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Abstract

:

This paper is concerned with the following   L 2  -subcritical Kirchhoff-type equation   −  a + b    ∫   R  2     | ∇ u |  2  d x  s   Δ u + V  ( x )  u = μ u + β   | u |  2  u ,   x ∈   R  2   , with    ∫   R  2     | u |  2  d x = 1  . We give a detailed analysis of the limit property of the   L 2  -normalized solution when exponent s tends toward 0 from the right (i.e.,   s ↘ 0  ). Our research extends previous works, in which the authors have displayed the limit behavior of   L 2  -normalized solutions when   s = 1   as   a ↘ 0   or   b ↘ 0  .
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1. Introduction


In this paper, we study the following Kirchhoff-type equation with    ∫   R  2     | u |  2  d x = 1  :


  −  a + b    ∫   R  2     | ∇ u |  2  d x  s   Δ u + V  ( x )  u = μ u + β   | u |  2  u ,   x ∈   R  2  ,  



(1)




where   a , b > 0   are constants, exponent   s > 0  , parameter   β > 0  , and  μ  denotes a Lagrange multiplier. The above      ∫   R  2     | ∇ u |  2  d x  s  Δ u   in (1) is called a variable nonlocal term, and     β | u |  2  u   is an   L 2  -subcritical term.



In recent decades, many different types of elliptic equations involved in (1) have been studied extensively through variational methods and functional analysis techniques. For instance, when   s = 0   and   β > 0   in (1), Equation (1) comes from the well-known Bose-Einstein condensates [1,2,3], which can be described by a Gross–Pitaevskii (G-P) energy functional [4,5]. Especially for   V ( x )   in ring-shaped, multi-well, sinusoidal, and periodic forms, the authors in [6,7,8,9] presented the existence, non-existence, and limit properties of   L 2  -normalized solutions when  β  tends to a threshold value   β *  . Furthermore, if   V ( x )   is a logarithmic or homogeneous function [10,11], the local uniqueness was also analyzed as  β  approaches   β *  .



For   s = 1  , Equation (1) is regarded as a classic Kirchhoff-type equation. When   V ( x ) = 0  , Ye [12,13] gave a quantitative classification of existence and nonexistence for the   L 2  -normalized solution. Meng and Zeng [14] have displayed a detailed limit behavior of the   L 2  -normalized solution when   V ( x )   is a periodic function. Somewhat similarly, there are many works [15,16,17,18] involved in the existence, non-existence, and limit properties of   L 2  -normalized solutions when (1) possesses an   L 2  -subcritical term. If   V ( x )   is a polynomial potential, Tang, Zhou, and their co-workers in [15,19] obtained some results on the refined limit behavior of   L 2  -normalized solutions as   b ↘ 0   or as   a ↘ 0  .



Inspired by previous works, in the present paper, we shall study   L 2  -normalized solutions for the   L 2  -subcritical Kirchhoff-type Equation (1) with a variable nonlocal term. A well-known result shows that the   L 2  -normalized solution of (1) can be solved by dealing with the following constrained minimization problem


  e  ( s , β )  : =  inf  u ∈ K    E  s , β    ( u )  ,  



(2)




where    E  s , β    ( u )    fulfills


   E  s , β    ( u )  = a  ∫   R  2     | ∇ u |  2  d x +   b  s + 1       ∫   R  2     | ∇ u |  2  d x   s + 1   +  ∫   R  2   V  ( x )   u 2  d x −   β 2    ∫   R  2     | u |  4  d x .  



(3)




The above  K  in (2) satisfies


  K : =  u ∈ H :   ∫   R  2     | u |  2  = 1   



(4)




and  H  such as


  H : =  u ∈  H 1   (   R  2  )  :  ∫   R  2   V  ( x )    | u |  2  d x < ∞   








with norm     ∥ u ∥  H  : =    ∫   R  2     | ∇ u |  2  d x +  ∫   R  2    1 +   V  ( x )  | u |  2   d x    1 2     .



Because many physicists are often interested in   L 2  -normalized solutions, we study minimization problem (1.2) with    ∫  R n     | u |  2  = 1  . In terms of physics, if    ∫  R n     | u |  2  = c  , the constant c denotes the number of particles, mass, density, etc. The readers are encouraged to refer to the papers [12,13,20] for more details on physical aspects. Furthermore, we mention that, for    ∫  R 2     | u |  2  = c  , the techniques to deal with these problems are essentially the same. Without loss of generality, we only consider    ∫  R n     | u |  2  = 1  .



For convenience, the structure of our paper is arranged as follows. The main three theorems of this paper are introduced in Section 2. In Section 3, we shall give a detailed analysis of the limit properties of least energy   e ( s , β )   and minimizer   u  s , β    as   s ↘ 0   when   0 < β <  β *   . In Section 4, for any   β >  β *    and positive sequence   {  s k  }   with    s k  ↘ 0   as   k → ∞  , we are devoted not only to establishing a refined energy estimation of   e (  s k  , β )  , but also analyzing the concrete limit behavior of constraint minimizer   u   s k  , β   .




2. Main Results


To obtain the detailed limit behavior of the   L 2  -normalized solution, some results on the existence and non-existence of constraint minimizers for (2) are necessary. For this reason, the potential   V ( x )   is restricted to satisfying


  V  ( x )  ∈  L  l o c  ∞   (   R  2  )    and    lim  | x | → ∞   V  ( x )  = + ∞   (  V 1  )  .  











Next, we introduce a nonlinear scalar field equation [21],


  − Δ u + u −  u 3  = 0 ,   x ∈   R  2  ,    u ∈  H 1   (   R  2  )  ,  



(5)




where (5) admits a unique (up to translation) positive radially symmetric solution   Q ∈  H 1   (   R  2  )   . At the same time, one can obtain from (5) that


    ∥ ∇ Q ∥    L 2   2  =   ∥ Q ∥    L 2   2  =   1 2     ∥ Q ∥    L 4   4  .  



(6)




In view of [22] (Proposition 4.1), the   Q ( x )   satisfies


   | ∇ Q  ( x )  | , Q ( | x | )  =   O ( | x |   −   1 2      e  − | x |    )     as    | x |  → ∞ .  



(7)




Furthermore, the following Gagliardo–Nirenberg (G-N) inequality [23] is necessary


   ∫   R  2     | u |  4  d x ≤   2   ∥ Q ∥   L 2  2     ∫   R  2     | ∇ u |  2  d x  ∫   R  2     | u |  2  d x ,  u ∈  H 1   (   R  2  )  ,  



(8)




where   Q ( x )   is given by (5).



Based on the assumption   (  V 1  )  , we recall from [20,24,25] that the following existence and non-existence results of the constraint minimizer for   e ( s , β )   hold.



Theorem 1. 

Assume that   (  V 1  )   holds and   s = 0   in (1); then, there exists a critical value    β *  : =  ( a + b )    ∥ Q ∥   L 2  2    such that   e ( 0 , β )   has at least one minimizer if   0 < β <  β *   , and   e ( 0 , β )   has no minimizer for   β ≥  β *   . Furthermore, for any   s > 0   and   β > 0  ,   e ( s , β )   has at least one minimizer.





Notice that   e ( 0 , β )   is a constrained minimization problem related to the classic G-P functional, and the conclusion of Theorem 1 comes from [20] (Theorem 1). Also for   s > 0  ,   e ( s , β )   is associated with a Kirchhoff-type equation, and the related results can be obtained from [24] (Theorem 1.2) or [25] (Theorem 1). We, however, state the results of Theorem 1 here for the reader’s convenience, and the detailed proof process of Theorem 1 can be found in [20,24,25].



The above Theorem 1 gives the fact that   e ( 0 , β )   has no minimizer for   β ≥  β *   , but for any   s > 0   and   β > 0  ,   e ( s , β )   has at least one minimizer. An interesting question is what happens on the constraint minimizer of   e ( s , β )   when s tends to 0 from the right. In truth, a priori analysis shows that the constant


   β *  =  ( a + b )    ∥ Q ∥   L 2  2   



(9)




is a critical threshold, which is the criterion used to judge the constraint minimizer of   e ( s , β )   blowing up or converging as   s ↘ 0  . According to Theorem 1, we set   u  s , β    be a constraint minimizer of   e ( s , β )   for any   s > 0  ; then we always say that    |   u  s , β    |    is also a nonnegative minimizer of   e ( s , β )   by the fact that   E  (  u  s , β   )  ≥  E ( |   u  s , β    | )   .



Next, we firstly establish some results on the limit properties of the least energy   e ( s , β )   and nonnegative minimizer   u  s , β    as   s ↘ 0   when   0 < β <  β *   .



Theorem 2. 

Assume that   (  V 1  )   holds and that for any   s > 0  ,   0 < β <  β *   , let   u  s , β    be a nonnegative minimizer of   e ( s , β )  . Then, we have


    lim  s ↘ 0   e  ( s , β )  = e  ( 0 , β )  .   



(10)




Furthermore, for any   s > 0  , it admits a    u 0  ∈ H   such that as   s ↘ 0  


    u  s , β   →  u 0     strongly  in   H ,   



(11)




where   u 0   is a nonnegative minimizer of   e ( 0 , β )  .





Theorem 1 shows that for any   s > 0   and   β >  β *   ,   e ( s ,  β *  )   has at least one minimizer. However, for   s = 0   and   β >  β *   ,   e ( s ,  β *  )   has no minimizer. We next are concerned with the limit property of the minimizer as   s ↘ 0   when   β >  β *   . For this goal, a more appropriate assumption about the potential   V ( x )   is given as follows:


  V  ( x )  ∈  C  l o c  α   (   R  2  )  ∩  C 1   (   R  2  )  ,   α ∈  ( 0 , 1 )    and    min   R  2   V  ( x )  = 0   (  V 2  )  .  








Further, we denote the class of minima for   V ( x )   by


  Z = {  x i  : V  (  x i  )  = 0 ,   i = 1 , 2 , 3 ⋯ } .  



(12)







Theorem 3. 

Suppose that   (  V 1  )   and   (  V 2  )   hold. For any   β >  β *    and positive sequence   {  s k  }   with    s k  ↘ 0   as   k → ∞  , set   u   s k  , β    to be the nonnegative minimizer of   e (  s k  , β )  , and then   u   s k  , β    exists as a unique local maximum point    z   s k  , β   ∈   R  2    such that   {  s k  }   has a subsequence (still denoted by   {  s k  }  ) satisfying, as   k → ∞  ,


   lim  k → ∞    z   s k  , β   =  x 0  ∈ Z   and   V  (  x 0  )  = 0  



(13)




and


   ϵ   s k  , β    u   s k  , β    (  ϵ   s k  , β   x +  z   s k  , β   )  →    Q ( | x | )    ∥ Q ∥   L 2         strongly  in    H 1   (   R  2  )  ,  








where Q is given by (5) and    ϵ   s k  , β   : =    ∫   R  2     | ∇  u   s k  , β   |  2  d x   −   1 2      . Moreover, the   ϵ   s k  , β    and   e (  s k  , β )   satisfy   k → ∞  


   ϵ   s k  , β   − 2  s k    →    b β + a ( β −  β *  )   b  β *      



(14)




and


  e  (  s k  , β )  ≈ −     s k  b    s k  + 1         b β + a ( β −  β *  )   b  β *          s k  + 1   s k     ,  



(15)




where the function   f  (  s k  )  ≈ g  (  s k  )    means    lim  k → ∞      f (  s k  )   g (  s k  )    = 1  .






3. Limit Properties of   0 < β <  β *   


As stated in Theorem 1,   e ( s , β )   has at least one minimizer for any   0 < β <  β *    and   s ≥ 0  . In the following section, we shall give the proof of Theorem 2, which is related to the limit properties of least energy   e ( s , β )   and nonnegative minimizer   u  s , β    as   s ↘ 0  . Before this, we introduce a well-known compact embedding theorem [26] (Theorem 2.1) such that if   V ( x )   satisfies   (  V 1  )  , then


  H ↪  L q   (   R  2  )   ( 2 ≤ q < ∞ )   is  compact .  



(16)







Proof of Theorem 2. 

For   0 < β <  β *    and   s > 0  , we define the constrained minimization problem without nonlinear terms such as


  d  ( s )  : =  inf  u ∈ K    E s   ( u )   



(17)




and


   E s   ( u )  = a  ∫   R  2     | ∇ u |  2  d x +   b  s + 1       ∫   R  2     | ∇ u |  2  d x   s + 1   +  ∫   R  2   V  ( x )   u 2  d x .  



(18)







We first claim that (17) has at least one minimizer. In truth, it is easy to know from (18) that for any   s > 0  ,    E s   ( u )    is bounded from below on  K . Let   {  u n  }   be a minimizing sequence of   d ( s )  ; one can obtain from (17) and (18) that   {  u n  }   is bounded in  H . Furthermore, the (16) yields the fact that there exists a    u s  ∈ K   and   {  u n  }   has a subsequence (still denoted by   {  u n  }  ) such that


   u n  ⇀  u s   weakly  in  K ,   u n  →  u s   strongly  in   L q   ( 2 ≤ q < ∞ )  ,  








which together with


   lim inf  n → ∞    ∫   R  2    | ∇   u n    |  2  d x ≥  ∫   R  2     | ∇  u s  |  2  d x  








gives


  d  ( s )  =  lim inf  n → ∞    E s   (  u n  )  ≥  E s   (  u s  )  ≥ d  ( s )  .  



(19)




Therefore, we conclude that   u s   is a minimizer of   d ( s )   for any   s > 0  .



For any   s > 0  , set   u s   be a minimizer of   d ( s )  , then one can obtain from (17) that


  d  ( s )  =  E s   (  u s  )  .  



(20)




In fact, from a fixed function   η  ( x )  ∈  C 0 ∞   (   R  2  )  ∩ K  , we obtain from (18) and (20) that there exists a constant   M > 0   satisfying


  0 ≤  lim  s ↘ 0   d  ( s )  =  lim  s ↘ 0    E s   (  u s  )  ≤  lim  s ↘ 0    E s   ( η )  ≤ M .  



(21)




For   0 < β <  β *   , applying the definitions of   d ( s )   and   e ( s , β )  , we then deduce from (20) and (21) that as   s ↘ 0  ,


  e  ( s , β )  ≤  E  s , β    (  u s  )  ≤  E s   (  u s  )  = d  ( s )  ≤  E s   ( η )  ≤ M .  



(22)




In view of Theorem 1, set   u  s , β    be a nonnegative minimizer of   e ( s , β )  ; then, we have


     e  ( s , β )  =  E  s , β    (  u  s , β   )  =     a  ∫   R  2     | ∇  u  s , β   |  2  d x +   b  s + 1       ∫   R  2     | ∇  u  s , β   |  2  d x   s + 1            +  ∫   R  2   V  ( x )   u  s , β  2  d x −   β 2    ∫   R  2     |  u  s , β   |  4  d x .     



(23)







Next, we claim that there exists a constant   D > 0   such that


   lim  s ↘ 0    ∫   R  2     | ∇  u  s , β   |  2  d x ≤ D .  



(24)




If (24) is false, that is,    ∫   R  2     | ∇  u  s , β   |  2  d x → ∞   as   s ↘ 0  . Since   0 < β <  β *   , applying the G-N inequality (8), we then deduce from (9) and (23) that there exists an arbitrarily large constant   P > 0   satisfying


     e  ( s , β )  =  E  s , β    (  u  s , β   )  =     a  ∫   R  2     | ∇  u  s , β   |  2  d x +   b  s + 1       ∫   R  2     | ∇  u  s , β   |  2  d x   s + 1            +  ∫   R  2   V  ( x )   u  s , β  2  d x −    β ( a + b )   β *     ∫   R  2     | ∇  u  s , β   |  2  d x      ≥     ( a + b )       β *  − β   β *      ∫   R  2     | ∇  u  s , β   |  2  d x ≥ P ,     



(25)




which is a contradiction with (22). Therefore, (24) holds, and then   {  u  s , β   }   is bounded in  H .



Using again (16), it implies that there exists a    u 0  ∈ K  , and   {  u  s , β   }   has a subsequence (still denoted by   {  u  s , β   }  ) such that as   s ↘ 0  ,


   u  s , β   ⇀  u 0   weakly  in  K ,  u  s , β   →  u 0   strongly  in   L q   ( 2 ≤ q < ∞ )  .  



(26)




Combining (23) and (26), one can obtain


   lim  s ↘ 0   e  ( s , β )  =  lim  s ↘ 0    E  s , β    (  u  s , β   )  ≥  lim inf  s ↘ 0    E  s , β    (  u  s , β   )  ≥  E  0 , β    (  u 0  )  ≥ e  ( 0 , β )  .  



(27)




Additionally, by the definition of   e ( 0 , β )   and (22), for any   ϵ > 0  , there exists a    u ϵ  ∈ K   satisfying


   E  0 , β    (  u ϵ  )  ≤ e  ( 0 , β )  + ϵ ≤ M + ϵ .  



(28)







Similar to the proof of (24), we deduce from (28) that   u ϵ   is bounded in  H . By this fact, we have


   lim  s ↘ 0      b  s + 1       ∫   R  2     | ∇  u ϵ  |  2  d x   s + 1   − b  ∫   R  2     | ∇  u ϵ  |  2  d x  = 0 ,  



(29)




which, together with (28) and (29), gives that as   s ↘ 0  ,


     e  ( s , β )  ≤  E  s , β    (  u ϵ  )  =      E  0 , β    (  u ϵ  )  +   b  s + 1       ∫   R  2     | ∇  u ϵ  |  2  d x   s + 1            − b  ∫   R  2     | ∇  u ϵ  |  2  d x ≤ e  ( 0 , β )  + ϵ .     



(30)







Combining with (27)–(30), we have


  e  ( 0 , β )  ≤  E  0 , β    (  u 0  )  ≤  lim  s ↘ 0   e  ( s , β )  ≤ e  ( 0 , β )  + ϵ .  



(31)




Letting   ϵ → 0  , we then conclude from (31) that   u 0   is a minimizer of   e ( 0 , β )   and    u  s , β   →  u 0    strongly in  H  as   s ↘ 0  . We thereby complete the proof of Theorem 2. □






4. Limit Behavior Analysis of   β >  β *   


In this section, we are concerned with the limit property of minimizer as   s ↘ 0   when   β >  β *   . Before this, we define a constrained minimization problem without potential such as


   e ¯   ( s , β )  : =  inf  u ∈ S     E ¯   s , β    ( u )  ,  



(32)




where     E ¯   s , β    ( u )    and S satisfy


    E ¯   s , β    ( u )  = a  ∫   R  2     | ∇ u |  2  d x +   b  s + 1       ∫   R  2     | ∇ u |  2  d x   s + 1   −   β 2    ∫   R  2     | u |  4  d x ,  










  S : =  u ∈  H 1   (   R  2  )  :   ∫   R  2     | u |  2  d x = 1  .  











In order to attain our goal, the following existence result of constrained minimizer for (32) is established for any   s > 0   when   β >  β *   . Note from [24] (Theorem 1.1) that for   s = 0  , a similar result can also be found.



Lemma 1. 

For any   s > 0   and   β >  β *   ,    e ¯   ( s , β )    has at least one nonnegative minimizer.





Proof. 

We firstly claim that for any   s > 0   and   β >  β *   ,


   e ¯   ( s , β )  < 0 .  



(33)




In truth, we choose a test function such as


   u θ   ( x )  =    θ Q ( θ x )    ∥ Q ∥   L 2      ( θ > 0 )    and  Q  ( x )   is  given  by   ( 8 )  .  



(34)




It is derived from (6), (34) that    u θ  ∈ S   and


   ∫   R  2    | ∇   u θ    |  2  d x =  θ 2  ,     ∫   R  2     | ∇  u θ  |  2  d x   s + 1   =  θ  2 ( s + 1 )   ,    β 2    ∫   R  2     |  u θ  |  4  d x =   β   ∥ Q ∥   L 2  2     θ 2  .  



(35)




Hence, it follows from (9) and (35) that


       E ¯   s , β    (  u θ  )      = a  θ 2  +   b  s + 1     θ  2 ( s + 1 )   −   β   ∥ Q ∥   L 2  2     θ 2           = a  θ 2  +   b  s + 1     θ  2 ( s + 1 )   −    ( a + b ) β   β *     θ 2  .     



(36)




For   s > 0   and   β >  β *   , choosing   θ =   (   β  β *    )    1  2 s       and putting it into (36), we have


   e ¯   ( s , β )  ≤   E ¯   s , β    (  u θ  )  = − a   (   β  β *    )    1 s     (    β −  β *   β   )  −    s b   s + 1      (   β  β *    )     s + 1  s    < 0 .  



(37)




Therefore, (33) holds.



By applying (8), one obtains


    E ¯   s , β    ( u )  ≥ a  ∫   R  2     | ∇ u |  2  d x +   b  s + 1       ∫   R  2     | ∇ u |  2  d x   s + 1   −    ( a + b ) β   β *     ∫   R  2     | ∇ u |  2  d x  



(38)




which yields that for any fixed   s > 0  ,     E ¯   s , β    ( u )    is bounded from below on  S . According to (33) and (38), and choosing   {   u ¯  n  }   as a minimizing sequence of    e ¯   ( s , β )   , it then follows from (33) and (38) that   {   u ¯  n  }   is bounded in    H 1   (   R  2  )   . Recall from [27] (Appendix A.III) and [24] (Lemma 2.3), we see that there exists a nonnegative and non-increasing sequence    {   u ¯  n *  }  ⊆ S ∩  H  r  1   (   R  2  )    such that   {   u ¯  n *  }   is also a minimizing sequence of    e ¯   ( s , β )   . At the same time,   {   u ¯  n *  }   is bounded in    H  r  1   (   R  2  )   . Applying [28] (Proposition 1.7.1), there exists a subsequence of   {   u ¯  n *  }   (still denoted by   {   u ¯  n *  }  ) and a function     u ¯  0  ∈  H  r  1   (   R  2  )    satisfying


    u ¯  n *  ⇀   u ¯  0   weakly  in   H  r  1   (   R  2  )  ,    u ¯  n *  →   u ¯  0   strongly  in   L q   (   R  2  )    ( 2 < q < ∞ )  .  



(39)







In the following, we prove that    ∫   R  2     |   u ¯  0  |  2  d x = 1  . Firstly, one can derive from (39) that    ∫   R  2     |   u ¯  0  |  2  d x ≠ 0  . If not, we have, as   n → ∞  ,


   ∫   R  2     |   u ¯  n *  |  4  d x → 0 ,  








which, together with (32) and (33), yields that


  0 >  e ¯   ( s , β )  =  lim  n → ∞    a  ∫   R  2     | ∇   u ¯  n *  |  2  d x +   b  s + 1       ∫   R  2     | ∇   u ¯  n *  |  2  d x   s + 1    ≥ 0 .  



(40)




However, this is a contradiction, and hence,    ∫   R  2     |   u ¯  0  |  2  d x ≠ 0  . Using the fact, we obtain from (33) and (39) that


  0 >  e ¯   ( s , β )  =  lim  n → ∞     E ¯   s , β    (   u ¯  n *  )  ≥   E ¯   s , β    (   u ¯  0  )  .  



(41)




Denote   l : =  ∫   R  2     |   u ¯  0  |  2  d x  ; then the above results show that   l ∈ ( 0 , 1 ]  . Setting     u ¯  l   ( x )  : =   u ¯  0   (  l   1 2    x )  ∈ S  , we obtain from (32) and (41) that


      e ¯   ( s , β )      ≤   E ¯   s , β    (   u ¯  l  )           = a  ∫   R  2    | ∇    u ¯  0    |  2  d x +   b  s + 1       ∫   R  2     | ∇   u ¯  0  |  2  d x   s + 1   −   β  2 l     ∫   R  2     |   u ¯  0  |  4  d x          =   1 l    a l  ∫   R  2    | ∇    u ¯  0    |  2  d x +    b l   s + 1       ∫   R  2     | ∇   u ¯  0  |  2  d x   s + 1   −   β 2    ∫   R  2     |   u ¯  0  |  4  d x           ≤   1 l     E ¯   s , β    (   u ¯  0  )  ≤   1 l    e ¯   ( s , β )  ,     



(42)




this yields from (33) that   l ≥ 1  , that is,    ∫   R  2     |   u ¯  0  |  2  d x ≥ 1  . Since   l =  ∫   R  2     |   u ¯  0  |  2  d x ∈  ( 0 , 1 ]   , one has    ∫   R  2     |   u ¯  0  |  2  d x = 1  , which, together with (41) and (42), implies that    u ¯  0   is a minimizer of    e ¯   ( s , β )   . By the definition of    e ¯   ( s , β )   , we see that    |    u ¯  0   |    is a minimizer, too. Therefore, we always say that    e ¯   ( s , β )    has at least one nonnegative minimizer. □





Lemma 2. 

For any fixed   β >  β *   , set    u ¯   s , β    as a nonnegative minimizer of    e ¯   ( s , β )   ; then,    e ¯   ( s , β )    satisfies, as   s ↘ 0  ,


   e ¯   ( s , β )  ≈ −    s b   s + 1         b β + a ( β −  β *  )   b  β *         s + 1  s    ,  



(43)




where   f ( s ) ≈ g ( s )   means    lim  s → 0      f ( s )   g ( s )    = 1  . As   s ↘ 0  , the minimizer    u ¯   s , β    behaves like


    u ¯   s , β   =    θ Q ( θ x )    ∥ Q ∥   L 2      and  θ =      b β + a ( β −  β *  )   b  β *        1  2 s     ,  



(44)




where Q satisfies Equation (5).





Proof. 

Choosing the same test function as (34), similar to the estimations (35) and (36), we have


    E ¯   s , β    (  u θ  )  = a  θ 2  +   b  s + 1     θ  2 ( s + 1 )   −  ( a + b )    β  β *     θ 2  .  



(45)




For any fixed   β >  β *   , we choose    θ 2  =      b β + a ( β −  β *  )   b  β *        1 s    → ∞   as   s ↘ 0  . Taking  θ  into (45), it then yields that as   s ↘ 0  


   e ¯   ( s , β )  ≤   E ¯   s , β    (  u θ  )  ≤ −    s b   s + 1         b β + a ( β −  β *  )   b  β *         s + 1  s    .  



(46)







We next give the lower energy estimation of    e ¯   ( s , β )    when   β >  β *    as   s ↘ 0  . In view of Lemma 1, we assume that     u ¯   s , β   ∈ S   is a nonnegative minimizer of    e ¯   ( s , β )   . Applying the G-N inequality (8) and (9), it is deduced that


      e ¯   ( s , β )      = a  ∫   R  2    | ∇    u ¯   s , β     |  2  d x +   b  s + 1       ∫   R  2     | ∇   u ¯   s , β   |  2  d x   s + 1   −   β 2    ∫   R  2     |   u ¯   s , β   |  4  d x          ≥  a −  ( a + b )    β  β *      ∫   R  2     | ∇   u ¯   s , β   |  2  d x +   b  s + 1       ∫   R  2     | ∇   u ¯   s , β   |  2  d x   s + 1   .     



(47)







Defining a function   f  ( t )  : =  a −  ( a + b )    β  β *     t +   b  s + 1     t  s + 1     and   t =  ∫   R  2     | ∇   u ¯   s , β   |  2  d x ∈  ( 0 , + ∞ )   , a simple calculation shows that   f ( t )   attains its unique minimum at


  t =  t s  =      b β + a ( β −  β *  )   b  β *        1 s    .  



(48)




It then follows from (47) that as   s ↘ 0  


   e ¯   ( s , β )  = f  ( t )  ≥ f  (  t s  )  ≥ −    s b   s + 1         b β + a ( β −  β *  )   b  β *         s + 1  s    .  



(49)




Moreover, the procedures of (46) and (49) yield that    e ¯   ( s , β )    attains its minimum at     u ¯   s , β   =    θ Q ( θ x )    ∥ Q ∥   L 2       as   s ↘ 0  , where   θ =      b β + a ( β −  β *  )   b  β *        1  2 s      . □





To obtain more detailed information about the minimizer and   e ( s , β )   as   s ↘ 0  , we always assume that   u  s , β    is a nonnegative minimizer of   e ( s , β )  . It then follows that   u  s , β    satisfies the elliptic equation


  −  a + b    ∫   R  2     | ∇  u  s , β   |  2  d x  s   Δ  u  s , β   + V  ( x )   u  s , β   =  μ  s , β    u  s , β   + β   |  u  s , β   |  2   u  s , β   ,   x ∈   R  2  ,  



(50)




where    μ  s , β   ∈ R   denotes a Lagrange multiplier. Furthermore, we set


   ϵ  s , β   : =    ∫   R  2     | ∇  u  s , β   |  2  d x   −   1 2     > 0 .  



(51)







Lemma 3. 

For   β >  β *   , the   ϵ  s , β   ,   e ( s , β )   and potential energy satisfy   s ↘ 0  


    ϵ  s , β   → 0 ,  e  ( s , β )  −  e ¯   ( s , β )  → 0   



(52)




and


    ∫   R  2   V  ( x )   u  s , β  2  d x → 0 .   



(53)




Moreover, as   s ↘ 0  ,


    ϵ  s , β   − 2 s   →    b β + a ( β −  β *  )   b  β *     .   



(54)









Proof. 

If    ϵ  s , β   ↛ 0  , then   {  u  s , β   }   is bounded in  H . Applying (16), there admits a    u ^  ∈ K   and   {  u  s , β   }   exists as a subsequence (still denoted by   {  u  s , β   }  ) satisfying, as   s ↘ 0  ,


   u  s , β   ⇀  u ^   weakly  in  K ,  u  s , β   →  u ^   strongly  in   L q   ( 2 ≤ q < ∞ )  .  



(55)




Similar to (27) and (31), it is deduced that


  e  ( 0 , β )  ≤  E  0 , β    (  u ^  )  ≤  lim  s ↘ 0   e  ( s , β )  ≤ e  ( 0 , β )  ,  



(56)




which yields that   u ^   is a minimizer of   e ( 0 , β )  . But this is impossible because Theorem 1 shows that   e ( 0 , β )   has no minimizer for   β >  β *   . Hence, we have    ϵ  s , β   → 0   as   s ↘ 0  .



On the one hand, by the definitions of   e ( s , β )   and    e ¯   ( s , β )   , one directly derives that


  e  ( s , β )  −  e ¯   ( s , β )  ≥ 0 .  



(57)




On the other hand, we turn to estimate an upper bound of   e  ( s , β )  −  e ¯   ( s , β )    as   s ↘ 0  . Toward this goal, we choose a cut-off function   φ  ( x )  ∈  C 0 ∞   (   R  2  )    such as   0 ≤ φ ( x ) ≤ 1  , and   φ ( x ) = 1   for   | x | ≤ 1  ,   φ ( x ) = 0   for   | x | ≥ 2  ,   | ∇ φ ( x ) | ≤ 2   for   x ∈   R  2   . Define


    u ^   s , β   : =  A  s , β   φ  ( x −  x 0  )    u ¯   s , β    ( x −  x 0  )  ,  



(58)




where   x 0   satisfies   V (  x 0  ) = 0   and    u ¯   s , β    is given by (44). The above   A  s , β    is chosen so that    ∫   R  2     |   u ^   s , β   |  2  d x = 1  . Applying (7), one can calculate from (58) that


  1 ≤  A  s , β  2  ≤ 1 + C  e  − 2 θ    as  s ↘ 0 .  



(59)




Based on this fact, we then have


   ∫   R  2    | ∇    u ^   s , β     |  2  d x ≤  ∫   R  2     | ∇   u ¯   s , β   |  2  d x + C  e  − θ    as  s ↘ 0 ,  



(60)






   ∫   R  2    |    u ^   s , β     |  4  d x ≥  ∫   R  2     |   u ¯   s , β   |  4  d x − C  e  − 2 θ    as  s ↘ 0  



(61)




and


   ∫   R  2   V  ( x )    |   u ^   s , β   |  2  d x = V  (  x 0  )  + o  ( 1 )  = o  ( 1 )  ,  



(62)




where   o ( 1 ) → 0   as   s ↘ 0  . Equations (60)–(62) together with (57) yield that


     0 ≤ e  ( s , β )  −  e ¯   ( s , β )  ≤      E  s , β    (   u ^   s , β   )  −   E ¯   s , β    (   u ¯   s , β   )  +  ∫   R  2   V  ( x )    |   u ^   s , β   |  2  d x      ≤    C  e  −   1 2   θ   + o  ( 1 )  → 0  as  s ↘ 0     








which then completes the proof of (52). Furthermore, we obtain from the definitions of   e ( s , β )   and    e ¯   ( s , β )    that


   ∫   R  2   V  ( x )   u  s , β  2  d x =  E  s , β    (  u  s , β   )  −   E ¯   s , β    (  u  s , β   )  ≤ e  ( s , β )  −  e ¯   ( s , β )  → 0  as  s ↘ 0 ,  








and hence (53) holds. Furthermore, the estimation of (54) is deduced directly from Lemma 2 and (52) and (53). □





Lemma 4. 

For   β >  β *    and any positive sequence   {  s k  }   with    s k  ↘ 0   as   k → ∞  , the nonnegative minimizer   u   s k  , β    has at least one local maximum point   z   s k  , β   . Define an   L 2  -normalized function


   w   s k  , β    ( x )  : =  ϵ   s k  , β    u   s k  , β    (  ϵ   s k  , β   x +  z   s k  , β   )  ,   ϵ   s k  , β     



(63)




as given by (51); then, there exists a finite ball    B 2   ( 0 )    and a constant   η > 0   such that


   ∫   B 2   ( 0 )     w   s k  , β  2   ( x )  d x ≥ η > 0 .  



(64)




Furthermore,   z   s k  , β    admits a convergent subsequence (still denoted by   z   s k  , β   ) such that


   z   s k  , β   →  z 0   as  k → ∞ ,  








where   z 0   satisfies   V (  z 0  ) = 0  , that is, where   z 0   is a global minimum point of   V ( x )  .





Proof. 

Since   u   s k  , β    is a nonnegative minimizer of   e (  s k  , β )  , it satisfies (50). Using the results of Lemma 2 and (52), we have, as   k → ∞  ,


  e  (  s k  , β )  ≈ −     s k  b    s k  + 1         b β + a ( β −  β *  )   b  β *          s k  + 1   s k      








which then yields from (54) that, as   k → ∞  ,


   ϵ   s k  , β   2 (  s k  + 1 )   e  (  s k  , β )  ≈     s k  b    s k  + 1    → 0 .  



(65)







Define an   L 2  -normalized function


    w ¯    s k  , β    ( x )  : =  ϵ   s k  , β    u   s k  , β    (  ϵ   s k  , β   x )  ,   ϵ   s k  , β    is  given  by   ( 51 )  .  



(66)




One then obtains from (53) and (65) that, as   k → ∞  ,


   ϵ   s k  , β   2 (  s k  + 1 )   e  (  s k  , β )  = a  ϵ   s k  , β   2  s k    +   b   s k  + 1    −   β 2    ϵ   s k  , β   2  s k     ∫   R  2     |   w ¯    s k  , β   |  4  d x → 0  








which derives from (54) that


   ∫   R  2     |   w ¯    s k  , β   |  4  d x →    2 ( a + b )   β *     as  k → ∞ .  



(67)







Because   u   s k  , β    satisfies (50), by the definition of   e (  s k  , β )  , it follows that   μ   s k  , β    fulfills


   μ   s k  , β   = e  (  s k  , β )  +     s k  b    s k  + 1       ∫   R  2     | ∇  u   s k  , β   |  2  d x    s k  + 1   −   β 2    ∫   R  2     |  u   s k  , β   |  4  d x ,  








which, together with (54), (65) and (67), yields that as   k → ∞  ,


      μ   s k  , β    ϵ   s k  , β   2 (  s k  + 1 )   =      ϵ   s k  , β   2 (  s k  + 1 )   e  (  s k  , β )  +     s k  b    s k  + 1             −   β 2    ϵ   s k  , β   2  s k     ∫   R  2     |   w ¯    s k  , β   |  4  d x → −    b β ( a + b )   b β + a ( β −  β *  )    .     



(68)







Based on   (  V 1  )  ,   (  V 2  )   and (68), one can use the method of [29] (Lemma 3.5) to acquire that   u   s k  , β    has at least one local maximum point by applying the standard regularity theory and comparison principle to elliptic Equation (50). Set   z   s k  , β    as the local maximum point and define the   L 2  -normalized function   w   s k  , β    such as (63); then, it follows from (50), (54) and (67) that


   ∫   R  2     |  w   s k  , β   |  4  d x →    2 ( a + b )   β *    > 0  as  k → ∞  



(69)




and   w   s k  , β    satisfies


        − Δ  w   s k  , β   +  A  s k    ϵ   s k  , β   2 (  s k  + 1 )   V  (  ϵ   s k  , β   x +  z   s k  , β   )   w   s k  , β                     =  A  s k    μ   s k  , β    ϵ   s k  , β   2 (  s k  + 1 )    w   s k  , β   +  A  s k   β  ϵ   s k  , β   2  s k     w   s k  , β  3  ,  x ∈   R  2      



(70)




where    lim  k → ∞    A  s k   =    b β + a ( β −  β *  )   b β ( a + b )    > 0  . Thus, for   s k   small enough, we have


  − Δ  w   s k  , β   − c  ( x )   w   s k  , β   ≤ 0  in    R  2  ,  








where   c  ( x )  =  A  s k   β  ϵ   s k  , β   2  s k     w   s k  , β  2   . Applying the De Giorgi–Nash–Moser theory [30] (Theorem 4.1), one obtains that


   max   B 1   ( 0 )     w   s k  , β   ≤ C    ∫   B 2   ( 0 )      |  w   s k  , β   |  2  d x    1 2    ,  



(71)




where   C > 0   is a constant dependent on the upper bound of    ∥   w   s k  , β     ∥    L 4   (  B 2   ( 0 )  )     .



In fact, we see that 0 is a local maximum point of   w   s k  , β    due to   z   s k  , β   , which is a local maximum point of   u   s k  , β   . We next argue that there exists a constant   η > 0   satisfying


   w   s k  , β    ( 0 )  ≥ η > 0  as  k → ∞ .  



(72)




If (72) is not true, then for any   R > 0  , one obtain


   sup  y ∈   R  2     ∫   B R   ( y )      |  w   s k  , β   |  2  d x → 0  as  k → ∞  








which, together with the vanishing lemma [31] (Lemma 1.1), yields that    ∫   R  2     |  w   s k  , β   |  4  d x → 0   as   k → ∞  . However, this is a contradiction with (69). Hence, (72) holds, and then (64) follows from (71) and (72).



Next, we need to prove that   z   s k  , β    is bounded uniformly as   k → ∞  . If this is false, then there exists a subsequence   {  s k  }   (still denoted by   {  s k  }  ) with    s k  ↘ 0   as   k → ∞   such that    z   s k  , β   → ∞  ; one then obtains from (63) and (64) that


      ∫   R  2   V  ( x )   u   s k  , β  2  d x     =  ∫   R  2   V  (  ϵ   s k  , β   x +  z   s k  , β   )    |  w   s k  , β   |  2  d x          ≥  ∫   B 2   ( 0 )    V  (  ϵ   s k  , β   x +  z   s k  , β   )    |  w   s k  , β   |  2  d x ≥ D η     



(73)




where  D  is an arbitrarily large constant. However, this contradicts (53). Hence,   {  z   s k  , β   }   is a bounded sequence in    R  2  .



Passing to a subsequence if necessary, there is a    z 0  ∈   R  2    such that    z   s k  , β   →  z 0   . In truth, we can prove that   V (  z 0  ) = 0  . If not, one denotes   K : = V (  z 0  ) > 0  ; then, (64), together with Fatou’s Lemma, gives


         lim inf  k → ∞    ∫   R  2   V  (  ϵ   s k  , β   x +  z   s k  , β   )    |  w   s k  , β   |  2  d x          ≥  ∫   B 2   ( 0 )     lim inf  k → ∞   V  (  ϵ   s k  , β   x +  z   s k  , β   )    |  w   s k  , β   |  2  d x ≥ V  (  z 0  )  η = K η > 0     



(74)




which is a contradiction with (53). We thereby complete the proof of Lemma 4. □





In the final part, we shall give the proof of Theorem 3.



Proof of Theorem 3. 

Let   u   s k  , β    be a nonnegative minimizer of   e (  s k  , β )   and   z   s k  , β    be is its local maximum point. Define a function the same as (63), then, for any positive sequence   {  s k  }   with    s k  ↘ 0   as   k → ∞  . Using the definitions of (51) and (63), it follows that


   ∫   R  2    |   w   s k  , β     |  2  = 1  and   ∫   R  2     | ∇  w   s k  , β   |  2  = 1 .  



(75)




It then shows that   {  w   s k  , β   }   is a bounded sequence in    H 1   (   R  2  )   . Passing to a subsequence if necessary (still denoted by   {  w   s k  , β   }  ), there exists a    w 0  ∈  H 1   (   R  2  )    satisfying, as   k → ∞  ,


   w   s k  , β   ⇀  w 0   weakly  in   H 1   (   R  2  )  .  



(76)







Since   w   s k  , β    satisfies the elliptic equation (70), passing to the weak limit, it is deduced from (9), (54), (68) and (76) that   w 0   satisfies (in the weak sense)


  − Δ  w 0  +  w 0  =   ∥ Q ∥   L 2  2   w 0 3  ,  x ∈   R  2  .  



(77)




In fact, since (72) holds, we always say that    w 0  > 0   applyies the strong maximum principle to (77). Moreover, because (5) has a unique (up to translation) positive radially symmetric solution   Q ( x )  , it is restricted to the fact that there exists a    y 0  ∈   R  2    such that   w 0   fulfills


   w 0  =    Q ( | x −  y 0  | )    ∥ Q ∥   L 2      



(78)




which, together with (6), gives


   ∫   R  2    |   w 0    |  2  = 1 ,   ∫   R  2     | ∇  w 0  |  2  = 1 .  








The above results show that    w   s k  , β   →  w 0    strongly in    L 2   (   R  2  )    as   k → ∞  . By applying the Hölder and Sobolev inequalities, one further derives that     ∥ u ∥    L 4   (   R  2  )    ≤   C ∥ u ∥    L 2   (   R  2  )   γ    ∥ u ∥    H 1   (   R  2  )    1 − γ     for any   u ∈  H 1   (   R  2  )    with   γ ∈ ( 0 , 1 )  . This indicates that    w   s k  , β   →  w 0    strongly in    L 4   (   R  2  )    as   k → ∞  . One then obtains from (75)–(77) that


   lim  k → ∞    ∫   R  2    | ∇   w   s k  , β     |  2  d x =  ∫   R  2     | ∇  w 0  |  2  d x ,  








that is,


   w   s k  , β   →  w 0   strongly  in    H 1   (  R 2  )    as   k → ∞  .  



(79)







Under the assumption of   (  V 2  )  , using the technique of proving Theorem 1.2 in [7], one infers from (70) that    w   s k  , β   ∈  C  l o c   2 ,  α 1     (   R  2  )   ,    α 1  ∈  ( 0 , 1 )   . Hence, we have    w 0  ∈  C  l o c  2   (   R  2  )    and


   w   s k  , β   →  w 0   in    C  l o c  2   (  R 2  )    as   k → ∞  .  



(80)




Since the origin is a unique critical point (up to translation) of   Q ( x )  , one then concludes from (78) that the origin is the unique critical point of   w 0  . Therefore, one obtains


   w 0   ( x )  =   1   ∥ Q ∥   L 2     Q  | x |  .  



(81)







At last, set   y k   as the local maximum point of   w   s k  , β   ; then, the (72) shows that    w   s k  , β    (  y k  )  ≥ η > 0  . Taking  γ  small enough, one infers from [32] (Lemma 4.2) that the origin is the unique local maximum point of   w   s k  , β    as   k → ∞  . It then yields that   z   s k  , β    is the unique maximum point of   u   s k  , β   . The proof of Theorem 3 is thereby completed. □
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