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1. Introduction

The pathway model was first introduced for the real rectangular matrix-variate case [1],
then extended to cover the complex rectangular matrix-variate case in [2]. If we consider a
real scalar (1 × 1 matrix) variable, then the model in [1] reduces to the following model:

g1(x) = C1|x − µ|γ[1 − b(1 − α)|x − µ|δ]
ρ

1−α , α < 1 (1)

for b > 0, α < 1, γ > −1, δ > 0, ρ > 0, 1 − b(1 − α)|x − µ|δ > 0, and zero elsewhere, where
µ is a location parameter and C1 is the normalizing constant, g1 is a real-valued scalar
function, and g1(x − µ) = 0 elsewhere. If α > 1, then (1 − α) = −(α − 1), α > 1, and the
model in (1) changes to the following model:

g2(x) = C2|x − µ|γ[1 + b(α − 1)|x − µ|δ]−
ρ

α−1 , α > 1 (2)

for −∞ < x − µ < ∞, b > 0, α > 1, δ > 0, γ > −1, ρ > 0. Note that the models in (1) and (2)
belong to the beta family of functions. In (1), we have an extended and power-transformed
real scalar type-1 beta model, whereas in (2) we have an extended power-transformed real
scalar type-2 beta model. When α → 1− in (1) and α → 1+ in (2), the models in (1) and (2)
will tend to the following model:

g3(x − µ) = C3|x − µ|γe−bρ|x−µ|δ (3)

for b > 0, ρ > 0, δ > 0, γ > −1,−∞ < x < ∞, which is a generalized gamma density. The
pathway idea is that through the pathway parameter α it is possible to reach g1, g2 and g3,
as well as the transitional stages from g1 to g3 and g2 to g3. This idea proves very useful
in model building situations. Whatever be the nature of the data, as long as they are from
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the wider families of generalized type-1 or type-2 beta families of functions or generalized
gamma family of functions, then one member of the pathway family will be a good fit to
the data. It is also possible to provide the following interpretation in a physical situation:
for example, a Gaussian model may describe the stable situation, but may not capture
the data or fit well in a physical situation, as the physical situation may be somewhere
in the unstable neighborhood. The pathway model can capture both the stable unstable
neighborhoods through the pathway parameter. If g1, g2 and g3 are treated as statistical
densities, then the normalizing constants are as follows:

C1 = δ[b(1 − α)]
γ+1

δ
Γ( ρ

1−α + 1 + γ+1
δ )

2Γ( γ+1
δ )Γ( ρ

1−α + 1)
(4)

for γ > −1, b > 0, α < 1, ρ > 0, δ > 0

C2 = δ[b(α − 1)]
γ+1

δ
Γ( ρ

α−1 )

2Γ( γ+1
δ )Γ( ρ

α−1 − γ+1
δ )

(5)

for ρ > 0, δ > 0, b > 0, α > 1, γ > −1,
ρ

α − 1
− γ + 1

δ
> 0

C3 =
δ(bρ)

γ+1
δ

2Γ( γ+1
δ )

, b > 0, ρ > 0, δ > 0. (6)

Note that Tsallis statistics in non-extensive statistical mechanics ([3]) are available
from (1), (2), and (3) for γ = 0, b = 1, δ = 1, ρ = 1, α < 1, α > 1, α → 1. Superstatistics
in statistical mechanics ([4]) are available from (2) and (3) for b = 1, δ = 1, ρ = 1 and for
α > 1, α → 1.

Note that (3) for γ = 0, δ = 2 is the Gaussian density. For x > 0, µ = 0, (3) produces
the generalized gamma density, Weibull density, gamma density, chi-square density, ex-
ponential density, Rayleigh density, Maxwell–Boltzmann density, etc. An exponentiation
in (2) produces the generalized logistic density of [5] by transforming x → y through
x = e−cy, c > 0. The model in (2) can also produce the Cauchy density, Student’s t-density,
and F-density; as limiting forms after exponentiation, it is also possible to obtain the
Fermi–Dirac density from (2) and the Bose–Einstein density from (1).

The notations used in this paper are as follows: real scalar variables, whether math-
ematical or random, are denoted by lowercase letters such as x, y. Vector (1 × p or p × 1,
p > 1 matrix)/matrix variables, whether mathematical or random, are denoted by capital
letters such as X, Y. Let Y = (yjk) be a p × q matrix where the yjks are distinct real scalar
variables; then, the wedge product of differentials is denoted by dY = ∧p

j=1 ∧
q
k=1 dyjk = dY′,

where Y′ means the transpose of Y. For two real scalar variables u and v, the wedge product
of the differentials is defined as du ∧ dv = −dv ∧ du such that du ∧ du = 0, dv ∧ dv = 0.
For a real-valued scalar function f (X),

∫
X f (X)dX means the integral over X. For a p × p

matrix Y, we denote the determinant of Y by |Y| or det(Y). Finally, tr(Y) denotes the trace
of Y when Y is a square matrix. Other notations are explained whenever they occur for the
first time.

The rest of this paper is organized as follows: Section 2 deals with the derivation
of densities through entropy optimization. Here, the materials dealing with vectors and
matrices were made available in the lectures of the first author. In Section 3, a connection is
established between the pathway model and fractional integrals. Section 4 covers Mellin
convolution of products and ratios along with the connection to statistical distribution
theory. In Section 5, a connection is established between the pathway parameter and
fractional order index. This material is believed to be new. Section 6 establishes the
connection to fractional order index and the coefficient of the complex variable in the
Mellin–Barnes representation of the H-function. This material is believed to be new as
well. Section 7 provides results on fractional differential equations; some of the materials
on the H-function representation of these solutions are likely to be new. The aim of the
various sections is to derive statistical distributions known as Mathai’s pathway models
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through optimization of Mathai entropy, then to establish connections among the pathway
parameters in statistical distribution theory, fractional order index in fractional calculus,
and coefficient of the complex variable s in the Mellin–Barnes integral representation of
the H-function, ultimately showing that the H-function can be taken as a common thread
between these different topics.

2. Optimization of Entropy

In (1) to (3), we have the distributional pathway or pathway through densities. We
can also provide an entropic pathway by deriving (1), (2), and (3) through optimization of
an entropy measure. For a real scalar variable x with density function f (x), the Shannon
entropy, denoted by S( f ), is defined as follows:

S( f ) = −K
∫

x
f (x) ln f (x)dx (7)

where K is a constant and x is a real scalar variable. An α-generalized entropy, known in
the literature as Havrda–Charvat entropy, is as follows, denoted by H( f ):

Hα( f ) =

∫
x[ f (x)]αdx − 1

21−α − 1
, α ̸= 1. (8)

A modified Hα( f ) is Tsallis’ entropy Tq( f ), defined as follows:

Tq( f ) =

∫
x[ f (x)]qdx − 1

1 − q
, q ̸= 1. (9)

In the limit when α → 1, Hα( f ) reduces to S( f ). In the limit when q → 1, Tq( f ) also
reduces to S( f ). Here, α is a parameter; hence, Hα( f ) is called the α-generalized entropy.
Evidently, Tq( f ) is a q-generalized Shannon entropy S( f ). In (8) and (9), f (x) is the density
of a real scalar variable. Mathai defined a general statistical density as a real-valued scalar
function g(X) such that g(X) ≥ 0 in the domain of X and

∫
X g(X)dX = 1; the differential

element dX is defined in Section 1, where X can be scalar, vector, matrix, or a sequence of
matrices in the real or complex domain. With this general definition for a density g(X),
Mathai’s entropy is defined as follows, denoted by Mα(g) (for an earlier version, see [6]):

Mα(g) =

∫
X [g(X)]

1−α+ρ
ρ dX − 1

α − 1
, ρ > 0, α < 1 + ρ. (10)

It can be observed that (10) can also be treated as an expected value of [g(X)]
1−α

ρ and
that when ρ = 1 it is Kerridge’s measure of inaccuracy; see [7]. In order to derive the scalar
version of the pathway density, we can optimize (10) when X is a real scalar quantity x,
under the following restrictions:∫

x
xγ( 1−α

ρ )g(x)dx = given, and
∫

x
xγ( 1−α

ρ )+δg(x)dx = given (11)

for the case γ > −1, α < 1, δ > 0. When the integrals in (11) exist, if we are using calculus
of variation for optimization, then the Euler equation

∂

∂g
[g

1−α+ρ
ρ − λ1xγ( 1−α

ρ )g + λ2xγ( 1−α
ρ )+δg] = 0

leads to
g1(x) = λ3xγ(1 − λ4xδ)

ρ
1−α (12),

where λ1 and λ2 are the Lagrangian multipliers and λ3 and λ4 are some constants; here, λ3
can act as the normalizing constant if g1 is a statistical density. For λ4 = b(1− α), α < 1, b > 0,
we have the pathway model g1 in (1). The entropy in (10) is also a modified version of
Havrda–Charvat α-generalized entropy; see [7] in the real scalar case.
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Optimization of (9) under the restrictions in (11) for γ = 0, δ = 1 in an associated
escort density produces Tsallis statistics in (9). Direct optimization of (9) produces the
q-exponential function. However, the pathway model is available directly from (10) under
the restrictions in (11); this produces (12), from which Tsallis statistics and superstatistics
are available as special cases. Superstatistics considerations can be explained in terms of
statistical language as the construction of an unconditional density when the conditional
density and marginal density belong to generalized gamma families of functions. Such a
procedure can produce only the cases α > 1 and α → 1, not α < 1. However, optimization
of (9) through an escort density can produce special cases of the pathway model for all of
cases α < 1, α > 1, α → 1. This is the advantage of Tsallis statistics over superstatistics.

Now, let us consider the vector-variate case. In (10), let X be a p × 1 vector and
assume the following restrictions based on the moments of the ellipsoid of concentration,
namely, (X − µ)′A(X − µ) = c > 0, where µ is the expected value of X and A > O is p × p
real positive definite, which is the inverse of the covariance matrix in X. Consider the
following moments: ∫

X
[(X − µ)′A(X − µ)]

γ
(α−1)

ρ f (X)dX = given (13)

and ∫
X
[(X − µ)′A(X − µ)]

γ
(α−1)

ρ +δ f (X)dX = given. (14)

Optimization of (10) under the restrictions in (13) and (14) leads to the following density:

h1(X) = c1[(X − µ)]A(X − µ)]γ[1 + b(α − 1){(X − µ)′A(X − µ)}δ]−
ρ

α−1 , α > 1. (15)

From here, we can move on to the densities for α < 1 and α → 1. For α → 1, we have
a multivariate version of the real scalar generalized gamma density, namely,

h2(X) = c2[(X − µ)′A(X − µ)]γe−bρ[(X−µ)′A(X−µ)]δ . (16)

We can make a connection from (15) and (16) to random points p ≤ n in Euclidean
n-space. Evidently, for γ = 0, δ = 1, (16) is the p-variate Gaussian density with mean value
vector µ and covariance matrix A−1.

We can extend this procedure to rectangular the matrix-variate case as well. In (10),
let X be a p × q,p ≤ q matrix of rank p in the real domain. Consider the following
moment-type restrictions:∫

X
[tr(AXBX′)]γ

(α−1)
ρ f (X)dX = given (17)

and ∫
X
[tr(AXBX′)]γ

(α−1)
ρ +δ f (X)dX = given (18)

where A > O is a p × p and B > O a q × q constant real positive definite matrix,
q > 1, ρ > 0, δ > 0. Optimization of (10) under the restrictions in (17) and (18) leads
to the density

h3(X) = c3[tr(AXBX′)]γ[1 + b(α − 1){tr(AXBX′)}δ]−
ρ

α−1 , α > 1. (19)

When α → 1, h3 provides h4, where

h4(X) = c4[tr(AXBX′)]γe−bρ[tr(AXBX′)]δ (20)

for b > 0, ρ > 0, δ > 0, γ > −1. This h4 is a rectangular matrix-variate generalized gamma
density, from which we have the real matrix-variate Gaussian density for γ = 0 and δ = 1
(see also [8]).
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3. Connection of the Pathway Model to Fractional Integrals

From the geometrical interpretation of the fractional integral, it is evident that a type-1
beta form must be present in the definition of a fractional integral if we wish to encompass
all the different definitions of fractional integrals in current use. Hence a definition, covering
all fractional integrals in current use, introduced in [9], is provided as Mellin convolutions
of products and ratios, where the functions involved in the Mellin convolutions are of the
following form for the real scalar variable case x1 > 0, x2 > 0:

f1(x1) = ϕ1(x1)[1 − a(1 − q)xδ
1]

1
1−q & f2(x2) = ϕ2(x2) f (x2) (21)

where ϕ1 and ϕ2 are prefixed functions and f is an arbitrary function, a > 0, δ > 0, q < 1.
If statistical densities are needed, then f1 and f2 can be multiplied by appropriate nor-
malizing constants. In this case, ϕ1, ϕ2, f are to be restricted to be positive functions and
1− a(1− q)xδ > 0. Mellin convolution of the products corresponds to fractional integrals
of the second kind or the right-sided integrals, while Mellin convolution of ratios corre-
sponds to fractional integrals of the first kind or left-sided integrals.

3.1. Fractional Integrals of the Second Kind

Let u = x1x2, v = x2 or x2 = v, x1 = u
v and let the Jacobian be 1

v . Then, the Mellin
convolution of the product, denoted by g2(u), is as follows, taking the pathway model of
(21) as f1(x1) with ϕ1(x1) = xγ

1 , ϕ2(x2) = 1 for q < 1:

g2(u) =
∫

v

1
v
(

u
v
)γ[1 − a(1 − q)(

u
v
)δ]

1
1−q f (v)dv, q < 1 (22)

= uγ
∫

v
v−γ−1[1 − a(1 − q)(

uδ

vδ
)]

1
1−q f (v)dv.

Let us consider the Mellin transform of g2(u) with Mellin parameter s. Then,

Mg2(s) =
∫ ∞

u=0
uγ+s−1

∫
v>[a(1−q)]

1
δ u
[1 − a(1 − q)

uδ

vδ
]

1
1−q f (v)dv. (23)

Let us first integrate out u; then, 0 ≤ u ≤ v

[a(1−q)]
1
δ

. Integration over u provides

the following:

∫ v

[a(1−q)]
1
δ

u=0
uγ+s−1[1 − a(1 − q)

uδ

vδ
]

1
1−q du

=
1
δ

vγ+s

[a(1 − q)]
γ+s

δ

∫ 1

0
t

γ+s
δ −1[1 − t]

1
1−q dt

=
1
δ

Γ( 1
1−q + 1)

[a(1 − q)]
γ+s

δ

Γ( γ
δ + s

δ )

Γ( 1
1−q +

γ
δ + s

δ )

for ℜ(γ + s) > 0, δ > 0, a > 0, q < 1, where ℜ(·) means the real part of (·). Now, taking
the integral over v, we have the Mellin transform of the arbitrary function f (v), denoted by
f ∗(s). Therefore,

Mg2(s) =
Γ( 1

1−q + 1)

δ[a(1 − q)]
γ+s

δ

Γ( γ+s
δ )

Γ( 1
1−q + 1 + γ+s

δ )
f ∗(s) (24)

for ℜ(γ + s) > 0, a > 0, δ > 0, q < 1;

Mg2(s) =
Γ( 1

1−q + 1)

δ(1 − q)
s
δ

Γ( s
δ )

Γ( 1
1−q + 1 + s

δ )
f ∗(s) for a = 1, γ = 0; (25)
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Mg2(s) =
Γ( γ+s

δ )

δa
γ+s

δ

f ∗(s) for δ > 0, a > 0, q → 1. (26)

Now, we can compare (24) with Theorem 3.4.2 of the Mellin transform of an Erdélyi–
Kober fractional integral of the second kind for δ = 1 (see [9]). It has the same structurem
and 1

1−q + 1 corresponds to the order of the fractional integral α. Comparing (25) with
the Mellin transform of the Weyl fractional integral of the second kind for δ = 1 ([9]), the
fractional order α again corresponds to 1

1−q + 1.

3.2. Fractional Integral of the First Kind or Left-Sided Integral

Let u = x2
x1

, v = x2 or x2 = v, x1 = v
u , with the Jacobian as − v

u2 . Taking ϕ1(x1) =

xγ−1
1 , ϕ2(x2) = 1 and denoting the Mellin convolution of the ratio as g1(u), we have

the following:

g1(u) =
∫

v

v
u2 (

v
u
)γ−1[1 − a(1 − q)(

v
u
)δ]

1
1−q f (v)dv

= u−γ−1− δ
1−q

∫
v

vγ[uδ − a(1 − q)vδ]
1

1−q f (v)dv. (27)

The Mellin transform of g1(u) with Mellin parameter s is as follows:

Mg1(s) =
∫ ∞

u=0
u−γ−1+s−1− δ

1−q

∫
v

vγ[uδ − a(1 − q)vδ]
1

1−q f (v)dv.

First integrating out u, we have the integral over u as follows:∫ ∞

u=[a(1−q)]
1
δ v
[uδ − a(1 − q)vδ]

1
1−q u−γ−1+s−1− δ

1−q du

=
1
δ

∫ ∞

z=0
z

1
1−q [z + a(1 − q)vδ]

− 1
δ (γ+1+ δ

1−q −s)−1dz.

This can be evaluated with the help of a type-2 beta integral. Then, integration over v
provides the following final result:

Mg1(s) =
Γ( 1

1−q + 1)

[a(1 − q)]
γ+1−s

δ

Γ( γ+1−s
δ )

Γ( 1
1−q + 1 + γ+1−s

δ )
f ∗(s),ℜ(γ + 1 − s) > 0. (28)

The fractional order α corresponds to 1
1−q + 1, as seen before. The pathway parameter

for q < 1 is such that
1

1 − q
+ 1 = α, q < 1,

where α is the fractional order in the fractional integrals of the first and second kinds.

4. Mellin Convolutions of Products and Ratios for Other Functions

When f1 is connected to the pathway model for q < 1 and f2 is an arbitrary function,
then the Mellin convolutions of products and ratios are seen to be connected to fractional
integrals of the second and first kinds, respectively. Let f1 and f2 be generalized gamma
functions which are actually the pathway model for q → 1. Take (1) for q → 1− and (2) for
q → 1+. Let us observe what happens to the Mellin convolutions of products and ratios.
Let u = x1x2, v = x1, x1 = u

v , with the Jacobian as 1
v . Let

f1(x1) = C1xγ1−1e−a1x
δ1
1 & f2(x2) = C2xγ2−1

2 e−a2xδ2
2 (29)

for γj > 0, aj > 0, δj > 0, j = 1, 2, where C1 and C2 can be normalizing constants if
f j(xj), j = 1, 2 are to be treated as statistical densities. Let the Mellin convolution of a
product again be denoted by g2(u). Then,
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g2(u) = C1C2

∫
v

1
v
(

u
v
)γ1−1vγ2−1e−a1(

u
v )

δ1−a2vδ2

= C1C2uγ1−1
∫ ∞

v=0
vγ2−γ1−1e

− a1uδ1

vδ1
−a2vδ2

dv. (30)

For δ1 = 1, δ2 = 1, (30) provides the basic Krätzel integral, which is associated with
the Krätzel transform [10]; see [9] for some properties of the generalized Krätzel integral
and its connection to statistical distribution theory and the reaction rate probability integral
in nuclear reaction rate theory [11]. For δ2 = 1, δ1 = 1

2 , (30) provides the reaction rate
probability integral. For δ1 = 1, δ2 = 1 and γ2 − γ1 = − 1

2 , the integrand in (30) provides
the inverse Gaussian density in stochastic processes. The structure in (30) is also that of the
unconditional density in a Bayesian setup, with the conditional density belonging to the

generalized gamma family of type b1xγ1
1 e−ax

δ1
1 /x

δ1
2 and the marginal density also belonging

to generalized gamma family of form xγ2
2 e−bxδ2

2 . Then, the unconditional density has the
form of the integral in (30). Observe that the generalized gamma functions we considered
in (30) are nothing but the limiting forms of the pathway models in (1) and (2) for q → 1 or
the model in (3).

5. Connection of the Pathway Parameter to Fractional Indices in Fractional
Differential Equations

For illustrative purposes, let us consider the fractional space–time diffusion equation
(see [8], where 0Dβ

t is a Riemann–Liouville fractional derivative of the first kind and is of
left-sided order β; see also [12–20]:

0Dβ
t N(x, t) = η xDα

θ N(x, t) (31)

with the initial condition 0Dx
β−1N(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞ N(x, t) = 0, and

where η is the diffusion constant. Here, η, t > 0, x ∈ R, α, θ, β are real parameters,
0 < α ≤ 2, |θ| ≤ min{α, 2− α}. The solution of (5.1) for the case α = β is available from [9,
21] in the following form for ρ = α−θ

2α :

N(x, t) =
tβ−1

α|x| H2,1
3,3

 |x|
tη

1
α

∣∣∣∣(1, 1
α ),(α,1),(1,ρ)

(1, 1
α ),(1,1),(1,ρ)

 (32)

=
tα−1

α|x|
1

2πi

∫
L

Γ(1 + s
α )Γ(1 + s)Γ(− s

α )

Γ(1 − ρs)Γ(α + s)Γ(1 + ρs)

[
|x|
tη

1
α

]−s

ds,

where L is an appropriate contour and i =
√
−1. Let

g(x, t) =
α|x|
tβ−1 N(x, t)

=
1

2πi

∫
L

Γ(1 + s
α )Γ(−

s
α )

Γ(−ρs)Γ(1 − ρ + ρs)
Γ(1 + s)
Γ(α + s)

[
|x|
tη

1
α

]−s

ds. (33)

Therefore, the Mellin transform of g(x, t) with Mellin parameter s and argument |x|
tη

1
α

is provided by the following:

Mg(s) =
Γ(1 + s)
Γ(α + s)

f ∗(s), f ∗(s) =
Γ(1 + s

α )Γ(−
s
α )

Γ(−ρs)Γ(1 + ρs)
. (34)

Now, compare (34) with (25) for δ = 1. The pathway integrals of the second kind for
q < 1 are of the form c Γ(1+s)

Γ(α+s) f ∗(s), where c is a constant, α = 1
1−q + 1 is the order of the

fractional integral of the second kind, and α is also the order of the fractional differential
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equation. The exception is that here (34) is the Mellin transform of the solution of the
fractional space–time diffusion equation for the case α = β, where α is the fractional index
in the fractional differential equation. This is the same α appearing in (34), which is also
equal to 1

1−q + 1 = α. Moreover, this is the same α appearing as the coefficient of s in the

H-function representation, the coefficients being 1
α and ρ, which is a function of α. Note

that in (34) f ∗(s) has an interesting structure; both the numerator and denominator are of
the form Γ(z)Γ(1 − z) for different z, hence, the gamma product can be written in terms
of sin πz. For further reading on fractional diffusion and the corresponding fractional
differential equations, see [22–26].

6. The H-Function Thread

We have seen already that the pathway model, fractional integrals of the first and
second kinds, and fractional differential equation are all connected through the pathway
model and that the basic representation takes place in terms of the H-function. Solutions
of simple fractional differential equations are available in terms of Mittag–Leffler functions.
Mittag–Leffler functions are special cases of the H-function. For an overview of Mittag–Leffler
functions and their properties, see [9]. Mittag–Leffler functions as solutions of fractional
differential equations may be seen in [27,28]. For example, a three-parameter Mittag–Leffler
function has the H-function representation

Eγ
α,β(z) =

1
2πi

∫ c+i∞

c−i∞

Γ(s)Γ(γ − s)
Γ(γ)Γ(β − αs)

z−sds

=
1

Γ(γ)
H1,1

1,2

[
z
∣∣(1,1)
(0,1),(1−β,α)

]
(35)

for i =
√
−1, 0 < c < γ, α > 0, β > 0. Note that the basic Mittag–Leffler parameter α enters

into the H-function as the coefficient of the complex variable s. In all the H-functional
representations of fractional integrals and solutions of fractional differential equations, the
fractional index or fractional order α (or a function of α) enters the picture as the coefficient
of the complex variable s in the H-function representation, as illustrated in Section 5 and
detailed in the discussion at the end of Section 5.

7. Diffusion Equation

We consider the following diffusion model with fractional-order spatial and
temporal derivatives:

0Dβ
t N(x, t) = η xDα

θ N(x, t) (36)

with the initial conditions 0Dβ−1
t N(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞ N(x, t) = 0, where η

is a diffusion constant, η, t > 0, x ∈ R; α, θ, β are real parameters with the constraints

0 < α ≤ 2, |θ|min(α, 2 − α),

and δ(x) is the Dirac delta function. Then, for the fundamental solution of (7.1) with initial
conditions, the following formula holds [9]:

N(x, t) =
tβ−1

α|x| H2,1
3,3

[
|x|

(ηtβ)1/α

∣∣∣(1,1/α),(β,β/α),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, α > 0 (37)

where ρ = α−θ
2α . The following special cases of (1) are of special interest for fractional

diffusion models:

(i) For α = β, the corresponding solution of (36), denoted by Nθ
α , can be expressed in

terms of the H-function as provided below, and can be defined for x > 0 as follows:
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Non-diffusion: 0 < α = β < 2; θ ≤ min{α, 2 − α},

Nθ
α(x) =

tα−1

α|x| H2,1
3,3

[
|x|

tη1/α

∣∣∣(1,1/α),(α,1),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, ρ =

α − θ

2α
. (38)

(ii) When β = 1, 0 < α ≤ 2; θ ≤ min{α, 2 − α}, then (36) reduces to the space-fractional
diffusion equation, which is the fundamental solution of the following space–time
fractional diffusion model:

∂N(x, t)
∂t

= η xDα
θ N(x, t), η > 0, x ∈ R (39)

with the initial conditions N(x, t = 0) = σ(x), lim
x→±∞

N(x, t) = 0, where η is a diffusion

constant and σ(x) is the Dirac delta function. Hence, for the solution of (1), the
following formula holds:

Nθ
α(x) =

1
α(ηt)1/α

H1,1
2,2

[
(ηt)1/α

|x|

∣∣∣∣(1,1),(ρ,ρ)
( 1

α , 1
α ),(ρ,ρ)

]
, 0 < α < 1, |θ| ≤ α (40)

where ρ = α−θ
2α . The density represented by the above expression is known as the

α-stable Lévy density; see [29,30]. Another form of this density is provided by

Nθ
α(x) =

1
α(ηt)1/α

H1,1
2,2

[
|x|

(ηt)1/α

∣∣∣∣(1− 1
α , 1

α ),(1−ρ,ρ)
(0,1),(1−ρ,ρ)

]
, 1 < α < 2, |θ| ≤ 2 − α. (41)

(iii) Next, if we take α = 2, 0 < β < 2; θ = 0, then we obtain the time-fractional diffusion,
which is governed by the following time-fractional diffusion model:

∂βN(x, t)
∂tβ

= η
∂2

∂x2 N(x, t), η > 0, x ∈ R, 0 < β ≤ 2 (42)

with the initial conditions 0Dβ−1
t N(x, 0) = σ(x),0 Dβ−2

t N(x, 0) = 0, for x ∈ r,
limx→±∞ N(x, t) = 0, where η is a diffusion constant and σ(x) is the Dirac delta
function, the fundamental solution of which is provided by the equation

N(x, t) =
tβ−1

2|x| H1,0
1,1

[
|x|

(ηtβ)1/2

∣∣∣(β,β/2)
(1,1)

]
. (43)

(iv) If we set α = 2, β = 1 and θ → 0, then for the fundamental solution of the standard
diffusion equation

∂

∂t
N(x, t) = η

∂2

∂x2 N(x, t) (44)

with initial condition

N(x, t = 0) = σ(x), lim
x→±∞

N(x, t) = 0, (45)

the following formula holds:

N(x, t) =
1

2|x|H1,0
1,1

[
|x|

η1/2t1/2

∣∣∣(1,1/2)
(1,1)

]
= (4πηt)−1/2 exp[−|x|2

4ηt
] (46)

which is the classical Gaussian density.



Axioms 2024, 13, 546 10 of 10

Author Contributions: Writing—original draft: A.M.M. and H.J.H. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors did not receive any external funding for this research.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mathai, A.M. A pathway to matrix-variate gamma and normal densities. Linear Algebra Its Appl. 2005, 396, 317–328. [CrossRef]
2. Mathai, A.M.; Provost, S.B. Some complex matrix variate statistical distributions in rectangular matrices. Linear Algebra Its Appl.

2006, 410, 198–216. [CrossRef]
3. Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer Nature: Cham, Switzerland, 2009.
4. Beck, C.; Cohen, E.G.D. Superstatistics. Phys. A 2003, 322, 267–275. [CrossRef]
5. Mathai, A.M.; Provost, S.B. On q-logistic and related distributions. IEEE Trans. Reliab. 2006, 55, 237–244. [CrossRef]
6. Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics and generalized measure of entropy. Phys. A 2007,

375, 110–122. [CrossRef]
7. Mathai, A.M.; Rathie, P.N. Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications; Wiley Halsted:

New York, NY, USA; Wiley Eastern: New Delhi, India, 1975.
8. Princy, T. Some useful pathway models for reliability analysis. Reliab. Theory Appl. 2023, 18, 340–359.
9. Mathai, A.M.; Haubold, H.J. An Introduction to Fractional Calculus; Nova Science Publishers: New York, NY, USA, 2017.
10. Krätzel, E. Integral transformations of Bessel type. In Proceedings of the International Conference on Generalized Functions and Opera-

tional Calculus, Varna, Bulgaria, 29 September–6 October 1975; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1979; pp. 148–155.
11. Mathai, A.M.;Haubold, H.J. Modern Problems in Nuclear and Neutrino Astrophysics; Akademie-Verlag: Berlin, Germany, 1988.
12. Oldham, K.G.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974.
13. Kiryakova, V.S. Generalized Fractional Caclulus and Applications; Wiley: New York, NY, USA, 1994.
14. Gorenflo, R.; Luchko, Yu.; Mainardi, F. Analytical properties and applications of the Wright functin. Fract. Calc. Appl. Anal. 1999,

2, 383–414.
15. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2001.
16. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993.
17. Magin, R.L. Fractional Calculus in Bioengineerign; Begell House Publishers: Danbury, CT, USA, 2006.
18. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
19. Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
20. Diethelm, K. The Analysis of Fractional Differential Equations. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg,

Germany, 2004.
21. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010.
22. Kochubei, A.N. Fractional order diffusion. Differ. Equations 1990, 26, 485–492.
23. Mainardi, F. Fractional Diffusive Waves in Viscoelastic Solids. In Nonlinear Waves in Solids; ASME Book No. AMR 137; Wegner,

J.L., Norwood, F.R., Eds.; Fairfield: Singapore, 1995; pp. 93–97.
24. Mainardi, F. The time fractional diffusive wave equations. Radiofisica 1995, 38, 20–36.
25. Mainardi, F. The fundamenatal solutions for the fractional diffusive-wave equations. Appl. Math. Lett. 1996, 9, 23–28. [CrossRef]
26. Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Time fractional diffusion of distributed order. J. Vib. Control. 2008, 14, 1267–1290.

[CrossRef]
27. Mainardi, F. Why the Mittag-Leffler function can be considered the Queen function of the fractional calculus? Entropy 2020,

22, 1359. [CrossRef]
28. Evangelista, L.R.; Kaminski Lenzi, E. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: New

York, NY, USA, 2018.
29. West, B.J.; Grigolini, P.; Metzler, R.; Nonnenmacher, T.F. Fractional diffusion and Lévy stable processes. Phys. Rev. E 1997, 55,

99–106. [CrossRef]
30. Jespersen, S.; Metzler, R.; Fogedby, H.C. Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations

and their solutions. Phys. Rev. E 1999, 59, 2736–2745. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.laa.2004.09.022
http://dx.doi.org/10.1016/j.laa.2005.07.016
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1109/TR.2006.874927
http://dx.doi.org/10.1016/j.physa.2006.09.002
http://dx.doi.org/10.1007/978-3-642-33911-0
http://dx.doi.org/10.1016/0893-9659(96)00089-4
http://dx.doi.org/10.1177/1077546307087452
http://dx.doi.org/10.3390/e22121359
http://dx.doi.org/10.1103/PhysRevE.55.99
http://dx.doi.org/10.1103/PhysRevE.59.2736

	Introduction
	Optimization of Entropy
	Connection of the Pathway Model to Fractional Integrals
	Fractional Integrals of the Second Kind
	Fractional Integral of the First Kind or Left-Sided Integral

	Mellin Convolutions of Products and Ratios for Other Functions
	Connection of the Pathway Parameter to Fractional Indices in Fractional Differential Equations
	The H-Function Thread
	Diffusion Equation
	References

