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Abstract: We deal with two apparently disparate theories. One of them studies extensions of orderings
from a set to its power set. The other one defines suitable scores on hesitant fuzzy elements. We show
that both theories have the same mathematical substrate. Thus, important possibility/impossibility
results concerning criteria for extensions can be transferred to new results on scores. And conversely,
conditions imposed a priori on scores can give rise to new extension criteria. This enhances and
enriches both theories. We show examples of translations of classical results on extensions in the
context of scores. Also, we state new results concerning the impossibility of finding a utility function
representing some kind of extension order if some restrictions are imposed on the utility function
considered as a score.

Keywords: extensions of orders from a set to its power set; criteria of extensions of orderings;
possibility and impossibility results; hesitant fuzzy elements and sets; scores
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1. Introduction
1.1. Motivation of the Manuscript

Sometimes it happens that two apparently disparate theories have a parallel develop-
ment. In a sense, one could be considered a part of the other, even if they belong to totally
different frameworks. When this occurs, the results of each theory can be applied to the
other, thereby reinforcing both.

In the present manuscript, we compare two such parallel theories.
One theory involves extending total orders from a set to its power set, following

some criteria established a priori. This had already been studied by people working
in mathematical economics from 1980 on (see [1,2]) when dealing with the problem of
ranking sets of objects. Depending on the chosen criteria, we may reach either possibility
or impossibility results.

On the other hand, we have the theory of scores on hesitant fuzzy sets. In terms of
extensions of orderings, we start with the usual order on the unit interval [0, 1] and, using
scores (see [3]), we get a new ordering on the subsets of [0, 1] (also known as the hesitant
fuzzy elements). Again, we seek to ensure that the scores accomplish some pre-defined
criteria. Depending on these criteria, we may have a suitable score or not (possibility or
impossibility, again).

At this stage, we notice that the second setting derives from the first.
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In fact, some criteria used by mathematical economists may be unknown to fuzzy set
theorists, and vice versa. This observation suggests the potential to broaden the scope of
criteria and possibility/impossibility results.

1.2. Aim and Objectives

This work arises from our professional experiences as mathematicians working with
two different collectives, namely economists and engineers, who sometimes, unfortu-
nately, overlook each other’s mathematical applications and achievements. These distinct
achievements—economists have their own, and engineers have theirs—could actually
be mutually beneficial and lead to future collaborations. This is especially true once we
recognize and highlight that the mathematical foundation is the same, and the results
obtained by economists could indeed be translated into the context used by engineers, and
vice versa.

We aim to highlight the fact that problems in mathematical economics, such as ex-
tending orders from a set to its power set in the spirit of “ranking sets of objects”, and
problems related to defining and analyzing scores of hesitant fuzzy elements encountered
by mathematicians and engineers in fuzzy set theory and artificial intelligence approaches
are, in a sense, equivalent. Furthermore, technical results obtained in one approach can
often be translated into new results in the other approach, enriching both theories, which
often ignore each other despite sharing the same mathematical substrate.

Specifically, we want to show the analogy between the study of extensions of orderings
from a set to its power set and the definition of scores of hesitant fuzzy elements.

1.3. Contents of the Manuscript

Bearing these ideas in mind, the contents of the manuscript are as follows:
After the Introduction and the section on Preliminaries, we introduce, on the one hand,

classical criteria to extend orderings from a set to its power set (Section 3) and analyze their
compatibility (Section 4). On the other hand, we introduce different classes of scores for
hesitant fuzzy sets (Section 5) and analyze compatibility among extra required features on
scores. In Section 6, we explore the analogies between both approaches, showing that some
(in)compatibility results in one setting could be translated in some way to the other setting.
A final section of concluding remarks and lines for future research closes the paper.

2. Preliminaries
2.1. Extension of Orderings from a Set to Its Power Set

Let X denote a nonempty set.

Definition 1. A preorder ≾ on X is a binary relation on X that is reflexive and transitive. An
antisymmetric preorder is said to be an order. A complete (or total) preorder ≾ on a set X is a
preorder such that if a, b ∈ X, then (a ≾ b) ∨ (b ≾ a) holds. If ≾ is a preorder on X, then as
usual, we denote the associated asymmetric relation by ≺ and the associated equivalence relation
by ∼; these are defined by a ≺ b ⇔ (a ≾ b) ∧ ¬(b ≾ a) and a ∼ b ⇔ (a ≾ b) ∧ (b ≾ a). If
this asymmetric relation is transitive, then ≾ is said to be a quasi-transitive preorder. For any
preorder ≾ on X, the indifference part of ≾, denoted by ind(≾) is the binary relation on X defined
by (a, b) ∈ ind(≾) if and only if a ≺ c ⇐⇒ b ≺ c as well as c ≺ a ⇐⇒ c ≺ b, for any c ∈ X.
A complete preorder ≾ defined on X is usually called a preference, and it is said to be representable
if there exists a real-valued function u : X → R such that a ≾ b ⇔ u(a) ≤ u(b) holds for every
a, b ∈ X. Here u is said to be a utility function representing ≾.

From now on, we will consider X endowed with a complete preorder ≾. Sometimes
we will work in the particular case in which ≾ is a total order.
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Definition 2. An extension of the complete preorder ≾ from the set X to its power set P(X) is
another preorder ≾E, now defined in P(X) such that the following property holds true for any
elements a, b ∈ X: a ≾ b⇔ {a} ≾E {b}.

Remark 1.

(i) Among possible extensions, the literature pays special attention to the following situations:
(a) Both ≾ and ≾E are total orders; (b) both ≾ and ≾E are complete preorders; (c) ≾ is a total
order, but ≾E is a complete preorder.

(ii) Some authors do not consider ∅ in the extensions, so they define the extensions not on the
whole power set P(X) but instead on π(X) = P(X) \ {∅}.

(iii) The most classical criteria appeared from 1950 on, mainly in several papers related to social
choice and decision making (see, e.g., [1,4]). They usually consider a total order ≾ defined on a
finite set X, whereas the extension ≾E can be either a total order or just a complete preorder
depending on the context.

2.2. Hesitant Fuzzy Elements, Hesitant Fuzzy Sets and Scores

Now we present some nomenclature (see, e.g., [5]) to be used henceforward.
By X, we will denote a nonempty set, also called the universe.

Definition 3 ([6]). A (type-1) fuzzy subset H of X is defined as a function µH : X → [0, 1]. Here
µH is called the membership function of H. If µH takes values just in {0, 1}, the corresponding
subset µH is a classical crisp (i.e., non-fuzzy) subset of X.

Throughout the manuscript, the following notation will be used:

- P([0, 1]) denotes the collection of all subsets of the unit interval [0, 1],
- Π([0, 1]) denotes the collection of all nonempty subsets of [0, 1],
- I([0, 1]) constitutes the subset of all intervals in [0, 1],
- IC([0, 1]) consists of all closed intervals in [0, 1],
- I∪([0, 1]) consist of all finite unions of intervals in [0, 1],
- F ([0, 1]) denotes the collection of all nonempty finite subsets of [0, 1], and
- Fn([0, 1]) denotes the collection of all nonempty subsets of [0, 1] with at most n elements.

If X, Y ⊆ R, we write Y > X to mean y > x for all y ∈ Y, x ∈ X. Notice that Y > X
implies X ∩Y = ∅.

The main objects to be handled in our analysis are called the hesitant fuzzy elements
(HFEs for short):

Definition 4 ([7,8]). A subset E of [0, 1] is said to be a hesitant fuzzy element (HFE). Also, a
function h : X → P([0, 1]) is called a hesitant fuzzy set (HFS) over X.

Remark 2. Classical fuzzy sets extend crisp subsets with the assistance of a first level of uncertainty:
the membership function µH maps any element x of the universe X with its “uncertainty degree”.
Thus, mapping x into a number from [0, 1] graduates the acceptability of the claim that this element
belongs to the fuzzy subset H, which therefore generalizes the idea of classical subsets. HFSs are a
particular case of “type-2 fuzzy sets” [9–11].

Basically, a type-1 fuzzy set on a universe X is a map h from X into [0, 1]. Concerning type-2
fuzzy subsets, they are defined as functions from X to the family of type-1 fuzzy subsets of [0, 1];
see, e.g., [12–14]. In that sense, a type-1 fuzzy set has a grade of membership that is crisp, namely a
number in the unit interval. And a type-2 has grades of membership that are fuzzy subsets of [0, 1],
that is, maps from [0, 1] into itself. Notice that HFSs correspond to the particular case of type-2
fuzzy subsets of X such that the grade maps [0, 1] into {0, 1}.

In many practical applications, the HFSs considered map each element of X to a finite
subset of [0, 1]. This particular case is well known in the literature:



Axioms 2024, 13, 549 4 of 14

Definition 5 ([15]). A function h : X → F ([0, 1]) is said to be a typical hesitant fuzzy set (THFS)
of X. An element of F ([0, 1]) is called a typical hesitant fuzzy element (THFE).

Scores are now formally defined:

Definition 6. Given a family G ⊆ P([0, 1]), a score on G is defined as a function s : G → [0, 1]
that satisfies the following properties:

1. The score assigned to the empty set is zero. That is, s(∅) = 0 provided that ∅ ∈ G;
2. For all E ∈ G, we have that the score assigned to E must lie between the infimum and the

supremum of E. That is, inf(E) ⩽ s(E) ⩽ sup(E). (In particular, s({t}) = t holds true for
each t in the unit interval).

A score on G = P([0, 1]) (respectively, on G = F ([0, 1])) is called total (respectively, typical).
Additionally, a score on G = I([0, 1]) is said to be an interval score.

Remark 3. One significant application of scores defined on HFEs is that they enable the reduction of
uncertainty by one level. If h : X → P([0, 1]) defines an HFS, and s is a score defined on P([0, 1]),
then the composition s ◦ h directly defines a (type-1) fuzzy set over X.

3. Classical Criteria to Extend Orderings from a Set to Its Power Set

The most classical criteria appeared from 1950 on, mainly in several papers related to
social choice and decision making (see, e.g., [1,4,16]). They usually consider a total order
≾ defined on a finite set X, whereas the extension ≾E can be either a total order or just a
complete preorder depending on the context.

In order to classify criteria, we may focus on several important aspects, usually related
to some objective that we want to achieve from the restrictions imposed.

In the first classification of extension criteria, we may focus on the following facts:
(i) maxima and/or minima of sets; (ii) means; (iii) monotonicity.
Needless to say, there are some other possible classes, so that this is just a first approxi-

mation. In addition, these classes are not always pairwise disjoint.
In general, what we may expect a priori is that if we take criteria from different classes,

these give rise to an incompatibility result. However, this is not always true.
Here are several criteria based on the maxima or minima of a finite set.

Definition 7. Let X stand for a finite set endowed with a total order ≾. An extension ≾E satisfies
the Pure Maximality Criterion [PMA] (respectively, the Pure Minimality Criterion [PMI]) if for
every nonempty subsets A, B ⊆ X it holds true that maxA ≺ maxB ⇒ A ≺E B (respectively,
minA ≺ minB⇒ A ≺E B). Of course, here maxima and minima are taken as regards the given
total order ≾ on X. They exist because X is finite.

Definition 8. Let X stand for a finite set endowed with a total order ≾. An extension ≾E satisfies
the Gärdenfors Principle [G] (see [4]) if for every nonempty subset A ⊆ X and any element x /∈ A
it holds true that x ≺ minA⇒ A ∪ {x} ≺E A, and also maxA ≺ x ⇒ A ≺E A ∪ {x}. Again,
maxima and minima are taken here with respect to the given total order ≾ on X.

Definition 9. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the Barberà-Pattanaik Property [BP] if for every x, y ∈ X with x ≺ y it holds true that
{x} ≺E {x, y} ≺E {y}.

In addition, ≾E satisfies the generalized Barberà-Pattanaik Property [GBP] if for every
nonempty subsets A, B ⊆ X such that a ≺ b holds for any a ∈ A, b ∈ B, we also have that
A ≺E A ∪ B ≺ B.

Remark 4. Notice that, unlike the Gärdenfors principle, here we do not ask X to be finite. If X
is finite, the Barberà-Pattanaik Property [BP] is much weaker than the Gärdenfors Principle [G],
of which it is an immediate consequence in that case. In addition, we could also think that [BP]
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reminds us of an idea of a mean, so that if an element y ∈ X is better than another one x, in the
extension to the power set, the subset {x, y} should lie between the subsets {x} and {y}. This
becomes much clearer when the extension is represented by a numerical function (utility) so that the
value for {x, y} represents, in a sense, a mean of the values for {x} and {y}.

Let us now introduce some more criteria based on the intuitive idea of a mean.

Definition 10. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the Kelly Criterion [K] (see [17]) if given two nonempty subsets A, B ∈ P(X) with A ̸= B
and such that y ≾ x holds for every x ∈ A; y ∈ B, then B ≺E A also holds true.

Remark 5. Notice that this criterion [K] tells us that “the elements of A are at least as good as those
in B", but there is at least one that is better since A ̸= B. Thus, at least intuitively, an “average
value” or a “mean” should be higher in A.

Definition 11. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the Criterion of Useful Elements [CUE]. If for every subset A ⊆ X such that A has at least
two elements, there is a ∈ A such that A \ {a} ≺E A. Such an element a ∈ A is said to be a useful
element for the subset A.

Definition 12. Let X be a set endowed with a complete preorder ≾. An extension ≾E satisfies
the Criterion of Singular Elements [CSE] if for every subset A ⊆ X such that A has at least
two elements, there is a ∈ A such that A ≺E A \ {a}. Such an element a ∈ A is said to be
a singular element for the subset A. Also ≾E satisfies the Robustness Criterion [R] if for every
nonempty subsets A, B, C ∈ P(X) such that y ≺ x holds for any x ∈ A ∪ B; y ∈ C, it holds that
B ≺E A⇒ B ∪ C ≺E A.

Let us pay attention now to criteria based on monotonicity properties.

Definition 13. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the criterion of Monotonicity for Inferior Element [MIE] (see [1], where the terminology is
different) if for every x, y, z ∈ X such that z ≺ y ≺ x it holds true that {y, z} ≺E {x, z}. Similarly,
the extension ≾E satisfies the criterion of Monotonicity for Superior Element [MSE] (see [1]) if for
every x, y, z ∈ X such that z ≺ y ≺ x it holds true that {z, x} ≺E {y, x}.

Definition 14. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the criterion of Monotonicity for Sets [MS] if for every nonempty subsets A, B, C ⊆ X with
C ∩ (A ∪ B) = ∅ it holds that A ≺E B⇔ A ∪ C ≺E B ∪ C. Moreover, ≾E satisfies the criterion
of Simple Monotonicity for Elements [SME] (see [1]) if for every nonempty subsets A, B ⊆ X and
x ∈ X such that x /∈ (A ∪ B) it holds true that A ≺E B ⇒ A ∪ {x} ≺E B ∪ {x}. Also, ≾E
satisfies the criterion of Strong Monotonicity for Elements [STRME] (see [1]) if for every nonempty
subsets A, B ⊆ X and x ∈ X with x /∈ (A ∪ B) it holds that A ≺E B⇔ A ∪ {x} ≺E B ∪ {x}.

Definition 15. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the General Criterion of Monotonicity for Superior Elements [CSUP] (see [1], with a
different nomenclature) if for every nonempty subsets A, B ⊆ X, and any element x ∈ X such that
y ≺ x holds true for every y ∈ A ∪ B, it holds then true that B ≺E A ⇒ B ∪ {x} ≺E A ∪ {x}.
Also, ≾E satisfies the General Criterion of Monotonicity for Inferior Elements [CINF] (see [1]) if for
every nonempty subsets A, B ⊆ X, and any element x ∈ X such that x ≺ y holds true for every
y ∈ A ∪ B, it holds then true that B ≺E A⇒ B ∪ {x} ≺E A ∪ {x}.

Remark 6. Notice that [CINF] is a consequence of [R] if we consider C = {x} in the corresponding
definition of Robustness. Therefore [R] implies [CINF].
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Definition 16. Let X stand for a set endowed with a complete preorder ≾. An extension ≾E
satisfies the Criterion of Monotonicity Relative to Disjoint Sets [MDS] (see once more [1], with a
different terminology) if for every nonempty sets A, B ⊆ X such that A ∩ B = ∅, and any x ∈ X
such that x /∈ (A ∪ B), it holds then true that B ≺E A ⇒ B ∪ {x} ≺E A ∪ {x}. Also, ≾E
satisfies the Criterion of Monotonicity Relative to Nested Sets [MNS] (see [1]) if for every nonempty
sets A, B ⊆ X such that B ⊆ A, and any element x ∈ X such that x /∈ A, it holds then true that
A ≺E A ∪ {x} ⇒ B ≺E B ∪ {x}.

4. Compatibility of Criteria of Extension of Orderings
4.1. Complete Preorders vs. Total Orders

In the classical theory, it is typical to analyze extensions in which we start with a total
order ≾ on a set X and we want an extension ≾E that is also a total order on the power set
of X. However, sometimes this will not be possible. As a matter of fact, some combination
of criteria imposed on the extension may oblige it to be a complete preorder instead of a
total order, as shown in Proposition 1.

Proposition 1. Let X be a finite set with at least three elements, endowed with a total order of ≾.
There is no extension ≾E to a total order satisfying [SME] and [B].

Proof. Let X = {a, b, c} with a ≺ b ≺ c. It follows that {a} ≺E {b} ≺E {c}. Using
[B], we have {a} ≺E {a, b} ≺E {b} ≺E {b, c} ≺E {c}. Now, by [SME], we would arrive
at {a, c} ≺E {a, b, c}, since {a} ≺E {a, b}. Again, by [SME], it follows that {a, b, c} ≺E
{a, c}, because {b, c} ≺E {c}. We arrive at a contradiction. Therefore, ≾E cannot be a
total order.

Remark 7. Under Proposition 1, we wonder if ≾E could be a complete preorder. The answer is
affirmative. An example is the extension given as follows: {a} ≺E {a, b} ≺E {b} ∼E {a, c} ∼E
{a, b, c} ≺E {b, c} ≺E {c} ≺E ∅.

If X has at most two elements, then there exist extensions ≾E that are total orders and satisfy
[G] and [SME]. For instance, if X = {a, b} and a ≺ b, we may take the extension ≾E given by
∅ ≺E {a} ≺E {a, b} ≺E {b}.

Definition 17. Let X be a nonempty set endowed with a complete preorder ≾. Let ≾E be an
extension of ≾ to the power set of X. Then we say that ≾E satisfies the Weak Monotonicity Criterion
[WM] if for any nonempty subsets A, B ⊆ X and any element x ∈ X \ (A ∪ B) it holds true that
A ≺E B⇒ A ∪ {x} ≾E B ∪ {x}.

Proposition 2. The [SME] criterion implies [WM]. The converse is false.

Proof. The implication follows directly from definitions. Now let X = {a, b, c} and a ≺ b ≺
c. Consider the extension ≾E given by ∅ ≺E {a} ≺E {b} ≺E {b} ∼E {a, b} ∼E {a, c} ∼E
{b, c} ∼E {a, b, c}. It satisfies [WM] but not [SME].

Lemma 1. Let X be a nonempty finite set endowed with a total order ≾. Let ≾E be a quasi-transitive
extension satisfying [G] and [WM]. Then, for every nonempty subset A of X, it holds true that
A ∼E {min(A), max(A)}.

Proof. The proof can be seen in [2], but we include it here for the sake of completeness,
since it is decisive in what follows then. Assume that X has at least three elements,
since otherwise the result becomes evident. So let n ≥ 3, and X = {a1, a2 . . . , an} with
a1 ≺ a2 ≺ . . . ≺ an. Iterating [G] and using the transitivity of ≺E, it follows that {a1} ≺E
{a1, a2} ≺E . . . ≺E {a1, . . . an−1}. Using [WM], we get {a1, an} ≾E X. Since, by [G] again,
{a2, . . . an} ≺E {a3, . . . , an} ≺E . . . ≺E {an}, once more, by [WM], we arrive at X ≾E
{a1, an}. Therefore, X ∼E {a1, an}.
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4.2. On Kannai-Peleg Theorem

Kannai and Peleg, in a seminal paper published in 1984 (see [2]), proved an impossi-
bility theorem where the Gärdenfors Principle [G], the Weak Monotonicity Criterion [WM],
and the fact that X is finite but has at least six different elements were crucial. Now we pay
attention to some variants of the original theorem.

Proposition 3 (Kannai-Peleg Theorem –1984–, see [2]). Let X be a finite set endowed with a
total order ≾. If X has at least 6 elements, then there is no extension ≾E that is also a complete
preorder and satisfies both [G] and [WM].

Proof. See the proof in the classical reference [2]. We omit it here. Instead, we will prove in
Proposition 5 below a result whose proof follows, so-to-say, similar ideas.

Proposition 4. Let X be a finite set whose cardinality is at most five, endowed with a complete
preorder ≾. Then there exists an extension ≾E that is also a complete preorder and satisfies [G]
and [WM].

Proof. There is no loss of generality in assuming that X has five elements, that is,
X = {a1, a2, a3, a4, a5}, and it is endowed with a total order ≾ such that a1 ≺ a2 ≺ a3 ≺
a4 ≺ a5. Consider now the extension ≾E given by: ∅ ≺E {a1} ≺E {a1, a2} ≺E {a1, a3} ∼E
{a1, a2, a3} ≺E {a1, a4} ∼E {a1, a2, a4} ∼E {a1, a2, a3, a4} ∼E {a1, a3, a4} ≺E {a2} ≺E
{a2, a3} ≺E {a3} ∼E {a2, a4} ∼E {a2, a3, a4} ∼E {a1, a5} ∼E {a1, a2, a5} ∼E {a1, a3, a5} ∼E
{a1, a4, a5} ∼E {a1, a2, a3, a5} ∼E {a1, a2, a4, a5} ∼E {a1, a3, a4, a5} ∼E {a1, a2, a3, a4, a5} ≺E
{a3, a4} ≺E {a4} ≺E {a2, a5} ∼E {a2, a3, a5} ∼E {a2, a4, a5} ∼E {a2, a3, a4, a5} ≺E
{a3, a5} ∼E {a3, a4, a5} ≺E {a4, a5} ≺E {a5}.

Definition 18. Let X be a nonempty set endowed with a complete preorder ≾. Let ≾E be an
extension of ≾ to the power set of X. Then we say that ≾E satisfies the Independence Criterion
[IND] if for any nonempty subsets A, B ⊆ X and any element x ∈ X \ (A ∪ B) it holds true that
A ≾E B⇒ A ∪ {x} ≾E B ∪ {x}.

Notice that the independence criterion [IND] implies [WM].

Proposition 5. Let X be a finite set endowed with a total order ≾. If X has at least five elements,
there is no extension ≾E being a complete preorder satisfying [G] and [IND].

Proof. By Lemma 1, since [IND] implies [WM], given a nonempty subset A ⊆ X, we
have that A ∼E {min(A), max(A)}. There is no loss of generality in assuming now that
X = {a1, a2, a3, a4, a5} and a1 ≺ a2 ≺ a3 ≺ a4 ≺ a5. Assume that there is an extension
≾E that satisfies [G] and [IND]. First, we prove that {a2, a4} ≾E {a3}. To do so, we will
assume that this is false, and this will lead us to a contradiction: In fact, if {a3} ≺E {a2, a4},
using [IND] as regards a5, we get {a3, a5} ≾E {a2, a4, a5}. By Lemma 1, this implies
{a3, a5} ∼E {a3, a4, a5}, {a2, a4, a5} ∼E {a2, a5} ∼E {a2, a3, a4, a5}, so that, in particular, we
have {a3, a4, a5} ≾E {a2, a3, a4, a5}. Let now B = {a3, a4, a5}. Since a2 ≺ a3 ≺ a4 ≺ a5,
by [G] we get B ∪ {a2} ≺E B or equivalently {a2, a3, a4, a5} ≺E {a3, a4, a5}. This is a
contradiction. Therefore {a2, a4} ≾E {a3}.

At this stage, again proceeding by contradiction, we prove that [G] is incompatible
with [IND]. In fact, using now [IND], we get {a1, a2, a4} ≾E {a1, a3}. In a similar way to the
argument above, we use again Lemma 1 and obtain {a1, a3} ∼E {a1, a2, a3}, {a1, a2, a4} ∼E
{a1, a4} ∼E {a1, a2, a3, a4}. Hence {a1, a2, a3, a4} ≾E {a1, a2, a3}. Let now C = {a1, a2, a3}.
Since a3 ≺ a4 and a3 = max C, by [G] we have that C ≺E C ∪ {a4}, or equivalently
{a1, a2, a3} ≺E {a1, a2, a3, a4}. This is a contradiction.
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Example 1. The extension ≾E introduced in the example that appears in the proof of Proposition 4
satisfies [WM]. However, it fails to satisfy [IND]. To see this, notice that it is {a3} ∼E {a2, a4}, so
that in particular, {a3} ≾E {a2, a4}. However, {a3, a5} ≾ {a2, a4, a5} does not hold.

If in Proposition 5 above we substitute the condition of X having at least five elements,
putting instead that X has at most four elements, we get compatibility.

Proposition 6. Let X be a finite set whose cardinality is at most four, endowed with a total order of
≾. Then there is an extension ≾E that satisfies both [G] and [IND].

Proof. Without loss of generality, let X = {a1, a2, a3, a4} and ≾ such that a1 ≺ a2 ≺ a3 ≺ a4.
Take the extension ≾E given by ∅ ≺E {a1} ≺E {a1, a2} ≺E {a1, a3} ∼E {a1, a2, a3} ≺E
{a2} ≺E {a2, a3} ∼E {a1, a4} ∼E {a1, a2, a4} ∼E {a1, a3, a4} ∼E {a1, a2, a3, a4} ≺E {a3} ≺E
{a2, a4} ∼E {a2, a3, a4} ≺E {a3, a4} ≺E {a4}.

If we substitute [IND] by [SME] in the statement of Proposition 5 above, not only does
the result become true, but now, just with three elements, we get incompatibility, as already
stated in Proposition 1.

Concerning compatibility of criteria, the following classical result that involves, as
well as weak monotonicity [WM], the Kelly criterion [K] instead of the more demanding
Gärdenfors property [G] was proved in [18].

Proposition 7. Let X stand for a finite nonempty set. Let ≾ be a total order defined on X. Then
there exists an extension ≾E of ≾ to the power set of X that is a complete preorder and satisfies both
[K] and [WM].

Proof. See Proposition 2 in [18].

In the same spirit, we now prove the following result on the compatibility of the criteria.

Proposition 8. Let X stand for a finite nonempty set. Let ≾ be a total order defined on X. Then
there exists an extension ≾E of ≾ to the power set of X that is a complete preorder and satisfies both
[R] and [SME].

Proof. Just notice that given X = {a1, a2 . . . , an} with a1 ≺ a2 ≺ . . . ≺ an, the lexicographic
order (that considers each element of X as a letter and each subset of X as a word where its
case letters are also ordered by means of ≺, and the words are ordered lexicographically, as
in a dictionary) satisfies both [R] and [SME].

5. Scores: Definitions, Hierarchies, and Incompatibility Results

A substantial part of this Section 5 already appeared in [3]. We have decided to include
some definitions and results here for the sake of completeness and the well-understanding
of the ideas.

5.1. Some Background on Scores

The most commonly used scores (see, for example, [8,19–27]) are typical (in the sense
of Definition 6), as they are defined on the family of all finite subsets of the unit interval.
Some examples may be seen in [3]. From the second condition in Definition 6, a score can
be understood as a “mean value” (see [28] for more details).

As a sample, we furnish now another example, not included in [3]. This defines a
function s : F ([0, 1]) → [0, 1] that is a typical score: For each E = {e1, . . . , en} ∈ F ([0, 1]),

with e1 < . . . < en, and p a natural number, we define s(E) = (ep
1 + . . . + ep

n)
1
p .

To classify scores on HFEs, we may pay attention to the following aspects:

(i) Properties based on certain coherence features of the score (e.g., the addition of better
elements should never decrease the score).
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(ii) Properties based on the specific type of HFEs for which the score will be considered
(e.g., finite HFEs, interval HFEs, etc.).

Remark 8. The classification will not necessarily produce mutually exclusive sets.

5.2. On Coherence Features of Scores

First, we introduce some definitions and results related to coherence.

Definition 19. Suppose G ⊆ P([0, 1]). A score s on G is said to be best-worst monotonic for
elements [BWME] if for any x, y ∈ [0, 1] such that x < y, and additionally {x}, {x, y} and {y}
belong to G, it holds that s({x}) < s({x, y}) < s({y}).

Notice that this property is essentially the Barberà-Pattanaik property [BP] (see Definition 9)
adapted for scores.

Definition 20. Suppose that G ⊆ Π([0, 1]). We say that a score s on G is strongly monotonic
with respect to unions [SMU] when for each A, B, A ∪ B ∈ G and such that a < b for every a ∈ A,
b ∈ B , it holds true that: s(A) < s(A ∪ B) < s(B).

[SMU] captures the following intuition: Adding better elements to a subset should
increase its score, and removing worse elements should also increase its score.

Remark 9. Notice that [SMU] implies [BWME]. However, the converse is not true in general. A
counterexample appears in [3].

Given a non-empty subset A of the unit interval [0, 1] and real numbers α, β > 0,
we define the set αA as αA = {α · t : t ∈ A}. Also, we define the set β + A as follows:
β + A = {β + t : t ∈ A}. Depending on A and α, β, the resulting sets αA and/or β + A
may or may not be subsets of [0, 1].

Definition 21. Suppose now that G ⊆ Π([0, 1]). We say that a score s on G is algebraically
coherent with respect to a dilatation [ACD] when for each A ∈ G and α > 0 such that αA also
belongs to G it holds true that s(αA) = αs(A).

Similarly, we say that a score s on G is algebraically coherent with respect to a translation
[ACT] when for each A ∈ G and β > 0 such that A + β also belongs to G it holds true that
s(A + β) = s(A) + β.

Remark 10. Many typical scores were introduced in [3] satisfy both [ACD] and [ACT].

Definition 22. Suppose G ⊆ P([0, 1]). We say that a score s on G satisfies translation invariance
[TI] when for each A ∈ G such that A + ε ∈ G (with ε > 0), it holds true that s(A) < s(A + ε).

Definition 23. Let G ⊆ P([0, 1]). We say that a score s on G satisfies the (adapted (We say here
“adapted” Gärdenfors property since this property was introduced by Gärdenfors [4] in 1976 just
to deal with finite subsets, so that the original definition was stated making reference to maxima
and minima instead of suprema and infima. (Remember Definition 8 above))) Gärdenfors property
[G] if for every A ∈ Π([0, 1]) and any element x /∈ A such that A, A ∪ {x} ∈ G the following two
conditions hold:

[G1] x < inf A⇒ s(A ∪ {x}) < s(A); [G2] sup A < x ⇒ s(A) < s(A ∪ {x}).

Remark 11. Among the classical scores (see [3]) defined for finite subsets of the unit interval
(TFHE’s), the minimum satisfies [G1], but not [G2]. Similarly, the maximum satisfies [G2] but
not [G1].
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Definition 24. Let G ⊆ P([0, 1]). We say that a score s on G satisfies the weak monotonicity
property [WM] if for every A, B ∈ Π([0, 1]) and x /∈ A ∪ B, such that A, B, A ∪ {x}, B ∪ {x} ∈
G, it holds true that s(A) < s(B)⇒ s(A ∪ {x}) < s(B ∪ {x}).

Remark 12. Notice that [WM] is a particular case of Definition 17 above for extensions of orderings.
It is not easy to find scores satisfying [WM], except maybe in situations dealing with special classes
of finite subsets of the unit interval (see, e.g., [29,30]).

A classical theorem by Kannai and Peleg [2] states this incompatibility result.

Proposition 9. Let G ⊆ P([0, 1]) such that there exists a subset A ⊆ [0, 1] whose cardinality is at
least 6, such that A and all its subsets belong to G. Then no score s on G satisfies both the adapted
Gärdenfors property [G] and the weak monotonicity property [WM].

Proof. See [2], p. 174. Observe also that this Proposition 9 is also a direct consequence of
Proposition 3 for extensions of orderings.

5.3. Scores Defined on Special Classes of Sets

All the results of this subsection appear in [3]. For this reason, we do not include
their proofs here. Nevertheless, the ideas involved in these results may affect Section 6.2 of
the next Section 6 when trying to induce impossibility results for extensions of orderings
mimicking the results got here for scores on HFEs.

Bearing this in mind, we now pay attention to scores that sometimes are not defined
on the whole set P([0, 1]) but instead act only on THFEs (namely, F ([0, 1])) or on intervals
I([0, 1]). In particular, we pay attention to scores defined on families G that include the set
of intervals I([0, 1]).

This gives rise to new definitions and results concerning the compatibility of the newly
introduced properties when imposed on those scores. These have been studied in depth
in [3]. We keep here just a sample of these new definitions and results to motivate their use
in Section 6 of the present paper when adapted to utility functions related to extensions
of orderings.

Definition 25. Suppose I([0, 1]) ⊆ G ⊆ P([0, 1]). A score s : G → [0, 1] is extremes monotonic
[EM] when it satisfies the following two conditions: [EM1]: 0 ⩽ b < b′ ⩽ 1 implies s([a, b]) <
s([a, b′]) for each a ∈ [0, b]; [EM2]: 0 ⩽ a < a′ ⩽ 1 implies s([a, b]) < s([a′, b]) for each
b ∈ [a′, 1].

Moreover, s is strongly extreme monotonic [SEM] if for each a, b ∈ [0, 1] with a < b it holds
that s([0, a)) < s([0, a]) < s([0, b)).

Proposition 10. Consider a score s : G → [0, 1] with I([0, 1]) ⊆ G ⊆ P([0, 1]). Then s cannot
satisfy the property [SEM] of strong extremes monotonicity.

Moreover, s cannot satisfy both [SMU] and [EM1].

Proof. See Lemmas 1 and 2 in [3].

6. Comparisons and Analogies between the Theory of Extension of Orderings and the
Theory of Scores on Hesitant Fuzzy Elements
6.1. From Extensions of Orderings to Scores

The theory of scores on HFEs can be considered a particular case of that of extensions
of orderings from a set to its power set. In fact, if we consider the usual total order ≤ on the
unit interval [0, 1] and a score s defined on Π([0, 1]), the order ≤ is immediately extended
to a complete preorder ≤E on Π([0, 1]), but just declaring that A ≤E⇔ s(A) ≤ s(B), for
any nonempty subsets A, B of [0, 1].

Even if we only consider the theory of extensions of orderings on finite sets, we can also
adapt its results to particular cases of scores, namely scores defined on the family F ([0, 1])



Axioms 2024, 13, 549 11 of 14

THFEs. Actually, to compare two nonempty finite sets of [0, 1], say A = {x1, . . . , xn} and
B = {y1, . . . , yk}, first we endow the finite set A∪B with the total order≤ inherited from the
usual order of [0, 1], and, through a score s defined on F ([0, 1]), we extend it to a complete
preorder ≤ on the nonempty parts of A ∪ B by declaring that C ≤ D ⇔ s(C) ≤ s(D).

What is clear now is that the impossibility results arising from extensions of orderings
from a set to its power set have a parallel result on scores: Proposition 3 on extensions
induces Proposition 9 on scores.

Definition 26. Let G ⊆ P([0, 1]). We say that a score s on G satisfies the weak monotonicity
property of second type [WM2] if for every A, B ∈ Π([0, 1]) and x /∈ A ∪ B, such that A, B, A ∪
{x}, B ∪ {x} ∈ G, it holds true that s(A) < s(B) ⇒ s(A ∪ {x}) ≤ s(B ∪ {x}). Similarly, it
satisfies the weak monotonicity property of the third type [WM3] if for every A, B ∈ Π([0, 1])
and x /∈ A ∪ B, such that A, B, A ∪ {x}, B ∪ {x} ∈ G, it holds true that s(A) ≤ s(B) ⇒
s(A ∪ {x}) ≤ s(B ∪ {x}).

Proposition 3 for extensions of orderings also implies the following Proposition 11.

Proposition 11. Let G ⊆ P([0, 1]) such that there exists a subset A ⊆ [0, 1] whose cardinality is
at least 6, such that A and all its subsets belong to G. Then there is no score s on G that satisfies both
the adapted Gärdenfors property [G] and the weak monotonicity property of the second type [WM2].

And Proposition 5 immediately gives rise to the following result for scores.

Proposition 12. Let G ⊆ P([0, 1]) such that there exists a subset A ⊆ [0, 1] whose cardinality is
at least 5, such that A and all its subsets belong to G. Then there is no score s on G that satisfies both
the adapted Gärdenfors property [G] and the weak monotonicity property of the third type [WM3].

Needless to say, these cases are just a sample. That is, the key fact here is that
impossibility results encountered in the framework of the extensions of orderings from a
set to its power set (a.k.a, “ranking sets of objects”, see [1]) immediately induce parallel
results on the theory of scores on hesitant fuzzy elements.

A remarkable fact here is that, to the extent of what we know and perceive, a large part
of these results of the impossibility of extensions of orderings turn out to be little known, if
not ignored, by a substantial part of the researchers in fuzzy set theory, dealing with scores
on hesitant fuzzy elements.

6.2. From Scores to Extensions of Orderings

The converse situation, that is, using some results on scores on hesitant fuzzy elements
to get new (im)possibility theorems on extensions of total orders from a nonempty set to
its power set, is not so direct. Since the extension of orderings is a more general setting, it
may happen that some results on scores could not be translated into one for extensions of
orderings, in the most general case (extensions that start from a total order defined on a
nonempty set X, not necessarily finite).

In addition, the results on scores have [0, 1] as a starting point, that is, as a totally
ordered set through the usual order ≤, on whose power set we want to define some score s
accomplishing some properties or criteria. To translate this to some abstract set X endowed
with a total order ≾, we will need that X has some additional structure (e.g., topological)
that could, in some way, remind us of [0, 1].

Let us now discuss how to adapt Definition 25, Proposition 10, and some other
definitions and results introduced in [1] to the framework of extensions of orderings from a
set to its power set.

In what follows, X will stand for a nonempty set, and we will also assume that it is
endowed with a total order ≾. We want to extend ≾ to a complete preorder (i.e., now we
will admit ties), say ≾E, defined on the power set of X.
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Given a, b ∈ X with a ≺ b we denote by [a, b] = {x ∈ X : a ≾ x ≾ b}; (a, b) = {x ∈
X : a ≺ x ≺ b}; [a, b) = {x ∈ X : a ≾ x ≺ b}; (a, b] = {x ∈ X : a ≺ x ≾ b}. Also, given
a ∈ X, we denote (a,→) = {x ∈ X : a ≺ x}; [a,→) = {x ∈ X : a ≾ x}; (←, a) = {x ∈
X : x ≺ a}; (←, a] = {x ∈ X : x ≾ a}.

Definition 27. An extension ≾E of ≾ to the power set of X satisfies the property of interval compati-
bility [IC] if given a, b ∈ X with a ≺ b, it holds true that (a, b) ∼E [a, b] ∼E [a, b) ∼E (a, b].

Remark 13. This property [IC] is very demanding. It forces the total order ≾ on X to be dense-in-
itself. That is, if a ≺ b, there is some other element c ∈ X such that a ≺ c ≺ b. The reason is that
the extension ≾E should accomplish, on the one hand, that {a} ≺E {b}. But, on the other hand, by
[IC] we have that [a, b) = {a}, whereas (a, b] = {b}, and [IC] then would imply that {a} ∼E {b},
a contradiction. As a clear consequence X should be infinite.

Definition 28. An extension ≾E of ≾ to the power set of X is extreme monotonic [EM] when it
satisfies the following two conditions:

[EM1] If b ≺ c, then [a, b] ≺E [a, c] holds for every a ≾ b (a, b, c ∈ X);
[EM2] If b ≺ c, then [b, a] ≺E [c, a] holds for every c ≾ a (a, b, c ∈ X).
Moreover, it is strongly extreme monotonic [SEM] if for each a, b ∈ X with a ≺ b ≺ c, it

holds that [a, b) ≺E [a, b] ≺E [a, c) ≺E [a, c].

Remark 14. This new property, [SEM], is also very demanding. If X has at least three elements, the
total order ≾ is almost “dense-in-itself” in the following sense: If a ≺ b ≺ c there exists d ∈ X with
b ≺ d ≺ c. Otherwise, [a, b] = [a, c), so that [a, b] ≺E [a, c) becomes impossible. In particular, X
should be infinite, too.

The results we can obtain now for extensions of orderings, after adapting some
impossibility results for scores, have a strong relationship with the existence of a utility
function. The reason is the following: If a complete preorder ≾ on a nonempty set Z
has a utility representation u, there is no loss of generality in considering that u takes
values in [0, 1]. Consequently, impossibility results for scores, adapted now to criteria of
extensions of orderings from a set to its power set (see, e.g., Proposition 13 below), tell us
the following key fact Either the extension ≾E cannot be a complete preorder, or if it is, then
it does not admit a utility function. The first situation is typical for impossibility results on
finite sets. The reason is that any complete preorder on a finite set always admits a utility
representation. Moreover, if a set X is finite, its power set is also finite (see e.g., the first
three chapters in [31]).

Proposition 13. Let X be a set whose cardinality is at least that of the continuum. Suppose that
X is endowed with a total order ≾. Let ≾E be a complete preorder on the power set of X that is an
extension of ≾. Then, if ≾E satisfies [SEM], it does not admit a utility representation.

Proof. This is analogous to the first part of Proposition 10 for scores. Suppose by con-
tradiction that u is a utility function for ≾E. Take x ∈ X with either [x,→) or (←, x]
having the cardinality of the continuum. (We will assume the first possibility, without
loss of generality). Now, observe that for any x, y ∈ X with x ≺ y, z, we have that
a = u([x, y)) < b = u([x, y]) < c = u([x, z)) < d = u([x, z]). So there exists a rational
number qy ∈ (a, b) as well as another rational number qz ∈ (c, d), and by construction
qz > qy. But this leads to a contradiction since Q is countable.

Proposition 14. Let X be a set whose cardinality is at least that of the continuum. Suppose that
X is endowed with a total order ≾. Let ≾E be a complete preorder on the power set of X that is an
extension of ≾. Then, if ≾E satisfies [GBP], it does not admit a utility representation.
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Proof. This is analogous to the second part of Proposition 10 for scores. Suppose by
contradiction that u is a utility function for ≾E. Take x ∈ X with either [x,→) or (←, x]
having the cardinality of the continuum. (We will assume the first possibility, without
loss of generality). Now, observe that for any x, y ∈ X with x ≺ y, z, we have that
[x, y) ≺E [x, y] ≺E {y} by [GBP]:Moreover, for the same reason, [x, y] ≺E [x, z) ≺E (y, z).
As in Proposition 14, a = u([x, y)) < b = u([x, y]) < c = u([x, z)) < d = u([x, z]), and we
finally arrive at a contradiction.

7. Concluding Remarks and Lines for Future Research

The main objective of this paper has been to show analogies between two apparently
disparate theories. We have established some parallelism between the (more general)
theory of extensions of ordering from a set to its power set and the theory of defining scores
on hesitant fuzzy elements. Thus, each possibility or impossibility result encountered in
the theory of ranking sets of objects (i.e., extending total orders from a set to its power
set) immediately generates a parallel result of the same kind (possibility or impossibility)
concerning scores on HFEs. Moreover, some possibility or impossibility results on scores
on HFEs can be adapted somehow to obtain parallel results on extensions of orderings.

As a line for future research, we suggest exploring in depth both theories, searching
for (im)-possibility results that, being well known in one of the frameworks, have not been
used or even commented on in the other. Therefore, we could complete (or, at least, enlarge)
the panorama of possibility/impossibility theorems arising in both theories: extension of
orderings from a set to its power set vs. scores on HFEs.
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