example vividly illustrates the indispensable role of condition (c) in Theorem 9.

2. Notation and Preliminary Lemmas

The symbol n(r, f ) denotes the count of poles of f (z) within the domain ∆(0, r) (taking
into account their multiplicity), while n

(
r, 1

f

)
represents the count of roots of f (z) in the

domain ∆(0, r) (also considering their multiplicity). We say that fn
χ⇒ f in the domain D if

the sequence fn converges to f uniformly on compact subsets of D in relation to the metric
of a sphere. Furthermore, we state that fn ⇒ f in D if the sequence fn converges to f under
the Euclidean metric.

Lemma 1 ([25]). For the positive integer k, Q(z)( ̸≡ 0) is a polynomial. If r(z) exhibits meromor-
phic, that is, transcendental, traits and has roots of at least k + 1 multiplicity, then the function
r(k)(z)− Q(z) possesses an infinite number of zeros.

Lemma 2 ([26]). For the positive integer k, Q(z)( ̸≡ 0) represents a rational function. If r(z)
exhibits meromorphic, that is, transcendental, traits and has roots of at least k + 1 multiplicity,
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except possibly a finite number, then the expression r(k)(z)− Q(z) possesses an infinite number
of zeros.

Lemma 3 ([27]). For the positive integer k, r(z) exhibits nonconstant meromorphic, that is,
transcendental, traits and has roots of at least k + 1 multiplicity. If the value of r(k)(z) is not equal
to d on C, where d ∈ C, and d is not equal to zero, then

r(z) =
d
k!
(z − e)k+1

z − f
,

for any pair of distinct complex numbers e, f ∈ C.

Lemma 4 ([27]). Assume r(z) exhibits nonconstant meromorphic that is transcendental of finite
order in C with multiple zeros. If r′(z) ̸= 1 for all z, this implies the existence of distinct complex

numbers c and d such that the expression of r(z) can be written as r(z) = (z−c)2

z−d .

Lemma 5 ([27]). Suppose T is a rational function that is not constant with the property that its
derivative T′ ̸= 0 in C. Then, it must be the case that either T(z) = cz + d, or T(z) = c

(z+e)n + d,
where n ∈ N, c (not equal to 0), d, and e are complex numbers.

Lemma 6 ([27]). Suppose J is a collection of holomorphic functions defined on S ⊂ C, each with
all their zeros possessing at least multiplicity k + 1. Supposing that for all r ∈ J , the function r(k)

is not equal to 1, then J exhibits normal on the domain S.

Lemma 7 ([28]). Let us consider a set of meromorphic functions, denoted as J , defined in the
domain S. All these functions have zeros with a minimum multiplicity of k. Now, suppose we have
a real number, denoted as α, satisfying the condition −1 < α < k. If the collection of functions, J ,
does not exhibit normal at some point a0 in the domain S, then we can find

a points an, approaching a0;
b functions rn ∈ J ;
c positive numbers ρn, approaching zero.

such that for each n, ρ−α
n rn(an + ρnζ) = rn(ζ)

χ⇒ r(ζ) on C. Here, r represents a nonconstant
function that is meromorphic, as defined on complex plane C.

Lemma 8 ([23]). For any non-negative integer value k, it holds true that(
p

∏
i=1

(z − zi)

−αi
)(k)

= ∑
a1+···+ap=τ+k
αi≤ai≤αi+k(1≤i≤p)

Ak

∏
p
i=1 (z − zi)

ai
,

where the variables αi and ai (where 1 ≤ i ≤ s) are constrained to be positive integers, while the
quantities zi(1 ≤ i ≤ p) are defined as complex numbers. Furthermore, the symbol τ is defined as
the summation of all αi from 1 to p, and Ak is a constant that is not zero and varies depending on αi
(for 1 ≤ i ≤ p) and k.

3. Proof of Theorem 8

We need to show that J is normal at the point z0, where z0 is in the domain S. Our
demonstration will be divided into two separate cases.

Case 1 t(z0) ̸= 0.
We may assume t(z0) = 1. The conclusion can be drawn from Theorem 5 that J

exhibits normal at z0.
Case 2 t(z0) = 0.
There is a positive real number δ such that the set ∆(0, δ) = {z : |z − z0| ≤ δ} is

contained within S, where t(z) does not have any roots but z0 within the closed disk
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∆(0, δ). According to Case 1, it can be inferred that J exhibits normality on ∆′(z0, δ) =
{z : 0 < |z − z0| < δ}.

Consider an arbitrary sequence {rn(z)} in the set J . Due to the normality of J on
∆′(z0, δ), there is a subsequence (denoted by rn(z) for convenience) that locally uniformly
converges to a limit function r(z) on ∆′(z0, δ) in relation to the metric of a sphere. We will
now move on to examining the evidence within two specific scenarios.

Subcase 2.1 r ̸≡ 0
Subcase 2.1.1 l(z0) ̸= 0.
Subsequently, a real number δ′ (δ′ < δ) exists such that ln(z) ̸= 0 in ∆(z0, δ′) for a

value of n that is sufficiently large. According to the requirements specified in Theorem
8, r(z) = 0 ⇔ l(z) = 0, we have rn ̸= 0 in ∆(z0, δ′). As per the theorem established by
Hurwitz, we can deduce that r ̸= 0 in ∆(z0, δ′). Thus, it follows that

min
0≤θ≤2π

∣∣∣∣r(z0 +
δ′

2
eiθ
)∣∣∣∣ = M > 0,

where M > 0 is a constant. Therefore, for sufficiently large n, we find

min
0≤θ≤2π

∣∣∣∣rn

(
z0 +

δ′

2
eiθ
)∣∣∣∣ > M

2
> 0.

Note that rn ̸= 0 on ∆(z0, δ′). Thus, the function 1
rn

is holomorphic function on
∆(z0, δ′), and

max
0≤θ≤2π

1∣∣∣rn

(
z0 +

δ′
2 eiθ

)∣∣∣ < M
2

.

In accordance with the principle of maximum modulus, it follows that

max
|z−z0|≤ δ′

2

1
|rn(z)|

<
2
M

,

then
min

|z−z0|≤ δ′
2

|rn(z)| >
M
2

,

and based on the above process, it can be inferred that the sequence {rn} exhibits normality
at the point z0. Consequently, we can confirm that J also demonstrates normality at z0
as intended.

Subcase 2.1.2 l(z0) = 0.
If l is identically zero, then l(k)(z0) = 0. If l is not identically zero, noting that all the

roots of the function ln(z) exhibit a multiplicity of no less than k + 1, and that the sequence
of functions {ln(z)} exhibits convergence to l(z) on the closed disk ∆(z0, δ), then it can be
deduced that l(k)(z0) = 0.

Hence, irrespective of the situation, we have l(k)(z0) = 0. Let us suppose that J
fails to satisfy the condition of normality at z0. As per Zalcman’s lemma, there are points
zm tending to z0, a sequence of positive numbers ρm → 0+, in turn a subset of functions
rnm(z) ⊆ rn(z), such that

Tm(ζ) =
rnm(zm + ρmζ)

ρk
m

⇒ T(ζ)

on C, T(ζ) is a function that is not constant and is holomorphic everywhere. All its zeros
have at least a multiplicity of k + 1.

We assert that T(k)(ζ) is not equal to 1, for ζ belongs to the set of complex numbers.
Noting that the roots of T(ζ) possess at least a multiplicity of k + 1, it can be deduced

that T(k)(ζ) ̸≡ 1.
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Let ζ0 ∈ C with T(k)(ζ0) = 1. According to Hurwitz’ theorem, there are complex
numbers ζm,0 ∈ C, such that T(k)

m (ζm,0) = 1, that is, r(k)nm (zm + ρmζm,0) = 1. According to

what Theorem 8 assumes, r(k)(z) = t(z) ⇔ l(k)(z) = t(z), we have l(k)nm (zm + ρmζm,0) = 1.
Let m → ∞, so we find l(k)(z0) = 1, which is in contrast to the condition l(k)(z0) = 0.

Therefore, we can deduce that T(k)(ζ) ̸= 1. By virtue of lemma 1, it follows that T(ζ)
is a rational function. Considering the holomorphic property of T(ζ), it can be inferred that
T(ζ) can be expressed as a polynomial. Assuming that the degree of T(ζ) is denoted by s,

T(ζ) = a0 + a1ζ + · · ·+ asζs, (as ̸= 0),

if s ≥ k, then

T(k)(ζ) = ass(s − 1) · · · (s − k + 1)ζs−k,

which contradicts T(k)(ζ) ̸= 1. Then, s < k, which indicates that the roots of the function
T(ζ) must possess a minimum multiplicity of k + 1. Therefore, the sequence {rn(z)}
exhibits normality at point z0.

Subcase 2.2 r ≡ 0
In this case, {rn(z)} converges to 0 in ∆′(z0, δ′). Since {rn(z)} is holomorphic in

∆
(

z0, δ′
2

)
, {rn(z)} thus converges to 0 in ∆

(
z0, δ′

2

)
. Hence, {rn(z)} is normal at z0.

4. Proof of Theorem 9

We simply need to demonstrate the normality of J at the point z0, where z0 in the
domain S. We will divide our demonstration into two separate situations.

Case 1 t(z0) ̸= 0.
We may assume t(z0) = 1. The conclusion can be drawn from Theorem 6 that J

exhibits normality at z0.
Case 2 t(z0) = 0.
There exists a positive real number δ such that the set ∆(0, δ) = {z : |z − z0| ≤ δ} is

entirely contained within S, as t(z) has no roots other than z0 within the closed disk ∆(0, δ).
Based on the conditions in Case 1, it can be concluded that J demonstrates normality on
∆′(z0, δ) = {z : 0 < |z − z0| < δ}.

Consider an arbitrary sequence {rn(z)} in the set J . Due to the normality of J on
∆′(z0, δ), there is a subsequence (denoted by rn(z) for convenience) that locally uniformly
converges to a limit function r(z) on ∆′(z0, δ) in relation to the metric of a sphere. We will
now move on and examine the evidence within three specific scenarios.

Subcase 2.1 r ̸≡ 0 and r ̸≡ ∞.
Given the normality of L on S, it is reasonable to presume that the corresponding

sequence {ln(z)} satisfies the convergence property ln ⇒ l on the closed disk ∆(z0, δ).
Based on the premise of Theorem 9, it follows that l ̸≡ ∞ , l(k) ̸≡ t(z).

Subcase 2.1.1 l(z0) ̸= 0, ∞.
Subsequently, a real number δ′ (δ′ < δ) exists, such that ln(z) ̸= 0, ∞ in ∆(z0, δ′), for

a value of n that is sufficiently large. By virtue of the conditions (a) and (b) outlined in
Theorem 9, it follows that rn ̸= 0, ∞ in ∆(z0, δ′). As per the theorem established by Hurwitz,
we can deduce that r ̸= 0, ∞ in ∆(z0, δ′)\{z0}. Thus, it follows that

min
0≤θ≤2π

∣∣∣∣r(z0 +
δ′

2
eiθ
)∣∣∣∣ = M > 0,

where M > 0 is a constant. Consequently, for sufficiently large value of n, we obtain

min
0≤θ≤2π

∣∣∣∣rn

(
z0 +

δ′

2
eiθ
)∣∣∣∣ > M

2
> 0. (1)
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Note that rn ̸= 0 on ∆(z0, δ′). Thus, the function 1
rn

is holomorphic function on
∆(z0, δ′), and

max
0≤θ≤2π

1∣∣∣rn

(
z0 +

δ′
2 eiθ

)∣∣∣ < M
2

.

In accordance with the principle of maximum modulus, it follows that

max
|z−z0|≤ δ′

2

1
|rn(z)|

<
2
M

,

then
min

|z−z0|≤ δ′
2

|rn(z)| >
M
2

,

and based on the above process, it can be inferred that the sequence {rn} exhibits
normality at the point z0. Consequently, we can confirm that J also demonstrates normality
at z0 as intended.

Subcase 2.1.2 l(z0) = 0.
If l is identically zero, then l(k)(z0) = 0. If l is not identically zero, given that all the

roots of the function ln(z) exhibit a multiplicity of no less than k + 1, and that the sequence
of functions {ln(z)} exhibits convergence to l(z) on the closed disk ∆(z0, δ), then it can be
deduced that l(k)(z0) = 0.

Hence, irrespective of the situation, we have g(k)(z0) = 0. Let us suppose that J
fails to satisfy the condition of normality at z0. As per Zalcman’s lemma, there is point
zm tending to z0, a sequence of positive numbers ρm → 0+, and a subset of functions
rnm(z) ⊆ rn(z), such that

Tm(ζ) =
rnm(zm + ρmζ)

ρk
m

⇒ T(ζ)

on C, T(ζ) is a function that is not constant and is meromorphic everywhere. All its roots
have at least a multiplicity of k + 1.

We assert that T(k)(ζ) is not equal to 1, for ζ belongs to the set of complex numbers.
Noting that the roots of T(ζ) possess at least a multiplicity of k + 1, it can be deduced

that T(k)(ζ) ̸≡ 1.
Let ζ0 ∈ C with T(k)(ζ0) = 1. According to Hurwitz’ theorem, there are complex num-

bers ζm,0 ∈ C, ζm,0 → ζ0, such that T(k)
m (ζm,0) = 1, that is, r(k)nm (zm + ρmζm,0) = 1. By the

assumptions of Theorem 9, r(k)(z) = t(z) ⇔ l(k)(z) = t(z), we have l(k)nm (zm + ρmζm,0) = 1.
Let m → ∞, so we find l(k)(z0) = 1, which contradicts the idea that l(k)(z0) = 0.

Thus, we have T(k)(ζ) ̸= 1. According to the findings in Lemma 3, it can be
inferred that

T(ζ) =
1
k!
(ζ − ζ0)

k+1

ζ − ζ1
for some ζ0 ̸= ζ1.

As per the theorem established by Hurwitz, there is ζm,1 ∈ C, ζm,1 → ζ1, such that

Tm(ζm,1) =
rnm(zm + ρmζm,1)

ρk
m

= ∞,

that is, rnm(zm + ρmζm,1) = ∞. By the assumptions of Theorem 9, r(z) = ∞ ⇔ l(z) = ∞, so
we have

lnm(zm + ρmζm,1) = ∞.

Let m → ∞, so we find l(z0) = ∞, which contradicts l(z0) = 0.
Therefore, the sequence {rn(z)} exhibits normality at point z0.
Subcase 2.1.3 l(z0) = ∞.
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Drawing from the postulation presented in Theorem 9, it is evident that l ̸≡ ∞.
Subsequently, a real number δ′ (δ′ < δ) exists, such that ln(z) ̸= 0 in ∆(z0, δ′), for a value of
n that is sufficiently large. By virtue of the conditions (a) outlined in Theorem 9, it follows
that rn ̸= 0, ∞ in ∆(z0, δ′). As per the theorem established by Hurwitz, we can deduce that
r ̸= 0, ∞ in ∆(z0, δ′)\{z0}.

Thus, it follows that

min
0≤θ≤2π

∣∣∣∣r(z0 +
δ′

2
eiθ
)∣∣∣∣ = M > 0,

where M > 0 is a constant.
Note that rn ̸= 0 on ∆(z0, δ′). Thus, the functions 1

rn
is a holomorphic function on

∆(z0, δ′). By using the same arguments as in subcase 2.1.1, we can confirm that J also
demonstrates normality at z0 as intended.

Subcase 2.2 r ≡ ∞.
In this case, {rn} converges to ∞ in ∆′(z0, δ) and {rn} converges to ∞ in {z : |z − z0| = δ′};

then, for an arbitrarily large number and for every large enough n, it follows that

min
0≤θ≤2π

∣∣∣∣r(z0 +
δ′

2
eiθ
)∣∣∣∣ = M > 0.

Subcase 2.2.1 l(z0) ̸= 0, ∞.
We can choose a real number δ′ (δ′ < δ), such that ln(z) ̸= 0, ∞ in ∆(z0, δ′), for a value

of n that is sufficiently large. Moreover, due to the conditions (a) and (b) of Theorem 9, it
also follows that rn ̸= 0, ∞ in ∆(z0, δ′). Applying Hurwitz’s theorem, we conclude that
r ̸= 0, ∞ in ∆(z0, δ′)\{z0}.

By using the same arguments as in subcase 2.1.1, we can confirm that F also demon-
strates normality at z0 as intended.

Subcase 2.2.2 l(z0) = ∞.
Given that l is not identically equal to infinity, it is possible to identify a neighborhood

U(z0) ⊂ ∆(z0, δ′) of z0, such that l(z) ̸= 0 in U(z0). According to Hurwitz’ theorem, for
sufficiently large values of n, ln(z) also does not equal 0 in U(z0).

In accordance with the postulate outlined in Theorem 9, r(z) = 0 ⇔ l(z) = 0, it is
evident that rn(z) ̸= 0 in U(z0). Therefore, for a sufficiently large value of n, we have

min
0≤θ≤2π

∣∣∣∣rn

(
z0 +

δ′

2
eiθ
)∣∣∣∣ > M

2
> 0.

Note that rn ̸= 0 in a neighborhood V(z0) ⊂ U(z0) of z0. Thus, 1
rn

is holomorphic
on V(z0). By using the same arguments as in subcase 2.1.1, we can confirm that J also
demonstrates normality at z0 as intended.

Subcase 2.2.3 l(z0) = 0.
Subsequently, a real number δ′ (δ′ < δ) exists, such that ln(z) ̸= ∞ in ∆(z0, δ′), for a

value of n that is sufficiently large. By virtue of the condition (b) outlined in Theorem 9, it
follows that rn ̸= ∞ in ∆(z0, δ′).

If l(z) is identically zero, then l(k)(z0) = 0. Conversely, if l(z) is not identically zero,
according to the argument principle, each zero of l(z) must possess at least a multiplicity of
k + 1, since the sequence of functions {ln(z)} converges to l(z) on the closed disk ∆(z0, δ)
and each root of {ln(z)} possesses at least a multiplicity of k + 1. Consequently, it can be
inferred that l(k)(z0) = 0.

In either case, we have l(k)(z0) = 0 ̸= 1. As per the theorem established by Hurwitz,
for a sufficiently large value of n, it is guaranteed that l(k)n (z) ̸= 1 in ∆(z0, δ′). Consid-
ering condition (c) as stipulated in Theorem 9, r(k)(z) = t(z) ⇌ l(k)(z) = t(z), we can
establish that r(k)n (z) ̸= 1. Leveraging lemma 7, we can derive the conclusion that J also
demonstrates normality at z0 as intended.
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Subcase 2.3 r ≡ 0.
In this scenario, the sequence {rn} uniformly converges to 0 in relation to the metric

of a sphere within ∆′(z0, δ), and
{

rn
(k)
}

and
{

rn
(k+1)

}
also converge to 0.

Subcase 2.3.1 l(z0) = 0.
For a given real number δ′(δ′ < δ), it can be established that for sufficiently large n,

the functions ln(z) exhibit holomorphic properties within ∆(z0, δ′). Additionally, based on
conditions (a) and (b) of Theorem 9, it can be concluded that the functions rn(z) are also
holomorphic in ∆(z0, δ′). Considering that rn(z) tends towards zero in ∆′(z0, δ), it can be
inferred that sequence rn(z) tends towards zero in ∆(z0, δ′

2 ). Consequently, the normality
of rn(z) at z0 implies the desired normality of J at z0.

Subcase 2.3.2 l(z0) ̸= 0, ̸= ∞.
We can ascertain the existence of a real number δ′(δ′ < δ), such that the functions

ln(z) demonstrate holomorphic properties in ∆(z0, δ′), for a value of n that is sufficiently
large. By virtue of conditions (a) and (b) stipulated in Theorem 9, it is evident that the
functions rn(z) also exhibit holomorphic in ∆(z0, δ′). Employing analogous reasoning as
previously expounded, we are able to identify a subsequence rnj(z) converging towards

0 within ∆(z0, δ′
2 ). Consequently, it follows that rn(z) manifests normality at z0, thereby

establishing the normality of J at z0.
Subcase 2.3.3 l(z0) = ∞.
We know that l ̸≡ ∞, so we can ascertain the existence of a real number δ′(δ′ < δ), such

that the functions ln(z) ̸= 0 in ∆(z0, δ′), for a value of n that is sufficiently large. By virtue
of condition (a) stipulated in Theorem 9, it is evident that the function rn(z) ̸= 0 in ∆(z0, δ′).

Suppose that J does not satisfy the condition of normality at z0. As per Zalcman’s
lemma, there are points zm approaching z0, a sequence of positive numbers ρm → 0+, and
a subsequence of function rnm(z) ⊆ rn(z), such that

Tm(ζ) =
rnm(zm + ρmζ)

ρk
m

⇒ T(ζ)

on C, T(ζ) is a function that is not constant and is meromorphic everywhere. All its zeros
have at least a multiplicity of k + 1.

We assert that T(ζ) is not equal to 0, for ζ belongs to the set of complex numbers.
Let ζ0 ∈ C with T(ζ0) = 0, since T(ζ) ̸≡ 0, as per the theorem established by

Hurwitz, and there is ζm,0 ∈ C, ζm,0 → ζ0, such that Tm(ζm,0) =
rnm (zm+ρmζm,0)

ρk
m

= 0, that is,

rnm(zm + ρmζm,0) = 0. By the condition (a) of Theorem 9, we have lnm(zm + ρmζm,0) = 0,
so let m → ∞, then l(z0) = 0, which contradicts the idea that l(z0) = ∞.

By the principle of argument, we have

1
2πi

∫
|z−z0|=δ′

r(k+1)
n (z)− t′(z)

r(k)n (z)− t(z)
dz → 1

2πi

∫
|z−z0|=δ′

t′(z)
t(z)

dz.

This indicates

n

(
∆
(
z0, δ′

)
,

1

r(k)n (z)− t(z)

)
− n

(
∆
(
z0, δ′

)
, r(k)n (z)

)
= n

(
∆
(
z0, δ′

)
,

1
t(z)

)
. (2)

Obviously,

n
(

∆
(
z0, δ′

)
,

1
t(z)

)
≥ 1, (3)

and according to the requirements specified in Theorem 9, it can be inferred that

n

(
∆
(
z0, δ′

)
,

1

r(k)n (z)− t(z)

)
= n

(
∆
(
z0, δ′

)
,

1

l(k)n (z)− t(z)

)
. (4)
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Since l(z0) = ∞, it is reasonable to infer that

l(z) =
L(z)

(z − z0)
τ , z ∈ ∆′(z0, δ′

)
,

L(z0) ̸= 0, and L(z) is holomorphic on ∆(z0, δ′), and τ is a non-negative whole number.

Since ln
χ⇒ l, we have

ln(z) =
Ln(z)

(z − zn,1)
τn,1 · · · (z − zn,sn)

τn,sn
,

where Ln(z) is holomorphic on ∆(z0, δ′), Ln(zn,i) ̸= 0, τn,i ≥ 1 are integers, and

i = 1, 2, · · ·sn and
sn
∑

i=1
τn,i = τ. Then, we have

l(k)n (z) =
Hn(z)

sn
∏
i=1

(z − zn,i)
τn,i+k

,

where

Hn(z) =
k

∑
i=0

(
k
i

)
L(k−i)

n Qn,i(z)
sn

∏
j=1

(
z − zn,j

)k−i,

and

Qn,i(z) =

(
sn

∏
j=1

(
z − zn,j

)−τn,j

)(i) sn

∏
j=1

(
z − zn,j

)τn,j+i.

Hence, we find

l(k)n (z)− t(z) = Kn(z)
sn

∏
i=1

(z − zn,i)
−τn,i−k, (5)

where

Kn(z) = Hn(z)− t(z)
sn

∏
i=1

(z − zn,i)
τn,i+k.

By lemma 8, one has(
sn

∏
j=1

(
z − zn,j

)−τn,j

)(i)

= ∑
a1+···+asn=τ+i
τn,j≤aj≤τn,j+i(1≤j≤sn)

Ai
sn
∏
j=1

(
z − zn,j

)aj
;

therefore, we know that

Qn,i(z) = ∑
a1 + · · ·+ asn = τ + i

τn,j ≤ aj ≤ τn,j + i(1 ≤ j ≤ sn)

Ai

sn

∏
j=1

(
z − zn,j

)τn,j+i−aj , (6)

and

Qn,i(z) ⇒
(
(z − z0)

−τ
)(i)

(z − z0)
τ+sni

= (−1)iτ(τ + 1) · · · (τ + i − 1)(z − z0)
(sn−1)i.

Letting Di = (−1)iτ(τ + 1) · · · (τ + i − 1)
(

k
i

)
, we have
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Kn(z) ⇒
k
∑

i=0
DiL(k−i)(z)(z − z0)

(sn−1)i(z − z0)
snk−sni − h(z)(z − z0)

snk+τ

= (z − z0)
k(sn−1)

(
k
∑

i=0
DiL(k−i)(z)(z − z0)

k−i − h(z)(z − z0)
k+τ
)

.
(7)

Then,

k

∑
i=0

DiL(k−i)(z)(z − z0)
k−i − t(z)(z − z0)

k+τ |z=z0 = DkL(z0) ̸= 0,

which indicates that Tn(z) possesses a maximum of k(sn − 1) distinct roots in the domain
∆(z0, δ′). By utilizing Equations (5) and (7), we deduce

n

(
∆
(
z0, δ′

)
,

1

l(k)n (z)− t(z)

)
= (sn − 1)k, (8)

which implies that l(k)n (z) − t(z) possesses a finite number of roots in ∆(z0, δ′). Conse-
quently, the function r(k)n (z) − t(z) also exhibits a limited number of roots in ∆(z0, δ′),
implying that the function T(k)(z)− t(z) has a limited number of roots across the entire
complex plane. According to Lemma 2, the function T(ζ) can be represented as a function
that is rational. Note that T(ζ) ̸= 0, so we can express it as T(ζ) = 1

M(ζ)
, where M(ζ) is

a polynomial that is not constant. Hence, for every zero of M(ζ), by the conditions of
Theorem 9, the sequence rn has sn distinct poles zn,i with at least a multiplicity of 1 in the
domain ∆(z0, δ′). Therefore,

n
(

∆
(
z0, δ′

)
, r(k)n (z)

)
≥ snk. (9)

Accordingly, we procure

(sn − 1)k = n

(
∆
(
z0, δ′

)
,

1

l(k)n (z)− t(z)

)
(since(8))

= n

(
∆
(
z0, δ′

)
,

1

r(k)n (z)− t(z)

)
(since(4))

= n
(

∆
(
z0, δ′

)
, r(k)n (z)

)
+ n

(
∆
(
z0, δ′

)
,

1
t(z)

)
(since(2))

≥ snk + 1, (since(3)and(9))

a contradiction. Consequently, F demonstrates normality at z0.

5. Conclusions

Combining the normal family of meromorphic functions with shared values or shared
functions constitutes a pivotal focus within the realm of meromorphic function theory.
Currently, two primary avenues of research prevail in this domain: one involves alter-
ing the structure of meromorphic functions, while the other pertains to modifying the
configuration of sharing functions. For instance, if r(k)(z) = d ⇔ l(k)(z) = d, we may
explore modifying the function representation. One approach is to substitute r(k)(z) with
r′(z)− cr(k)(z)(c( ̸= 0) is a finite complex number) or a differential polynomial. Another
possibility is to consider altering the form of the right-hand-side value by replacing the
constant d with a polynomial, holomorphic function or meromorphic function.

In this paper, we have replaced the constant d with holomorphic functions; however,
our aim is to extend this to meromorphic functions. We are currently seeking an appropriate
method for doing so.
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In 2023, Arpita Kundu and Abhijit Banerjee [29] investigated the uniqueness problem
of Selberg class L-functions; in particular, they focused on a class of arbitrary meromorphic
functions. Similarly, if we replace r(z) in Theorem 9 with the L function, does the conclusion
hold? In 2024, Sayantan Maity [30] demonstrated that if r(z) and l(z) are two transcen-
dental or admissible meromorphic functions in Ω, where ai ∈ E(r) ∩ E(l), i = 1, 2, · · ·, 5
represent five distinct small functions and k is a positive integer or +∞. Assuming that
D̃Ω(ai, k; r(z)) = D̃Ω(ai, k; l(z)) for i = 1, 2, · · ·, 5 and k ⩾ 14, then r(z) ≡ l(z). This article
involves sharing small functions, which provides us with a research direction. If we replace
a1(z), a2(z), a3(z), a4(z) in Theorem 7 with small functions, is the conclusion also valid?
We can even consider the case where L-functions share small functions(more examples,
see [31,32]). All these provide a good reference for our follow-up research.
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