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Abstract: In this study, to approximate nabla sequential differential equations of fractional order,
a class of discrete Liouville–Caputo fractional operators is discussed. First, some special functions
are re-called that will be useful to make a connection with the proposed discrete nabla operators.
These operators exhibit inherent symmetrical properties which play a crucial role in ensuring the
consistency and stability of the method. Next, a formula is adopted for the solution of the discrete
system via binomial coefficients and analyzing the Riemann–Liouville fractional sum operator. The
symmetry in the binomial coefficients contributes to the precise approximation of the solutions.
Based on this analysis, the solution of its corresponding continuous case is obtained when the step
size p0 tends to 0. The transition from discrete to continuous domains highlights the symmetrical
nature of the fractional operators. Finally, an example is shown to testify the correctness of the
presented theoretical results. We discuss the comparison of the solutions of the operators along
with the numerical example, emphasizing the role of symmetry in the accuracy and reliability of the
numerical method.

Keywords: Liouville–Caputo fractional differences; approximation methods; mixed order fractional
models

MSC: 26A48; 26A51; 33B10; 39A12; 39B62

1. Introduction

Since the 1990s, fractional calculus (in both continuous and discrete versions) has
become an outstanding topic in applied mathematics research. The research work on
fractional calculus has continued to deepen with the advance in technology (see earlier
studies [1–6]). In the last few decades, many authors have studied fractional differential
equations and fractional systems formed by Riemann–Liouville (R-L) or Liouville–Caputo
(L-C) operators. In addition, these studies focus on the existence and uniqueness of their
solutions including initial and boundary conditions (see [7–11]).

Discrete fractional operators arising from general fractional calculus arise in a wide
range of applications and they have been of continued interest in applied mathematics
for over a century. In very recent years, discrete fractional operators have been widely
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used to discretize fractional order models for both linear and nonlinear systems of equa-
tions. These discretizations are often expressed via fractional differences and sums (see,
e.g., [5,12]). Numerous applications of discrete fractional equations may also be found
in modeling mathematical issues, such as mathematical analysis [13,14], mathematical
physics [15–17], uncertainty theory [18,19], stability analysis [20,21], and monotonicity and
positivity analyses [22–26].

Based on the current research articles, it is known that effective and important opera-
tors for analyzing the stability, existence, and uniqueness of fractional order systems are
R-L and L-C fractional operators (see, for example, [27–30]). Of relevant interest are the
steady states of such systems, where non-integer orders may appear, playing an important
role in the behavior of the solutions of the R-L or L-C problems (see, for example, [31–36]
and the references therein).

Recently, a fractional difference technique was used by Mozyrska et al. [37] to solve a
fractional differential problem of delta L-C type with specific initial value conditions:(

LC
(α−1)p0

∆α
p0

w
)
(n p0) = y(n p0 + (β − 1)p0),(

LC
(β−1)p0

∆β
p0 y

)
(n p0) = f

(
n p0, w(n p0 + (α − 1)p0)

)
,

with (
LC

(α−1)p0
∆α

p0
w
)
(0) = w0,

w((α − 1)p0) = w1,

where α, β ∈ (0, 1], p0 > 0, w0 and w1 are constant vectors in R.
However, the basic concepts of solving nabla L-C fractional problems still lack ad-

equate research. Thus, in this article, we present a numerical solution of a nabla L-C
fractional system by using the nabla fractional difference technique.

The innovative contents of this article are summarized below. Section 2 briefly reviews
the RL and L-C fractional operators and presents some useful existing concepts. Section 3
contains the main contribution of this article, where an L-C approximation algorithm based
on fractional derivatives is introduced, and the foundation of its solution and uniqueness
is examined by using the Lipschitz condition (LiC). Numerical problems are implemented
to illustrate the efficiency and accuracy of the proposed scheme in Section 4.

2. Preliminaries

In this section, we present a comprehensive introduction to R-L fractional operators
of order α > 0 and some related properties. Throughout the article, we suppose that
x1(np0) = n p0 − p0 and x2(np0) = n p0 + p0.

Definition 1 (see [1,38]). The R-L integral operator is defined by

(a Iα f )(t) :=
1

Γ(α)

∫ t

a
(t − r)α−1 f (r)dr for a < t, (1)

and its discrete version is given by

(
a∇−α

p0
f
)
(t) :=

p0

Γ(α)

t
p0

∑
r= a

p0
+1

(
t + p0 − rp0

)α−1
p0

f (rp0) for t ∈ Na+p0,p0 , (2)

where Na,p0 and tα
p0

are given by
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Na,p0 := {a, a + p0, a + 2p0, . . .}, (3)

tα
p0

= p0
α

Γ
(

t
p0

+ α
)

Γ
(

t
p0

) = Γ(α + 1)
( t

p0
+ α − 1
t

p0
− 1

)
p0

α, (4)

For t
p0

, α ∈ R such that neither t
p0

+ α nor t
p0

is a pole of Γ. Furthermore, we recall the binomial
formula (

β

α

)
:=

Γ(β + 1)
Γ(α + 1)Γ(β − α + 1)

. (5)

Remark 1. By considering Definition 1, it can be noted that(
a∇−α

p0
f
)
(t) =

p0
α

Γ(α)

n

∑
s=0

Γ(n − s + α)

Γ(n − s + 1)
f (a + sp0 + p0)

= p0
α

n

∑
s=0

(
n − s − (−α)− 1

n − s

)
f (a + sp0 + p0)

= p0
α

n

∑
s0=0

(−1)s0

(
−α

s0

)
f (a + p0 − s0 p0),

For t = a + (n + α)p0, n ∈ N0, and it is seen that (see [39])(
s0 − α − 1

s0

)
= (−1)s0

(
α

s0

)
, (6)

The following definitions present the R-L fractional operators associated with (1) and (2),
respectively.

Definition 2 (see [1,23,40]). For α ∈ [0, 1), the R-L fractional derivative is defined by(
RL

aDα f
)
(t) =

1
Γ(1 − α)

d
dt

∫ t

a
(t − r)−α f (r)dr for t > a, (7)

and the nabla R-L fractional difference is defined by

(
RL

a∇α
p0

f
)
(t) =

p0

Γ(−α)

t
p0

∑
r= a

p0
+1
(t + p0 − r p0)

−α−1
p0

f (r p0), (8)

For t ∈ Na+m p0,p0 , where m − 1 < α < m, m ∈ N1. It is worth noting that

tα
p0

=
Γ
(

t
p0

+ α
)

Γ
(

t
p0

) p0
α, (9)

such that tα
p0

→ 0 when Γ
(

t
p0

)
is undefined.

Specifically, the nabla difference operator can be expressed as follows:

(
∇p0 f

)
(t) =

1
p0

{
f (t)− f (t − p0)

}
for t ∈ Na+p0,p0 .

Below, we recall the corresponding L-C derivative and difference associated with
(1) and (2), respectively.
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Definition 3 (see [1,23,40] [Lemma 2.3]). Assume that α ∈ [0, 1). Then, the L-C fractional
derivative can be written as(

LC
aDα f

)
(t) =

∫ t

a

(t − r)−α

Γ(1 − α)

d
dr

f (r)dr

= lim
p0→0

1
p0α

[
t−a
p0

]
+1

∑
ȷ=0

(−1)ȷ

(
α

ȷ

)
f (t − ȷp0)−

(t − a)α

Γ(1 − α)
f (a). (10)

And the nabla Liouville–Caputo p0 fractional difference can be written as

(
LC

a∇α
p0

f
)
(t) =

p0

Γ(−α)

t
p0

∑
r= a

p0
+1
(t + p0 − r p0)

−α−1
p0

f (r p0)−
(t − a)−α

p0

Γ(1 − α)
f (a), (11)

for t in Na+p0,p0 .

Lemma 1 (see [23] [Property 2.1]). The following power difference formula can be deduced:

∇p0

(
tα

p0

)
= α tα−1

p0
,

for non-negative values of α, p0, and t in N0,p0 .

Lemma 2 (see [5] [Theorem 3.93]). For α > 0 and β ∈ R, one can have

a0
∇−α

p0
(t − a0)

β
p0 =

Γ(β + 1)
Γ(β + 1 + α)

(t − a0)
β+α
p0 , (12)

and

RL
a0
∇α

p0
(t − a0)

β
p0 =

Γ(β + 1)
Γ(β + 1 − α)

(t − a0)
β−α
p0 , (13)

where t ∈ Na0,p0 , and β + α, β − α ≥ 0.

Lemma 3 (see [5] [Theorem 3.107]). Let f be defined on Na0+p0,p0 with α, h, β > 0. Then,[
a0
∇−α

p0

(
a0
∇−β

p0 f
)]

(t) =
(

a0
∇−(α+β)

p0 f
)
(t) =

[
a0
∇−β

p0

(
a0
∇−α

p0
f
)]

(t), (14)

where t ∈ Na0,p0 .

Lemma 4. Suppose that f is defined on Na0,p0 , and 0 < α ≤ 1, p0 > 0. Then, we have[
a0
∇−α

p0

(
LC
a0
∇α

p0
f
)]

(t) = f (t)− f (a0). (15)

Proof. This proof can be deduced from the following identity (see [38] [Proposition 6]):[
a0
∇−α

p0

(
RL
a0
∇α

p0
f
)]

(t) = f (t),

using Definition (11) and identity (12).

Next, we consider binomial special functions, which are defined in [41].

Definition 4 (see [41]). For α, β > 0, we define ψκ,s and ψ̃κ,s as follows:
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ψκ,s(n p0) :=

{
(n−κ+ακ+βs

n−κ )p0
ακ+βs, when n ∈ Nκ ,

0, when n /∈ Nκ ,

and

ψ̃κ,s(n p0) :=

{
(n+µ−1

n )p0
β, for n ∈ N0,

0, for n /∈ N0,

for n, κ, s ∈ N0, α, β > 0 and µ = ακ + βs.

Remark 2 (see [41]). The above special function has some major properties:

(i) ψ0,0(n p0) = 1;

(ii) ψ1,0(n p0) =
(

0∇−α
p0

1
)
(n p0) = (n+α−1

n−1 )p0
α

and ψ0,1(n p0) =
(

0∇
−β
p0 1

)
(n p0) = (n+β−1

n−1 )p0
β;

(iii) ψ2,0(n p0) =
(

0∇−α
p0

1
)
(n p0 − p0) = (n+α−2

n−2 )p0
α;

(iv) ψκ,s(n p0) =

(
(n − κ + 1)p0

)ακ+βs

Γ(ακ + βs + 1)
.

(v) For 0 < α, β ≤ 1, and p0 > 0, we have(
0∇−α

p0
ψκ,s

)
(x1(np0)) = ψκ+1,s(n p0), (16)

and (
0∇

−β
p0 ψκ,s

)
(n p0) = ψκ,s+1(n p0). (17)

(vi) It can be noted, for n = 0, that

ψκ,s(0) = 0,

for κ > 0.

3. Solution of Difference Systems

In this section, our target is to approximate the following system of difference equa-
tions: (

LC
0∇α

p0
w
)
(x1(np0)) = y(x2(np0)),(

LC
0∇

β
p0 y

)
(n p0) = f

(
x2(np0), w(x1(np0))

)
,

(18)

subject to the conditions (
LC

0∇α
p0

w
)
(−2p0) = w0,

w(−p0) = w1,
(19)

where α, β ∈ (0, 1], p0 > 0, w0 and w1 are constant vectors in R.

Theorem 1. System (18) with (19) has the solution

w(x1(np0)) = w1 + ψ2,0(n p0)w0 +
(

0∇−α
p0

g
)
(x1(np0)), (20)
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where g(n p0) =
(

0∇
−β
p0 F

)
(x2(np0)) and F(x2(np0)) = f

(
x2(np0), w(x1(np0))

)
, for n ∈ N0.

Proof. By considering Lemma 4 with t = x2(np0), x1(np0), one can have[
0∇

−β
p0

(
LC

0∇
β
p0 y

)]
(x2(np0)) = y(x2(np0))− y(0)

=
(

LC
0∇α

p0
w
)
(x1(np0))− w0, (21)

and [
0∇−α

p0

(
LC

0∇α
p0

w
)]

(x1(np0)) = w(x1(np0))− w1. (22)

It follows from (21) that(
LC

0∇α
p0

w
)
(x1(np0)) = w0 +

(
0∇

−β
p0 F

)
(x2(np0)),

and it follows from this, Remark 2 (ii), and (22) that

w(x1(np0)) = w1 +
(

0∇−α
p0

[
w0 +

(
0∇

−β
p0 F

)
(x2(np0))

])
(x1(np0))

= w1 +
(

0∇−α
p0

1
)
(x1(np0))w0 +

(
0∇−α

p0
g
)
(x1(np0))

= w1 +

(
n − 2 + α

n − 2

)
p0

α w0 +
(

0∇−α
p0

g
)
(n p0)

= w1 + ψ2,0(n p0)w0 +
(

0∇−α
p0

g
)
(x1(np0)),

where g(n p0) =
(

0∇
−β
p0 F

)
(x2(np0)) and F(x2(np0)) = f

(
x2(np0), w(x1(np0))

)
, for n ∈ N0.

Hence, the proof is completed.

Remark 3. Following [42] [Theorem 4.1], we can deduce that system (18) has a unique solution
(i.e., (20) is unique) such that y and f satisfy the Lipschitz condition, i.e.,∣∣∣y(n1)− y(n2)

∣∣∣ ≤ L1
∣∣n1 − n2

∣∣,
and ∣∣∣ f (n, w)− f (n2, w̃)

∣∣∣ ≤ L2
∣∣w − w̃

∣∣,
for some positive constant L1 and L2.

In the following theorem, we examine the solution of a particular case of system (18).

Theorem 2. Systems (18) and (19) have the following solution:

w(x1(np0)) =
∞

∑
κ=0

Aκ
(
ψκ,κ w1 + ψκ+2,κ w0

)
(n p0), (23)

where f
(

x1(np0), w(x1(np0))
)
= A w(x1(np0)), and n ∈ N0.

Proof. First, we try to investigate (23). In the case of n = 0, it follows from (20) that

w(−p0) = w1 + ψ2,0(0)w0 +
(

0∇−α
p0

g
)
(−p0) = w1,
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which is equivalent to

w(−p0) =
(
ψ0,0 w1 + ψ2,0 w0

)
(0) +

∞

∑
κ=1

Aκ
(
ψκ,κ w1 + ψκ+1,κ w0

)
(0)︸ ︷︷ ︸

=0

,

according to Remark 2 (vi) and the convention that

(
0∇−α

p0
g
)
(−p0) =

p0

Γ(α)

−1

∑
r=1

(
−rp0

)α−1
p0

g(rp0) = 0.

Next, for n > 0, we define

wm+1(x1(np0)) = ψ0,0(n p0)w1 + ψ2,0(n p0)w0 +
(

0∇−α
p0

gm

)
(n p0),

where gm(n p0) =
(

0∇
−β
p0 Fm

)
(x2(np0)) and Fm(x2(np0)) = A wm(x1(np0)), for m ∈ N0.

Then, we see that

w1(x1(np0)) = ψ0,0(n p0)w1 + ψ2,0(n p0)w0 +
(

0∇−α
p0

g0

)
(x1(np0))

= ψ0,0(n p0)w1 + ψ2,0(n p0)w0

+ A w1

[
0∇−α

p0

(
0∇

−β
p0 1

)
(n p0)

]
(x1(np0))

= ψ0,0(n p0)w1 + ψ2,0(n p0)w0 + A w1

(
0∇−α

p0
ψ0,1

)
(x1(np0))

= ψ0,0(n p0)w1 + ψ2,0(n p0)w0 + A ψ1,1(n p0)w1,

where we use Remark 2 (iii), (v), and

g0(n p0) =
(

0∇
−β
p0 F0

)
(x2(np0)) = A w0(x1(np0))

(
0∇

−β
p0 1

)
(x2(np0))

= A w1 ψ0,1(n p0).

Using the same technique together with using Remark 2 (iii) and (v), we can deduce

w2(x1(np0)) = ψ0,0(n p0)w1 + ψ2,0(n p0)w0 +
(

0∇−α
p0

g1

)
(x1(np0))

= ψ0,0(n p0)w1 + ψ2,0(n p0)w0 + A
[
ψ1,1(n p0)w1 + ψ3,1(n p0)w0

]
+ A2 ψ2,2(n p0)w1,

where

g1(n p0) =
(

0∇
−β
p0 F1

)
(x2(np0))

= A
[
w1

(
0∇

−β
p0 ψ0,0

)
(n p0) + w0

(
0∇

−β
p0 ψ2,0

)
(n p0) + A w1

(
0∇

−β
p0 ψ1,1

)
(n p0)

]
= A

[
ψ0,1(n p0)w1 + ψ2,1(n p0)w0 + A ψ1,2(n p0)w1

]
.

By the same process, we can obtain the desired result in (23).

The following lemmas are useful to obtain our main result.

Lemma 5. If 0 < α ≤ 1, then the following summation formula can be obtained:

lim
p0→0

(
tp0 − a

)−α
= (t − a)−α,
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for p0 > 0, t > a, where a ∈ R, tp0 = a + p0 + n p0, and n =
[

t−a
p0

]
+ 1.

Proof. Consider (
tp0 − a

)−α
=

Γ(n + 1 − α)

Γ(n + 1)
p0

−α

=
Γ(n + 1 − α)

Γ(n + 1)
(
tp0 − a

)−α
(n + 1)α.

As p0 → 0 (or n → ∞), it follows that

lim
p0→0

(
tp0 − a

)−α
= lim

p0→0

Γ(n + 1 − α)

Γ(n + 1)
(
tp0 − a

)−α
(n + 1)α

= lim
p0→0

(
tp0 − a

)−α · lim
n→∞

Γ(n + 1 − α)

Γ(n + 1)
(n + 1)α

≈ (t − a)−α,

where it is seen that

lim
p0→0

(
tp0 − a

)
= lim

p0→0

(
p0 + (t − a) + p0

)
= t − a,

and the asymptotic formula is (see [39])

lim
n→∞

Γ(n + 1 − α)

Γ(n + 1)
(n + 1)α = 1 + O

(
1

n + 1

)
≈ 1. (24)

This proves the result.

Lemma 6. If α ∈ (0, 1], then the following summation formula holds:(
RL

a∇α
p0

w
)
(tp0) = p0

−α
n

∑
ȷ=0

(−1)ȷ

(
α

ȷ

)
w
(
tp0 − ȷp0

)
, (25)

for t > a and p0 > 0 with a ∈ R, tp0 = a + p0 + n p0, and n ∈ N0.

Proof. Considering Definition (8), one can have

(
RL

a∇α
p0

w
)
(tp0) =

1
Γ(−α)

t−a
p0

−1

∑
m=0

(
tp0 − a − mp0

)−α−1
p0

p0 w(a + p0 + mp0)

= p0

n

∑
m=0

(
np0 + p0 − mp0

)−α−1
p0

Γ(−α)
w(a + p0 + mp0)

= p0
−α

n

∑
m=0

Γ(n − m − α)

Γ(n − m + 1) Γ(−α)
w(a + p0 + mp0)

= p0
−α

n

∑
m=0

(
n − m − α − 1

n − m

)
w(a + p0 + mp0)

= p0
−α

n

∑
ȷ=0

(
ȷ − α − 1

ȷ

)
w(a + x2(np0)− ȷp0)
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= p0
−α

n

∑
ȷ=0

(−1)ȷ

(
α

ȷ

)
w(a + x2(np0)− ȷp0)

= p0
−α

n

∑
ȷ=0

(−1)ȷ

(
α

ȷ

)
w(tp0 − ȷp0),

where we used (6). Thus, the proof is completed.

Theorem 3. If 0 < α ≤ 1, w is a continuous function, and w′ is integrable on [a, Λ] with Λ > 0,
then, for p0 > 0 and t > a with a ∈ R, one can have(

LC
aDαw

)
(t) = lim

p0→0

(
LC

a∇α
p0

w
)
(tp0),

where tp0 = a + p0 + n p0 and n ∈ N0.

Proof. By using (25) in (11), we can deduce

(
LC

a∇α
p0

w
)
(tp0) = p0

−α
n

∑
ȷ=0

(−1)ȷ

(
α

ȷ

)
w
(
tp0 − ȷp0

)
−

(
tp0 − a

)−α

p0

Γ(1 − α)
w(a), (26)

for tp0 = a + p0 + n p0. As p0 → 0 on both sides of (26), we obtain the result by using
Lemma 5.

Proposition 1. If α ∈ (0, 1] and p0 > 0, then the solution of(
LC

0Dαw
)
(t) = f

(
t, w(t

)
,

w(0) = w0,

can be estimated with the solution of(
LC

a∇αw̃
)
(t) = f

(
t, w̃(t)

)
,

w̃(a) = w0,

via the following limit:

lim
p0→0

w̃
(
tp0

)
= w(t),

where tp0 = a + p0 + n p0 and n = [(t − p0)/p0] + 1.

Proposition 2. If α ∈ (0, 1] and p0 > 0, then the solution of[
LC

0Dβ
(

LC
0Dαw

)]
(t) = f

(
t, w(t)

)
,

w(0) = w0,

can be approximated with the solutions of (18) and (19) via the limit

lim
p0→0

w̃
(
tp0

)
= w(t),

where n and tp0 are given in Proposition 1.
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4. Numerical Tests

In this section, we will present the result of the numerical experiment in [40] to
demonstrate the effectiveness of the proposed technique.

For this reason, we consider(
LC

0Dαw
)
(t) = w(t) with w(0) = 1,

where its solution is given in [40] by

w(t) = E(tα) :=
∞

∑
κ=0

tα κ

Γ(α κ + 1)
.

To compare the efficiency of the methods, we report, in Figures 1 and 2, the actual com-
putational results (w) compared with the numerical results (w̃) in the cases of α = 1

2 and
t = 0, 0.1, . . . , 1 for different values of p0 and Λ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5
Exact

Approximation

(a) For p0 = 1
10 and Λ = 10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5
Exact

Approximation

(b) For p0 = 1
20 and Λ = 20.

Figure 1. Numerical results for different values of p0.

Furthermore, we know that[
LC

0Dα
(

LC
0Dαw

)]
(t) = w(t),(

LC
0Dαw

)
(0) = 1,

w(0) = 1,

where its exact solution is w(t) = E(tα).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5
Exact

Approximation

(a) p0 = 1
100 and Λ = 100.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5
Exact

Approximation

(b) p0 = 1
200 and Λ = 200.

Figure 2. Numerical results for different values of p0.

As a result, by considering Figures 1 and 2 and Tables 1 and 2, we conclude that the
exact solution can be obtained from w̃ such that p0 is sufficiently small. This implies the
applicability of Theorem 3 where p0 → 0.
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Table 1. Numerical results in case of p0 = 0.1.

E
(

t
1
2

)
Numerical Result |Error|

1.000000000000000 1.003804458469754 0.003804458469754
1.486763397673679 1.492441614080931 0.005678216407252
1.799017244188177 1.799775787083807 0.000758542895631
2.107699203837270 2.108238705023936 0.000539501186666
2.430043141497662 2.435351117027752 0.005307975530090
2.774285957670009 2.782077629971030 0.007791672301020
3.146213032210335 3.155553139052627 0.009340106842292
3.550802683646889 3.552101745731627 0.001299062084737
3.992835834192708 3.998524070801430 0.005688236608722
4.477184810795735 4.481878717206317 0.004693906410582
5.008980080762283 5.009099101457296 0.000119020695013

Table 2. Numerical results in case of p0 = 0.01.

E
(

t
1
2

)
Numerical Result |Error|

1.000000000000000 1.000711215780434 0.000711215780434
1.486763397673679 1.486985144407696 0.000221746734017
1.799017244188177 1.799134661839032 0.000117417650856
2.107699203837270 2.107995879710488 0.000296675873218
2.430043141497662 2.430361919799588 0.000318778301926
2.774285957670009 2.774710124429723 0.000424166759714
3.146213032210335 3.146720890494996 0.000507858284661
3.550802683646889 3.550888199443980 0.000085515797090
3.992835834192708 3.993098316427406 0.000262482234698
4.477184810795735 4.477985825418505 0.000801014622770
5.008980080762283 5.009009301039845 0.000029220277562

5. Concluding Remarks and Future Works

To summarize, we investigated the complete solution of a sequential fractional differ-
ential problem of Liouville–Caputo type including certain initial value conditions,[

LC
0Dβ

(
LC

0Dαw
)]

(t) = f
(
t, w(t)

)
,

with the condition w(0) = w1, by analyzing the corresponding system of the fractional
difference, (

LC
0∇α

p0
w̃
)
(x1(np0)) = y(x2(np0)),(

LC
0∇α

p0
y
)
(n h + h) = f

(
x1(np0), w̃(x1(np0))

)
,

subject to the conditions (
LC

0∇α
p0

w̃
)
(−p0) = w̃0,

w̃(−2p0) = w̃a,

via the following limitation:

lim
p0→0

w̃
(
tp0

)
= w(t),

where tp0 and n are defined in Proposition 1. We used the expressions ψκ,s and ψ̃κ,s in the
solution of the discrete fractional difference system as stated in Definition 4.
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Furthermore, the numerical example shows that the new reconstruction method can
obtain a very high order of accuracy; when the value of p0 is small enough (or Λ is large
enough), the approximation results are in good agreement with the exact one.

Concerning future works, we plan to extend the numerical schemes presented here
to apply them to other types of discrete fractional systems including exponential and
Mittag–Leffler systems in kernels to establish similar results (visit [22,38] to see these
operators).
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