Neutrosophic Analysis of Experimental Data Using Neutrosophic Graeco-Latin Square Design
Abstract
:1. Introduction
2. Methods Neutrosophic Graeco-Latin Square Design
2.1. Neutrosophic Graeco-Latin Square Design Model
2.2. Calculation of Sum of Squares
2.3. Hypothesis Tests for the Treatments, Row, and Column Effects
2.4. Confidence Intervals for the Treatment Mean Differences
3. Illustration: Description of the Experiment
4. Results
4.1. Summary Statistics
4.2. Hypotheses Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Euler, L. Recherches sur une nouvelle espèce de carrés magiques. Verh. Zeeuw. Gen. Weten. Vlissengen 1782, 9, 85–239. [Google Scholar]
- Klyve, D.; Lee Stemkoski, L. Graeco-Latin Squares and a Mistaken Conjecture of Euler. Coll. Math. J. 2006, 37, 2–15. [Google Scholar] [CrossRef]
- Dénes, J.; Keedwell, A.D. Latin Squares and Their Applications; Academic: New York, NY, USA, 1974. [Google Scholar]
- Bose, R.C.; Shrikhande, S.S.; Parker, E.T. Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J. Math. 1960, 12, 189–203. [Google Scholar] [CrossRef]
- Fisher, R.A.; Yates, F. Statistical Tables for Biological, Agricultural and Medical Research, 6th ed.; Hafner (Macmillan): New York, NY, USA, 1963. [Google Scholar]
- Dodge, Y.; Shah, K.R. Estimation of parameters in latin squares and graeco-latin squares with missing observations. Commun. Stat. Theory Methods 1977, 6, 1465–1472. [Google Scholar] [CrossRef]
- Bose, R.C.; Shrikhande, S.S.; Bhattacharya, K. On the Construction of Pairwise Orthogonal Latin Squares and the Falsity of a Conjecture of EULER; Mimeo. Series No. 222; University of North Carolina, Institute of Statistics: Chapel Hill, NC, USA, 1953. [Google Scholar]
- Bailey, R.A. Quasi-complete Latin squares: Construction and randomization. J. R. Stat. Soc. Ser. B 1984, 46, 323–334. [Google Scholar] [CrossRef]
- Hedayat, A. Self orthogonal Latin square designs and their importance. Biometrics 1973, 29, 393–396. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters, 2nd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; Wiley: New York, NY, USA, 1957. [Google Scholar]
- Martin, R.J.; Nadarajah, S. Graeco–Latin Square Designs. In Encyclopedia of Biostatistics; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Smarandache, F. Neutrosophic set, a generalization of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math. 2005, 24, 287–297. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 6th ed.; Info Learn Quest: Ann Arbor, MI, USA, 2007. [Google Scholar]
- Smarandache, F. Introduction to Neutrosophic Statistics; Sitech & Education Publishing: Columbus, OH, USA, 2014. [Google Scholar]
- Smarandache, F. Neutrosophic Statistics vs. Classical Statistics. In Nidus Idearum/Superluminal Physics, 3rd ed.; 2019; Volume 7, Available online: http://fs.unm.edu/NidusIdearum7-ed3.pdf (accessed on 19 July 2024).
- Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data; John Wiley & Sons: Hoboken, NJ, USA, 2019; Volume 793. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Zhang, G.; Wang, H.; Chen, Y.C.; Liu, Y.; Tarolli, C.G.; Crepeau, D.; Bukartyk, J.; Junna, M.R.; et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 2022, 28, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
Operators→ Raw Material↓ | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
(a) | |||||
1 | A | B | C | D | E |
2 | B | C | D | E | A |
3 | C | D | E | A | B |
4 | D | E | A | B | C |
5 | E | A | B | C | D |
(b) | |||||
1 | α | γ | ε | β | δ |
2 | β | δ | α | γ | ε |
3 | γ | ε | β | δ | α |
4 | δ | α | γ | ε | β |
5 | ε | β | δ | α | γ |
(c) | |||||
1 | Aα | Bγ | Cε | Dβ | Eδ |
2 | Bβ | Cδ | Dα | Eγ | Aε |
3 | Cγ | Dε | Eβ | Aδ | Bα |
4 | Dδ | Eα | Aγ | Bε | Cβ |
5 | Eε | Aβ | Bδ | Cα | Dγ |
Operators→ Raw Material↓ | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | Aα = [−0.99, −1.01] | Bγ = [−4.95, −5.05] | Cε = [−5.94, −6.06] | Dβ = [−0.99, −1.01] | Eδ = [−0.99, −1.01] |
2 | Bβ = [−7.92, −8.08] | Cδ = [−0.99, −1.01] | Dα = [4.95, 5.05] | Eγ = [1.98, 2.02] | Aε = [10.89, 11.11] |
3 | Cγ = [−6.93, −7.07] | Dε = [12.87, 13.13] | Eβ = [0.99, 1.01] | Aδ = [1.98, 2.02] | Bα = [−3.96, −4.04] |
4 | Dδ = [0.99, 1.01] | Eα = [5.94, 6.06] | Aγ = [0.99, 1.01] | Bε = [−1.98, −2.02] | Cβ = [−2.97, −3.03] |
5 | Eε = [−2.97, −3.03] | Aβ = [4.95, 5.05] | Bδ = [−4.95, −5.05] | Cα = [3.96, 4.04] | Dγ = [5.94, 6.06] |
[−17.82, −18.18] | [17.82, 18.18] | [−3.96, −4.04] | [4.95, 5.05] | [8.91, 9.09] |
Formulations | A | B | C | D | E |
---|---|---|---|---|---|
Mean | [−2.828, −2.772] | [−4.848, −4.752] | [−2.626, −2.574] | [4.752, 4.848] | [0.99, 1.01] |
Effect | [−4.808, −4.792] | [−6.828, −6.772] | [−4.606, −4.594] | [2.732, 2.868] | [−1.03, −0.97] |
Assemblies | δ | Ε | |||
Mean | [1.98, 2.02] | [−1.212, −1.188] | [−0.606, −0.594] | [−0.808, −0.792] | [2.574, 2.626] |
Effect | [0, 0.04] | [−3.192, −3.168] | [−2.586, −2.574] | [−2.788, −2.772] | [0.594, 0.646] |
Operators | O1 | O2 | O3 | O4 | O5 |
Mean | [−3.636, −3.564] | [3.564, 3.636] | [−0.808, −0.782] | [0.99, 1.01] | [1.782, 1.818] |
Effect | [−4.032, 3.968] | [3.16, 3.24] | [−1.204, −1.196] | [0.586, 0.614] | [1.378, 1.422] |
Raw Material | RM1 | RM2 | RM3 | RM4 | RM5 |
Mean | [−2.828, −2.772] | [1.782, 1.818] | [0.99, 1.01] | [0.594, 0.606] | [1.386, 1.414] |
Effect | [−3.224, −3.176] | [1.378, 1.422] | [0.586, 0.614] | [0.19, 0.21] | [0.982, 1.018] |
Source | DF | SS | F(4, 8) | p-Value |
---|---|---|---|---|
Formulation | 4 | [323.273, 336.793] | [6.988, 18.939] | [0.0004, 0.0101] |
Assemblies | 4 | [60.606, 63.406] | [1.310, 3.566] | [0.0594, 0.3443] |
Raw Material | 4 | [66.487, 69.527] | [1.437, 3.910] | [0.0478, 0.3064] |
Operator | 4 | [146.855, 157.095] | [3.174, 8.834] | [0.0049, 0.0771] |
Error | 8 | [35.566, 92.527] | ||
Total | 24 | [662.388, 689.748] |
Source | DF | SS | F(4, 8) | p-Value |
---|---|---|---|---|
Formulation | 4 | 330.033 | 10.30604327 | 0.00303 |
Assemblies | 4 | 62.006 | 1.936280671 | 0.19779 |
Raw Material | 4 | 68.007 | 2.123675767 | 0.16933 |
Operator | 4 | 151.975 | 4.745770651 | 0.02947 |
Error | 8 | 64.0465 | ||
Total | 24 | 676.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Moazzamigodarzi, M.; Rahimi, M. Neutrosophic Analysis of Experimental Data Using Neutrosophic Graeco-Latin Square Design. Axioms 2024, 13, 559. https://doi.org/10.3390/axioms13080559
Kumar P, Moazzamigodarzi M, Rahimi M. Neutrosophic Analysis of Experimental Data Using Neutrosophic Graeco-Latin Square Design. Axioms. 2024; 13(8):559. https://doi.org/10.3390/axioms13080559
Chicago/Turabian StyleKumar, Pranesh, Mahdieh Moazzamigodarzi, and Mohamadtaghi Rahimi. 2024. "Neutrosophic Analysis of Experimental Data Using Neutrosophic Graeco-Latin Square Design" Axioms 13, no. 8: 559. https://doi.org/10.3390/axioms13080559
APA StyleKumar, P., Moazzamigodarzi, M., & Rahimi, M. (2024). Neutrosophic Analysis of Experimental Data Using Neutrosophic Graeco-Latin Square Design. Axioms, 13(8), 559. https://doi.org/10.3390/axioms13080559