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Abstract: Experimental designs are commonly used to produce valid, defensible, and supportable
conclusions. Among commonly used block designs, the class of Latin square designs is used to
study factors or treatment levels expressed as Latin letters and applying two blocking factors in rows
and columns to simultaneously control two sources of nuisance variability. Another block design
in which the error can be controlled by blocking three nuisance factors is obtained by simply using
two superimposed Latin square designs, with one using the Latin letters and the other using the Greek
letters. Such a design is termed as a Graeco-Latin square (GLS) design. While observing or measuring
data in field or lab experiments, it is often noted to have vague, incomplete, and imprecise data for
whatsoever reasons. In this regard, researchers have proposed various emerging approaches, which
are based on fuzzy, intuitionistic fuzzy, and neutrosophic logic, and provide deeper understanding,
analysis, and interpretations of the data. In this paper, we provide a brief review of the history of
GLS designs and propose a neutrosophic Graeco-Latin square design, its model, and the analysis.
To illustrate this, we have considered an experimental study which analyzes the effects of different
formulations of a rocket propellant, which are used in aircrew escape systems, on the observed
burning rate.

Keywords: imprecise data; neutrosophic statistics; block designs; Graeco-Latin square design
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1. Introduction

These methods of experimental design and analysis are important tools available to
scientists and engineers to problem solve using statistical principles and techniques at
the data collection stage. These are useful for making valid and supportable conclusions.
Further, experimental design methods result in resource optimization, which results in
saving time and money. Euler [1] suggested the method of construction of a Graeco-Latin
square (GLS). In his paper, however, we acknowledge that Euler did not use the term
orthogonal Latin square or GLS for a pair of orthogonal Latin squares, although this was
derived from his work. He discussed the 4 × 4 square and considered two orthogonal Latin
squares. Each of the two squares had the property that each diagonal also contains all the
symbols. Euler discussed the Latin squares beginning with the famous 36-army-officers
problem and presented the paper in St. Petersburg in 1779. In the officers problem, he
denoted the regiments by the Latin letters a, b, c, d, e, and f and the ranks by the Greek
letters α, β, γ, δ, ε, and ζ. Euler explained the arrangement of 36 squares of Latin and Greek
letters in a 6 × 6 array, such that each row and column contains each Latin and Greek letter
only once. Further, he showed that a GLS of order 4n + 2, where n is a non-negative integer,
is not possible. Thus, GL squares of the order 2, 6, 10, 14 . . . are not possible. This conjecture,
known as Euler’s conjecture, remained a conjecture for several years. Klyve, D. and Lee
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Stemkoski, L. [2] discussed the history of Euler’s conjecture and repeated attempts at
proving and disproving it. In addition, they surveyed mathematical techniques developed
during the following two hundred years and which refuted Euler’s conjecture. Dénes, J.
and Keedwell, A.D. [3] prepared the first manuscript, devoted entirely to Latin squares,
which provided an excellent account of the literature in three areas. Specifically, these areas
include constructions of mutually orthogonal Latin squares (m.o.l.s.), geometric aspects of
Latin squares, and algebraic aspects of Latin squares. Although statistical, algebraic, and
geometric aspects were discussed, the major theme was the construction of orthogonal sets
of Latin squares. Bose, R.C., Shrikhande, S.S., and Parker, E.T. [4], in their paper on the
construction of m.o.l.s. and the falsity of Euler’s conjecture, proved that if two orthogonal
Latin squares of the order v > 2 do not exist, then 6 is the only Eulerian number. Fisher, R.A.
and Yates, F. [5] provided the Graeco-Latin tables of order 3 up to order 12 (not including
the order of six). Dodge, Y. and Shah, K.R. [6] showed that in an additive model with p-2
m.o.l.s., and if one omits up to p-1, observations from the same row, the same column, or
that which corresponds to the same letter in any of the squares, they will all have effects
that are estimable. Also, with only two missing observations not from the same row, the
same column or that corresponding to the same letter in any of the squares, one degree
of freedom is lost for each set of effects. Bose, R.C., Shrikhande, S.S., and Bhattacharya,
K. [7] improved the method by obtaining better bounds on the maximum possible number
of m.o.l.s. of the order v, denoted by N(v). Euler’s conjecture has been shown to be false
for all v = 4t + 2 > 6. Bailey, R.A. [8] developed a general method based on groups for
constructing quasi-complete Latin squares. This method provided a way to count the
number of equivalent quasi-complete Latin squares of a side of, at most, 9. He discussed
the randomization of such designs. He also provided an explicit construction for valid
randomization sets of quasi-complete Latin squares whose side is an odd prime power. It
was shown that randomization using a subset of all possible quasi-complete Latin squares
may be valid while it may not be for the whole set. Hedayat, A. [9] stated that a Latin
square design is called self-orthogonal if it is orthogonal to its transpose. He discussed such
designs, outlining their applications, existence, and construction. Additional results on
these designs are now available [10,11]. It is impossible to construct these designs for orders
2, 3, and 6. For other orders, they can be constructed. A table is given for orders 12, 14, 15,
16, 17, 18, 19, and 20. The table of such designs is available for n ≤ 20, n ̸= 2, 3, or 6. Martin,
R.J. and Nadarajah, S. [12] showed that a Graeco-Latin square exists for all positive integers
except for 1, 2, and 6. These GL squares, and the extension to sets of mutually orthogonal
Latin squares, are useful in constructing experimental designs in several situations wherein
there are four or more blocking or treatment structures. However, these are limited because,
essentially, the numbers of treatments, blocks, or factor levels must all be the same.

Now, in what follows, we consider an example that an experimenter is interested
in studying the effects of five different formulations (denoted by A, B, C, D, and E) of
a rocket propellant used in aircrew escape systems on the observed burning rate [13].
Each formulation is mixed from a batch of raw material that is only large enough for five
formulations to be tested. Further, several operators prepare formulations. It is anticipated
that there may be substantial differences in the skills and experience of the operators. The
experimenter stipulates that an additional factor, namely, test assemblies, could also be
of importance as a contributing factor to the response variable burning rate. Let five test
assemblies be denoted by the Greek letters α, β, γ, δ, and ε. Thus, it would seem that there
are effects of three nuisance factors to be averaged out in the design. These nuisance factors
are batches of raw material, operators, and test assemblies. The appropriate design for this
problem consists of testing each formulation exactly once in each batch of raw material, for
each formulation to be prepared and in each test assembly exactly once by each of the five
operators. Thus, the experimenter considers a 5 × 5 Latin square design with treatments
denoted by Latin letters A, B, C, D, and E, and superimposes on it a second 5 × 5 Latin
square in which the test assemblies are denoted by Greek letters α, β, γ, δ, and ε. These two
squares, when superimposed, have the property that each Greek letter appears once and
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only once with each Latin letter. Thus, we have the design obtained a Graeco-Latin square
design. Since the data obtained from this experiment may have precise and/or imprecise
values, our analysis needs to consider this fact. Smarandache [14] proposed neutrosophic
logic, that each proposition has the degree of truth T, the degree of indeterminacy (neither
true nor false) I, and the degree of falsity F. Here, T, I, and F are standard or non-standard
real subsets of the non-standard unit interval ]−0,1+[. The components T, I, and F are called
neutrosophic components. Smarandache [15] generalized the intuitionistic fuzzy logic (IFL)
and other logics to neutrosophic logic (NL). Further, the differences between IFL and NL
(and the corresponding intuitionistic fuzzy set and neutrosophic set) are discussed.

In neutrosophic statistics [16,17], which presents the classical statistics using the
neutrosophic logic, the data are represented in terms of neutrosophic values. That means
the data have the form (T, I, F), where T expresses the truth, F represents the falsity, and I
represents the indeterminacy. A neutrosophic datum x can be expressed as x = d + i, where
d is the determinate or sure part of x, and i is the indeterminate or unsure part of x. As
an example, a data value x = 1 + i, where i ∈ [0, 0.7], is equivalent to x ∈ [1, 1.7]. That
means, for sure, that x ≥ 1 (meaning that the determinate part of x is 1). Meanwhile, the
indeterminate part i ∈ [0, 0.7] means the possibility for number x to be greater than or equal
to 1 but less than or equal to 1.7. Further, any precise (crisp) data value, say x = 5, can be
expressed as the neutrosophic datum x = 5 + i, where i ∈ [0, 0] = [5, 5].

In Section 2, we present the neutrosophic Graeco-Latin square design, and its statistical
model [11]. Then, we provide the sum of squares formula, the hypothesis tests for the
treatments, and the row and column effects. This is followed by confidence intervals
for the treatment mean differences. In Section 3, for the illustration of the neutrosophic
Graeco-Latin square design analysis, we consider an example. This example is adapted
from the textbook by Montgomery [13]. The example provides data which were collected
using the Graeco-Latin square design for studying the effects of five different formulations
(denoted by A, B, C, D, and E) of a rocket propellant used in aircrew escape systems on
the observed burning rate by the operators (1, 2, 3, 4, and 5). In Section 4, we present the
summary statistics and the results about hypothesis testing from the analysis of variance
(ANOVA). In Section 5, we conclude the research findings. A list of references is given in
the bibliography.

2. Methods Neutrosophic Graeco-Latin Square Design

To compare p treatment (factor) effects in an experiment, a p × p neutrosophic Graeco-
Latin square design (NGLSD) is a p × p Latin square design with treatments written as
the Latin letters A, B, C, D, and E, and superimposed on it is a second p × p Latin square
in which the treatments are denoted by the Greek letters α, β, γ, δ, and ε. These two
Latin squares have the property that each Greek letter appears once and only once with
each Latin letter. Blocking factors and treatments are randomly assigned to the rows and
columns of the squares with Latin letters and Greek letters. The treatment effects and/or
data collected from such a design are neutrosophic data.

2.1. Neutrosophic Graeco-Latin Square Design Model

The linear model for the neutrosophic Graeco-Latin square design is described as

YN
ijkl= µN+θN

i + ρ
N
j + φN

k + ωN
l + εijkl ; i, j, k, l = 1, 2, . . . p,

where YN
i,j,k,l = the response of the lth Latin letter treatment and the kth Greek letter treatment

from the (i, j) cell, µN = the general location parameter (overall mean),ωN
l = the lth Latin

treatment effect, θN
i = the ith row factor effect, ρN

j = the jth column factor effect, φN
k = the

kth Greek letter treatment effect, and εijkl = the experimental random error associated with
the lth Latin letter treatment and the kth Greek letter treatment observation from the (i, j)
cell. Random errors εijkl are assumed to be independent following neutrosophic Normal
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distribution, i.e.,NN
(
0, σ2). The number of treatments to be compared is denoted by p. The

total number of runs (observations) in the NGLSD experiment is NN = p × p.

2.2. Calculation of Sum of Squares

Latin-letter treatment sum of squares (LTrSS) = 1
p ∑l y2

...l −
y2

....
p×p , d.f. = p − 1.

Greek-letter treatment sum of squares (GTrSS) = 1
p ∑k y2

..k. −
y2

....
p×p , d.f. = p − 1.

Row sum of squares (RSS) = 1
p ∑i y2

i... −
y2

....
p×p , d.f. = p − 1.

Column sum of squares (CSS) = 1
p ∑j y2

.j.. −
y2

....
p×p , d.f. = p − 1.

Total sum of squares (TSS) = ∑ijkl y2
ijkl −

y2
....

p×p , d.f. = p2 − 1.
Error sum of squares (ESS) = TSS−LTrSS−GTrSS−RSS−CSS, d.f. = (p − 1)(p − 3).

2.3. Hypothesis Tests for the Treatments, Row, and Column Effects

Latin-Letter Treatment Effects
Null hypothesis: τN

1 = τN
2 = . . . = τN

p = 0.

Alternative hypothesis: at least one of τN
l

′s is not equal to zero.

Test statistics follow the F-distribution, i.e., F(p − 1, (p − 1)(p − 3))
= (p − 1)(p − 3)LTrSS/(p − 1)ESS.

Row Effects
Null hypothesis: αN

1 = αN
2 = . . . = αN

p = 0.

Alternative hypothesis: at least one of αN
i
′s is not equal to zero.

Test statistics follow the F-distribution, i.e.,

F(p − 1, (p − 1)(p − 3 )) = (p − 1)(p − 3)RSS/(p − 1)ESS.

Column Effects
Null hypothesis: βN

1 = βN
2 = . . . = βN

p = 0.

Alternative hypothesis: at least one of βN
j
′s is not equal to zero.

Test statistics follow the F-distribution, i.e.,

F(p − 1, (p − 1)(p − 3 )) = (p − 1)(p − 3)CSS/(p − 1)ESS.

Greek-Letter Treatment Effects
Null hypothesis: γN

1 = γN
2 = . . . = γN

p = 0.

Alternative hypothesis: at least one of γN
i
′s is not equal to zero.

Test statistics follow the F-distribution, i.e.,

F(p − 1, (p − 1)(p − 3 )) = (p − 1)(p − 3)GTrSS/(p − 1)ESS.

2.4. Confidence Intervals for the Treatment Mean Differences

The 100(1 − α)% confidence interval for the difference between two means µA − µB:

µ̂A − µ̂B ± tnA+nB−2, α
2
×

[
MESS

nA
+

MESS
nB

]0.5
,

where the mean error sum of squares is denoted by MESS = ESS
(p−1)(p−3) .

3. Illustration: Description of the Experiment

An experimenter is interested in comparing the effects of five different formulations
(denoted by A, B, C, D, and E) of a rocket propellant used in aircrew escape systems on
the observed burning rate [10]. Each formulation is mixed from a batch of raw material
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that is only large enough for five formulations to be tested. Further, several operators will
prepare formulations. It is anticipated that there may be substantial differences in the skills
and experience of the operators. The experimenter stipulates that an additional factor,
test assemblies, could be of importance. Let there be five test assemblies denoted by the
Greek letters α, β, γ, δ, and ε. Thus, it would seem that there are three nuisance factors
to be averaged out in the design: batches of raw material, operators, and test assemblies.
The appropriate design for this problem consists of testing each formulation exactly once
in each batch of raw material type, for each formulation to be prepared, and in each test
assembly exactly once by each of the five operators (1, 2, 3, 4, and 5).

Thus, the experimenter considers a 5 × 5 Latin square design with treatments denoted
by the Latin letters A, B, C, D, and E as given in Table 1a.

Table 1. (a) 5 × 5 Latin square design with treatments as Latin letters A, B, C, D, and E. (b) 5 × 5 Latin
square design with treatments as Greek letters α, β, γ, δ, and ε. (c) 5 × 5 Graeco-Latin square design
with treatments as Latin letters A, B, C, D, and E, with treatments as Greek letters α, β, γ, δ, and ε

and operators denoted as 1, 2, 3, 4, and 5.

Operators→
Raw Material↓ 1 2 3 4 5

(a)

1 A B C D E
2 B C D E A
3 C D E A B
4 D E A B C
5 E A B C D

(b)

1 α γ ε β δ

2 β δ α γ ε

3 γ ε β δ α

4 δ α γ ε β

5 ε β δ α γ

(c)

1 Aα Bγ Cε Dβ Eδ
2 Bβ Cδ Dα Eγ Aε

3 Cγ Dε Eβ Aδ Bα
4 Dδ Eα Aγ Bε Cβ

5 Eε Aβ Bδ Cα Dγ

And a 5 × 5 Latin square design with treatments as Greek letters α, β, γ, δ, and ε as
given in Table 1b.

The two Latin squares in Table 1a,b are superimposed such that each Greek letter
appears once and only once with each Latin letter. Two Latin squares are said to be
orthogonal, and the design obtained is called a Graeco-Latin square design, as given in
Table 1c.

In Table 2, we summarize the neutrosophic data after coding obtained by subtracting
25 from each observed burning rate value.

Table 2. Neutrosophic coded burning rate data in the rocket propellent experiment.

Operators→
Raw Material↓ 1 2 3 4 5

1 Aα = [−0.99, −1.01] Bγ = [−4.95, −5.05] Cε = [−5.94, −6.06] Dβ = [−0.99, −1.01] Eδ = [−0.99, −1.01]
2 Bβ = [−7.92, −8.08] Cδ = [−0.99, −1.01] Dα = [4.95, 5.05] Eγ = [1.98, 2.02] Aε = [10.89, 11.11]
3 Cγ = [−6.93, −7.07] Dε = [12.87, 13.13] Eβ = [0.99, 1.01] Aδ = [1.98, 2.02] Bα = [−3.96, −4.04]
4 Dδ = [0.99, 1.01] Eα = [5.94, 6.06] Aγ = [0.99, 1.01] Bε = [−1.98, −2.02] Cβ = [−2.97, −3.03]
5 Eε = [−2.97, −3.03] Aβ = [4.95, 5.05] Bδ = [−4.95, −5.05] Cα = [3.96, 4.04] Dγ = [5.94, 6.06]

∑l y.j.. [−17.82, −18.18] [17.82, 18.18] [−3.96, −4.04] [4.95, 5.05] [8.91, 9.09]
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4. Results

The experimental data are analyzed using the 5 × 5 neutrosophic Graeco-Latin square
design. The sums of squares of five different formulations of a rocket propellant (A, B, C,
D, and E), five types of raw materials (RM1, RM2, RM3, RM4, and RM5), five operators
(O1, O2, O3, O4, and O5), and five assemblies (α, β, γ, δ, and ε) are calculated. These
calculations are presented in an ANOVA table. The results are discussed below.

4.1. Summary Statistics

The average burning rates and their effects due to different formulations are presented
in Table 3.

Table 3. Neutrosophic summary statistics of average burning rate and effects due to formulations in
rocket propellant experiment.

Formulations A B C D E

Mean [−2.828, −2.772] [−4.848, −4.752] [−2.626, −2.574] [4.752, 4.848] [0.99, 1.01]
Effect [−4.808, −4.792] [−6.828, −6.772] [−4.606, −4.594] [2.732, 2.868] [−1.03, −0.97]

Assemblies α β γ δ E
Mean [1.98, 2.02] [−1.212, −1.188] [−0.606, −0.594] [−0.808, −0.792] [2.574, 2.626]
Effect [0, 0.04] [−3.192, −3.168] [−2.586, −2.574] [−2.788, −2.772] [0.594, 0.646]

Operators O1 O2 O3 O4 O5
Mean [−3.636, −3.564] [3.564, 3.636] [−0.808, −0.782] [0.99, 1.01] [1.782, 1.818]
Effect [−4.032, 3.968] [3.16, 3.24] [−1.204, −1.196] [0.586, 0.614] [1.378, 1.422]

Raw Material RM1 RM2 RM3 RM4 RM5
Mean [−2.828, −2.772] [1.782, 1.818] [0.99, 1.01] [0.594, 0.606] [1.386, 1.414]
Effect [−3.224, −3.176] [1.378, 1.422] [0.586, 0.614] [0.19, 0.21] [0.982, 1.018]

It is noted from Table 3 that the maximum average burning rate is between 4.752
and 4.848 due to Formulation D and the minimum is between −4.848 and −4.752 due to
Formulation B. For Assembly ε, the maximum average burning rate is between 2.574 and
2.626, while for Assembly β, its minimum value is between −1.212 and −1.188. For the raw
material RM2, the maximum average burning rate is between 1.782 and 1.818, while for
the raw material RM1, its minimum value is between −2.828 and −2.772. The maximum
average burning rate due to Operator O2 is between 3.564 and 3.636, while the minimum
between −3.636 and −3.564 due to Operator O1.

In terms of effects, it may be noted that the maximum effect on burning rate is between
2.732 and 2.868 due to Formulation D, and that the minimum is between −6.828 and −6.772
due to Formulation B. Similarly, we can describe the neutrosophic effects due to assemblies,
raw materials, and operators.

Charts for the means of burning rates due to raw materials, operators, formulations,
and assemblies are given in Charts 1–4.
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clude that their effects are significantly different at the 5% significance level. However, for 
operators, since p-values are in the interval [0.0049, 0.0771], this indicates that there are 
likely to be differences due to operators as well. Since the error degrees of freedom is 8 
(low), tests may be less sensitive. 

For the comparison of results using the neutrosophic approach and the classical 
approach based on the crisp data, we present the classical ANOVA results in Table 5. 

Table 5. ANOVA table for the burning rate in rocket propellant experiment. 

Source DF SS F(4, 8) p-Value 
Formulation 4 330.033 10.30604327 0.00303 
Assemblies 4 62.006 1.936280671 0.19779 

Raw Material 4 68.007 2.123675767 0.16933 
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Chart 4. Average burning rates due to assemblies (α, β, γ, δ, and ε).
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4.2. Hypotheses Tests

The analysis of variance (ANOVA) table is prepared for the neutrosophic Graeco-Latin
square design and is shown in Table 4. The calculated p-values associated with the F-test
statistics are, respectively, noted as [0.0004, 0.0101] for the formulations, [0.0594, 0.3443] for
the assemblies, [0.0478, 0.3064] for the raw materials, and [0.0049, 0.0771] for the operators.

Table 4. Neutrosophic ANOVA table for the burning rate in rocket propellant experiment.

Source DF SS F(4, 8) p-Value

Formulation 4 [323.273, 336.793] [6.988, 18.939] [0.0004, 0.0101]
Assemblies 4 [60.606, 63.406] [1.310, 3.566] [0.0594, 0.3443]

Raw Material 4 [66.487, 69.527] [1.437, 3.910] [0.0478, 0.3064]
Operator 4 [146.855, 157.095] [3.174, 8.834] [0.0049, 0.0771]

Error 8 [35.566, 92.527]
Total 24 [662.388, 689.748]

Since the maximum p-value for comparing formulations is 0.0101, which is smaller
than the 5% significance level, the formulations have significantly different effects on
the burning rates. The p-values for the assemblies, raw materials, and operators are,
respectively, [0.0594, 0.3443], [0.0478, 0.3064], and [0.0049, 0.0771]. Thus, we may fail to
conclude that their effects are significantly different at the 5% significance level. However,
for operators, since p-values are in the interval [0.0049, 0.0771], this indicates that there are
likely to be differences due to operators as well. Since the error degrees of freedom is 8
(low), tests may be less sensitive.

For the comparison of results using the neutrosophic approach and the classical
approach based on the crisp data, we present the classical ANOVA results in Table 5.

Table 5. ANOVA table for the burning rate in rocket propellant experiment.

Source DF SS F(4, 8) p-Value

Formulation 4 330.033 10.30604327 0.00303
Assemblies 4 62.006 1.936280671 0.19779

Raw Material 4 68.007 2.123675767 0.16933
Operator 4 151.975 4.745770651 0.02947

Error 8 64.0465
Total 24 676.068

It is noted that the p-values for the hypothesis tests of formulation, assemblies, raw
materials, and operators from Table 4 are, respectively, [0.0004, 0.0101], [0.0594, 0.3443],
[0.0478, 0.3064], and [0.0049, 0.0771], while the p-values from Table 5 are 0.00303, 0.19779,
0.16933, and 0.02947. Thus, it may be noted that the p-values for all factors from the classical
ANOVA lie inside the neutrosphic p-value intervals from the neutrosophic ANOVA in
Table 4.

5. Conclusions

Neutrosophic logic, neutrosophic math, and neutrosophic statistics provide useful
tools to understand and study incomplete, vague, or imprecise information. We have
considered the application of a neutrosophic Graeco-Latin square design. The experimental
data analyzed using the neutrosophic statistics are for studying the effects of the formula-
tions of a rocket propellant used in aircrew escape systems on the observed burning rate.
The experiment considered three blocking factor operators, batches of raw material, and
assemblies. We have compared the results from our proposed neutrosophic method with
the classical crisp data method. It is noted that the proposed neutrosophic method results
are in agreement with the classical analysis results. We have shown that the formulations
are significantly different at the 1-percent significance level. We have also observed that
the neutrosophic method resulted in estimates of error with lesser degrees of freedom.
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Therefore, the replication of the experiment is recommended to increase the error degrees
of freedom. Further, in terms of missing data for analysis and design, the proposed neutro-
sophic design can address problems under the MAR missing data mechanisms similar to
these issues in the classical design [18]. A recent paper by Yang et al. [19] address the MAR
missing data mechanism in artificial intelligence-enabled detection and the assessment
of Parkinson’s disease using nocturnal breathing signals. Thus, the proposed neutro-
sophic design does not need a priori statistical assumptions when handling incomplete
missing information.
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