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Abstract: A nonlinear log-Birnbaum–Saunders regression model with additive errors is introduced.
It is assumed that the error term follows a flexible sinh-normal distribution, and therefore it can be
used to describe a variety of asymmetric, unimodal, and bimodal situations. This is a novelty since
there are few papers dealing with nonlinear models with asymmetric errors and, even more, there are
few able to fit a bimodal behavior. Influence diagnostics and martingale-type residuals are proposed
to assess the effect of minor perturbations on the parameter estimates, check the fitted model, and
detect possible outliers. A simulation study for the Michaelis–Menten model is carried out, covering
a wide range of situations for the parameters. Two real applications are included, where the use of
influence diagnostics and residual analysis is illustrated.

Keywords: flexible log-Birnbaum–Saunders; flexible sinh-normal; influence diagnostics; Michaelis–
Menten model; nonlinear regression
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1. Introduction

Regression models are one of the most common statistical techniques used to explain
the relationship between a response or output continuous variable Y and a given set of
explanatory covariates or predictors X1, . . . , Xp, where p denotes the number of predictors.
In the case where Y is a continuous random variable, linear models stand out as the most
frequently used in practice. However, in certain situations, the relationship between the
response variable and the set of predictors is nonlinear. In these cases, it is quite difficult
to determine the nonlinear behavior of the response variable and the set of covariates.
Nonlinear models usually arise from an underlying theory about the relationships between
the variables under study. By definition, given a set of covariates X1, . . . , Xp and a function
f (x1, x2, . . . , xp; β1, β2, . . . , βp), where β1, β2, . . . , βp are unknown parameters, f is linear
in β j, j = 1, 2, . . . , p, if and only if the first derivative of f with respect to β j does not depend
on β j for j = 1, 2, . . . , p; otherwise, f is nonlinear. That is, in the nonlinear case, some of
β j’s parameters appear in f a nonlinear way.

One very general form of nonlinear regression model considers additive errors. Gen-
erally speaking, a nonlinear regression model with additive errors is defined as

Yi = ψ(β, xi) + ϵi, i = 1, 2, . . . , n, (1)

where β is a vector of unknown parameters, x is a vector of known covariates, and ψ(·; ·),
is a nonlinear, injective, and continuous function, twice differentiable with respect to the
elements of β. The error terms ϵi are independent and identically distributed random
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variables. Usually it is assumed that ϵi ∼ N(0, σ2) with unknown σ2 > 0. However, quite
often, the assumption of normality of errors does not hold. Other alternative models should
be considered. Among the most relevant ones, we can cite Cancho et al. [1], who proposed
a nonlinear model where the error term follows Azzalini’s skew normal distribution
introduced in [2], ϵ ∼ SN(0, σ, λ) with skewness parameter λ ∈ R, and scale parameter
σ > 0. Another nonlinear regression model with alpha power distributed errors was
proposed in Martínez-Flórez et al. [3–5]. Details about the alpha power model can be seen
in Durrans [6].

We highlight that all these precedents are unimodal. However, in practice, other
situations are possible. As an introductory example of interest, consider, for instance, the
distribution of RNA in patients with human immunodeficiency virus (HIV) undergoing
highly active antiretroviral therapy (HAART). It can be seen in Li et al. [7] that the logarithm
of RNA is an asymmetric bimodal distribution, which can be adjusted by a function of a
given set of covariates, x1, x2, . . . , xp (for instance: level of certain biomarkers, sex, age, kind
of diet, employment, etc.), and by using a nonlinear regression model with asymmetric and
bimodal errors. In this context, we focus on nonlinear regression models based on the ex-
tension of the Birnbaum–Saunders (BS) distribution introduced in Martínez-Flórez et al. [8].
Our proposal may be superior for considering a mixture of distributions, since it involves
fewer parameters. Influence diagnostics tools are also given. Following a traditional ap-
proach, different kinds of perturbations for the parameters in the model are introduced,
which can be used to detect outliers and to assess the sensitivity of parameter estimates.
Martingale-type residuals are proposed to check the fit provided by the model. All of these
aim to illustrate the use of asymmetric nonlinear models to describe lifetime data.

The outline of this paper is as follows. In Section 2, the background of our proposal is
established. In Section 3, the nonlinear flexible log-Birnbaum–Saunders regression model
is introduced. Results from inferences based on the maximum likelihood method are given.
The observed information Fisher matrix is obtained, along with its applications to this re-
gression model. Due to the possible complexity of nonlinear models, a key point is to study
the possible deficiencies in the fitted model. Therefore, Section 4 is devoted to influence
diagnostics. First, the Cook generalized distance is considered. Later, local influence criteria
are given to assess the effect of minor perturbations in the data and/or the proposed model
on the statistical summaries. Different perturbation schemes are considered: case-weight
as well as perturbation for the response variable, for explanatory variables, and for the
scale parameter. Finally, martingale-type residuals are presented to detect deficiencies in
the structural part of the model and detect possible outliers. A complete simulation study
is given in Section 6. The two-parameter Michaelis–Menten model, widely used in kinetic
chemistry, is considered. A variety of situations and error terms are covered. Two applica-
tions to real datasets can be seen in Section 7. There, a thoughtful discussion of different
regression models is carried out. Moreover, the use of diagnostic criteria and residuals
to improve the fitted nonlinear model is illustrated. Final conclusions are presented in
Section 8. Technical details are provided in Appendices A.1–A.3.

2. Materials and Methods

Recall that the BS distribution was introduced by Birnbaum and Saunders [9] in order
to model the lifetime of certain structures under dynamic load and that a random variable
(RV) T follows a BS distribution, T ∼ BS(α, τ), if its probability density function (PDF) is

fT(t) = ϕ(at)At, t > 0, (2)

with at = 1
α

(√
t
τ −

√
τ
t

)
, At = t−3/2(t+τ)

2α
√

τ
, and ϕ(·) denoting the PDF of the N(0, 1)

distribution. In Equation (2), α > 0 is a shape parameter, and τ > 0 is a scale parameter
and the median of the distribution.

A number of regression models related to the BS distribution can be found in the
literature. We first refer to the pioneering work carried out by Rieck and Nedelman [10],
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where the log-linear-Birnbaum–Saunders regression model was introduced. There, it was
assumed that the output variable Y follows a sinh-normal (SHN) distribution, SHN(α, µ, 2),
whose PDF is

φ(y) =
2
α cosh

(
y−µ

2

)
2

ϕ

(
2
α

sinh
(

y − µ

2

))
, y ∈ R, (3)

where α > 0 is a shape parameter and µ ∈ R is a location parameter. Given a random
sample Ti ∼ BS(α, τ) for i = 1, 2, . . . , n, let Yi = log(Ti). Rieck and Nedelman [10] proposed
the linear regression model

Yi = β′xi + ϵi, (4)

where xi is a covariate vector, β is a vector of unknown parameters, and the errors, ϵi, follow
an SHN distribution, ϵi ∼ SHN(α, 0, 2), i = 1, 2, . . . , n. In this case, E(Yi) = µi = x′iβ, and
the errors ϵi are symmetric with respect to zero. Asymmetric extensions were proposed by
Leiva et al. [11], who considered a skewed sinh-normal model and provided applications to
pollution data in Santiago, Chile. Later, Lemonte et al. [12] proposed another asymmetric
extension based on the skew-normal, and Martínez-Flórez et al. [3] introduced the asymmetric
extension based on the alpha power model of Durrans [6].

Another kind of asymmetric generalization of the sinh-normal model was proposed
in Martínez-Flórez et al. [8,13]. This is based on the flexible skew-normal distribution intro-
duced in Gómez et al. [14], and it is known as the flexible sinh-normal (FSHN) distribution,
Y ∼ FSHN(α, ξ, σ, δ, λ), whose PDF is given by

φ(y) =
cδ

σ

2
α

cosh
(

y − ξ

σ

)
ϕ

(∣∣∣∣ 2α sinh
(

y − ξ

σ

)∣∣∣∣+ δ

)
Φ
(

λ
2
α

sinh
(

y − ξ

σ

))
, y ∈ R, (5)

with cδ = (1 − Φ(δ))−1 and Φ(·) denoting the cumulative distribution function (CDF) of
the N(0, 1) distribution. In Equation (5), α ∈ R+ is a shape parameter, ξ ∈ R is location,
σ ∈ R+ is scale, δ ∈ R is related to the bimodality, and λ ∈ R is skewness.

It can be seen in [8] that particular cases of interest in the FSHN model are:

• If δ = 0, then the FSHN model reduces to the skewed sinh-normal distribution
introduced by Leiva et al. [11].

• If λ = 0, then a symmetric model denoted as FSHNλ=0(α, ξ, σ, δ) is obtained, which
allows us to model symmetric bimodal data; see [8].

• If λ = δ = 0, then the FSHN model reduces to the sinh-normal distribution introduced
by Rieck and Nedelman [10].

Furthermore, the following properties are proven in [8], which will be used subsequently.

Lemma 1. Let Y ∼ FSHN(α, ξ, σ, δ, λ). Then

1. Y = ξ + σ arcsinh
(

α
2 Z
)

with Z ∼ flexible skew-normal(δ, λ).
2. aY ∼ FSHN(α, aξ, aσ, δ, λ), a > 0.
3. Y + b ∼ FSHN(α, ξ + b, σ, δ, λ), ∀b ∈ R.
4. −Y ∼ FSHN(α,−ξ, σ, δ,−λ).

Remark 1. Properties given in Lemma 1 allow us to obtain features of Y ∼ FSHN(α, ξ, σ, δ, λ)
in terms of Z ∼ flexible skew-normal(δ, λ). For instance,

1. The p-th quantile of Y, yp, can be obtained from the p-th quantile, zp, of Z:

yp = ξ + σ arcsinh
(α

2
zp

)
, 0 < p < 1 . (6)
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2. The moments of Y can be expressed in terms of the moments of the RV arcsinh
(

α
2 Z
)

with
Z ∼ flexible skew-normal(δ, λ). This fact will be explicitly introduced in the notation. So, we
will write

EFSN

(
arcsinh

(
αZ
2

))
= cδ

∫ ∞

−∞
arcsinh

(αz
2

)
ϕ(|z|+ δ)Φ(λz)dz.

Additional details can be seen in Martínez-Flórez et al. [8] and Gómez et al. [14].

The FSHN model was used in Martínez-Flórez et al. [8] to introduce the flexible
Birnbaum–Saunders (FBS) linear regression model, which is based on the fact that, if
T ∼ FBS(α, τ, δ, λ), then

Y = log(T) ∼ FSHN(α, ξ, 2, δ, λ), with ξ = log(τ). (7)

So, given a random sample from Equation (7), Yi = log(Ti) ∼ FSHN(α, ξi, 2, δ, λ), covaria-
tes can be considered to explain the response variable in a natural way, that is,

ξi = βT xi, for i = 1, 2, . . . , n.

This is called the flexible log-linear Birnbaum–Saunders regression model, whose details
can be seen in [8].

In this paper, we consider a nonlinear extension of the model introduced in [8]. The in-
terest of our proposal is based on the fact that there exist few papers dealing with nonlinear
extensions of the log-BS regression model. We can cite the BS nonlinear regression model
proposed by Lemonte and Cordeiro [15], the study on diagnostics and influence analysis
techniques in nonlinear log-BS models with asymmetric models carried out by Lemonte [12],
and the paper by Martínez-Flórez et al. [3] on the nonlinear log-BS exponentiated model.

3. Nonlinear Flexible Log-Birnbaum–Saunders
3.1. Regression Model

In this subsection, the flexible log-Birnbaum–Saunders nonlinear regression model is
introduced. So, let us consider T1, T2, . . . , Tn independent RVs with Ti ∼ FBS(αi, τi, δi, λi).
Suppose now that the distribution of Ti depends on a set of p explanatory variables, denoted
by xi = (xi1, xi2, . . . , xip)

T , in the following way:

1. τi = exp( f (β, xi)), i = 1, 2, . . . , n, where βT = (β1, β2, . . . , βp) is a p-dimensional vec-
tor of unknown parameters, and f is an injective and continuous nonlinear function,
twice differentiable with respect to the elements of β.

2. The shape parameters do not involve xi; that is, αi = α, δi = δ, λi = λ, and
i = 1, 2, . . . , n.

Let Yi = log(Ti). Then, the nonlinear flexible log-Birnbaum–Saunders model is defined by

Yi = f (β, xi) + ϵi, (8)

where it is assumed that the error terms, ϵi, are independent and identically distributed,
ϵi ∼ FSHN(α, 0, 2, δ, λ). Since ϵi ∼ FSHN(α, 0, 2, δ, λ), by applying results given in [8]

E(ϵi) = 2c1(α, δ, λ), (9)

Var(ϵi) = 4V(α, δ, λ), (10)

where

c1(α, δ, λ) = EFSN

(
arcsinh

(
αZ
2

))
= cδ

∫ ∞

−∞
arcsinh

(αz
2

)
ϕ(|z|+ δ)Φ(λz)dz,
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and V(α, δ, λ) is the variance of the RV arcsinh(αZ/2), with Z ∼ Flexible Skew−Normal(δ, λ).
The existence of c1(α, δ, λ) and V(α, δ, λ) follow from arcsinh(x) = log(x +

√
1 + x2),

∀x ∈ R, where log(·) denotes the Napierian logarithm and the existence of moments
of the skew-normal distribution [16]. Additional details can be seen in Appendix A.1.

By applying Lemma 1 to Equation (8), we have that Yi ∼ FSHN(α, f (β, xi), 2, δ, λ).
Moreover, E(Yi) = f (β, xi) +E(ϵi), where E(ϵi) was given in Equation (9).

Corollary 1. Relevant nonlinear regression models that can be obtained as particular cases of the
nonlinear flexible log-Birnbaum–Saunders are the following ones:

1. If δ = 0, then the log-BS nonlinear regression model with asymmetric errors proposed by
Lemonte and Cordeiro [15] is obtained.

2. If λ = 0, then a nonlinear log-BS regression submodel with flexible sinh-normal errors is
obtained. We highlight that this submodel may fit bimodal data for δ < 0.

3. If δ = λ = 0, then the nonlinear extension of the Rieck and Nedelman regression model is
obtained [10].

Proof. Note that the nonlinear Flexible log-Birnbaum–Saunders model is built on

Yi ∼ FSHN(α, f (β, xi), 2, δ, λ) .

From Equation (5), its PDF reduces to

fY(yi) =
cδ

α
cosh(wi)ϕ

(∣∣∣∣ 2α sinh(wi)

∣∣∣∣+ δ

)
Φ
(

λ
2
α

sinh(wi)

)
, (11)

with wi =
yi− f (β,xi)

2 and cδ = (1 − Φ(δ))−1. By considering the different values for the
parameters in Equation (11), the proposed results follow.

Remark 2. From now on, the following considerations must be taken into account:

• The general model with a scale parameter σ > 0 is considered, Yi ∼ FSHN(α, f (β, xi), σ, δ, λ),
whose PDF was given in Equation (5). Also note that E(ϵi) = σc1(α, δ, λ) and Var(ϵi) =
σ2V(α, δ, λ).

• To emphasize the origin of our proposal, that is, the use of logarithm of a flexible Birnbaum–
Saunders distribution as a regression model, the notation flexible log-Birnbaum–Saunders
Yi ∼ FLBS(α, f (β, xi), σ, δ, λ) will be used instead of Yi ∼ FSHN(α, f (β, xi), σ, δ, λ). Both
notations are equivalent.

3.2. Inference

In this subsection, the maximum likelihood method is applied to estimate the parame-
ters in the Yi ∼ FLBS(α, f (β, xi), σ, δ, λ) model. To simplify the exposition of results, let us
denote by θ = (α, β, σ, δ, λ)T

ξi1 = ξi1(θ) =
2
α

cosh
(

yi − f (β, xi)

σ

)
, ξi2 = ξi2(θ) =

2
α

sinh
(

yi − f (β, xi)

σ

)
. (12)

Proposition 1. Let Y1, . . . , Yn be a random sample of Y ∼ FLBS(α, f (β, x), σ, δ, λ). Then, the
log-likelihood function is

ℓ(θ) = n log(cδ)− n log(σ) +
n

∑
i=1

log(ξi1)−
1
2

n

∑
i=1

(ξ2
i2 + 2δsgn(ξi2)ξi2 + δ2) +

n

∑
i=1

log(Φ(λξi2)), (13)

where cδ = (1 − Φ(δ))−1, and sgn(·) denotes the sign function.
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Proof. By using the notation introduced in Equation (12), note that

fY(yi) =
cδ

σ
ξi1 ϕ(|ξi2|+ δ) Φ(λξi2) . (14)

Since we have a random sample, the log-likelihood function for θ = (α, β, σ, δ, λ)T is

ℓ(θ) =
n

∑
i=1

log fY(yi; θ) . (15)

Equation (13) follows from Equations (14) and (15) and from the fact that ϕ(·) is the PDF of
an N(0, 1) distribution.

Corollary 2. Let Y1, . . . , Yn be a random sample of Y ∼ FLBS(α, f (β, xi), σ, δ, λ). Then:
1. The score functions are

U(α) = −n
α
+

1
α

n

∑
i=1

ξ2
i2 −

λ

α

n

∑
i=1

ξi2Wi +
δ

α

n

∑
i=1

sgn(ξi2)ξi2,

U(β j) =
1
σ

n

∑
i=1

di,j

(
ξi1ξi2 −

ξi2
ξi1

)
− λ

σ

n

∑
i=1

di,jξi1Wi +
δ

σ

n

∑
i=1

di,jsgn(ξi2)ξi1, j = 1, 2, . . . , p,

U(σ) = −n
σ
+

1
σ

n

∑
i=1

zi

(
ξi1ξi2 −

ξi2
ξi1

)
− λ

σ

n

∑
i=1

ziξi1Wi +
δ

σ

n

∑
i=1

sgn(ξi2)ziξi1,

U(δ) =
nϕ(δ)

1 − Φ(δ)
−

n

∑
i=1

sgn(ξi2)ξi2 − nδ,

U(λ) =
n

∑
i=1

ξi2Wi,

where sgn(·) denotes the sign function, and

di,j =
∂ f (β, xi)

∂β j
, zi =

yi − f (β, xi)

σ
, Wi =

ϕ(λξi2)

Φ(λξi2)
, j = 1, 2, . . . , p; i = 1, . . . , n.

2. Maximum likelihood estimators for the regression parameter β and parameters α, σ, δ, and λ
are obtained as solutions for U(θ) = 0, which require numerical procedures.

Proof. It is straightforward by applying standard calculus techniques.

Observed Information Matrix

Let us consider the matrix
J(θ) = −H(θ), (16)

where H(θ) is the Hessian matrix of the log-likelihood function l(θ). The elements of J(θ)
are denoted by jαα, jβ j β j′

, jαβ j , . . . , jδδ, jδλ, jλλ. Their expressions are given in Appendix A.2.
Recall that the Fisher (or expected) information matrix, IF(θ), is given by the expected

values of the elements in J(θ). For large samples and under regularity conditions, the MLE
of θ, θ̂, is asymptotically normal, and its asymptotic covariance matrix is the inverse of the
Fisher information matrix, I−1

F (θ). Explicitly,(
θ̂− θ

) L−→ Np+4(0, I−1
F (θ)), (17)

where L denotes convergence in law or in distribution; see [17].
Let J(θ̂) be the observed information matrix, which is obtained by replacing the

unknown parameters in Equation (16) by their MLEs. Since, for large n, J(θ̂) converges
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in probability to IF(θ), J(θ̂) P−→ IF(θ), in practice, Equation (17) is applied, taking J−1(θ̂)
instead of I−1

F (θ).
As for the existence of previous matrices, recall that the flexible skew-normal (FSN)

and its properties are well-established. Our model is obtained by applying the arcsinh(·)
transformation to an FSN variable. Therefore, taking into account that sinh(·) and cosh(·)
functions are continuous and derivable, and given the good analytical properties of the
FSN model, the existence of derivatives of log-likelihood in the nonlinear FLBS model
follows. Moreover, for λ = δ = 0, the rows (or columns) of the information matrix are
linearly independent. All these facts support that the MLEs’ regularity conditions are met
in practice.

Moreover, for large n, and due to the convergence in probability of J(θ̂) to IF(θ), the
inverse of submatrix in Equation (16), which corresponds to β, J−1(β), can be used to
obtain the asymptotic variance of µ̂i = f (β̂, xi). Specifically,

Var(µ̂i) = trace(didi
′ J−1(β̂)),

where D = ∂µ
∂β is a p × n matrix with µ = (µ1, . . . , µn), and di denotes the i-th column of

the matrix D evaluated at β̂.

4. Influence Diagnostics

In this section, influence diagnostic tools are proposed. Specifically, Cook’s generalized
distance is considered in Section 4.1. This is a case-deletion kind of influence diagnostic
that can be used to detect influential observations on parameter estimates. Later, local
influence measures are introduced in Section 4.2. Four perturbation schemes are proposed,
which may be used to carry out a sensitivity study and detect influential cases affecting the
obtained inferential results.

First, the notation is introduced. Following Cook [18], let ℓ(θ) be the log-likelihood
corresponding to the model proposed in Equation (8), with θ being the vector of unknown
parameters. Perturbations into the model can be introduced through a q × 1 vector ω,
which is restricted to some open subset ω ∈ Ω ⊆ Rq. In practice, ω is a given perturbation
scheme of the initial model.

Let us now consider ℓ(θ|ω) to be the log-likelihood associated with the perturbed
model for certain ω ∈ Ω. It is assumed that there exists an ω0 ∈ Ω such that ℓ(θ|ω0) = ℓ(θ)
for all θ; that is, ω0 represents no perturbation into the model. It is also assumed that ℓ(θ|ω)
is twice continuously differentiable at (θ′, ω′), where θ′ and ω′ denote the transpose of θ
and ω. Let us denote by θ̂ and θ̂ω the MLEs of the unknown parameters under ℓ(θ) and
ℓ(θ|ω), respectively.

The diagnostic curvature was introduced by Cook [18] as

C(u) = 2|u′Hu|, (18)

where u is an eigenvector of H with ∥u∥ = 1, and H is the q × q matrix with elements

hii′ =
∂2ℓ(θ|ω)
∂ωi∂ωi′

|θ̂ω
. In practice, the elements of H can be obtained from the relationship

H = ∆′ J−1(θ̂)∆ (19)

evaluated at ω = ω0, with J(θ) being the observed information matrix evaluated at θ = θ̂

and ∆ = ∂2ℓ(θ|ω)
∂θ∂ω evaluated at θ = θ̂ and ω = ω0.

Based on Equation (18), the influence diagnostic analysis of maximum curvature, Cmax,
can be carried out. So, the eigenvector umax associated with the largest eigenvalue of the
H matrix can be used to assess the local influence on the estimates of parameters in the
log-BS nonlinear model. The effect of locally influential observations is determined by the
perturbation of the data in the umax direction.
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The previous tools can also be used to assess the local change in θ̂, due to the influence
of ω, by using the likelihood displacement defined as LD(ω) = 2{ℓ(θ̂)− ℓ(θ̂ω)}, which
compares θ̂ω and θ̂ with respect to the non-perturbed log-likelihood.

To conclude, it is worth mentioning that, in order to study influential observations,
Poon and Poon [19] proposed the conformal normal curvature, Bl , defined by

Bl = − u′∆′(L̈−1)∆u√
tr
[
u′∆′(L̈−1)∆u

]2
∣∣∣∣∣∣
θ = θ̂, ω = ω0

,

where tr(A) is the trace of matrix A. Moreover, Bl and LD are computationally equivalent.
The conformal normal curvature in the direction ω0 is invariant under reparameterization
and for any direction l, 0 ≤ |Bl | ≤ 1, implying that Bl is a normalized measure, which
allows us to compare two curvatures.

4.1. Cook Generalized Distance

For the vector of parameters in the log-BS nonlinear model, θ = (α, β, σ, δ, λ)′, Cook’s
generalized distance (GDC) measures the global effect on MLEs of θ when an observation
is removed; details can be seen in [18]. If the number of regression coefficients in the fitted
model is p, then the global influential statistic for the log-FBS nonlinear regression model is
given by

GDCi(θ) =
1

p + 4

[(
θ̂− θ̂(i)

)′

Σ̂−1
θ̂

(
θ̂− θ̂(i)

)]
, i = 1, . . . , n, (20)

where Σ̂θ̂ is the estimated covariance matrix of θ̂, and θ̂(i) is the MLE of θ when the i-th
observation is removed.

If we focus on the vector of regression coefficients β, then we only need the subvector
that corresponds to these coefficients, and Cook’s generalized distance reduces to

GDCi(β) =
1
p

[(
β̂ − β̂(i)

)′

Σ̂−1
β̂

(
β̂ − β̂(i)

)]
, i = 1, . . . , n,

where Σ̂β̂ is the submatrix of Σ̂θ̂ associated with vector β̂.

4.2. Local Influence Measurements

In this subsection, we deal with the effect of minor perturbations on the data, since
they may cause a considerable effect on the estimates of parameters in the fitted model [20].
The local influence diagnostics are useful to check the model’s assumptions and assess
the effects of minor perturbations in the dataset or in the proposed model on estimates
of regression parameters, scale parameters, and other parameters. In this way, problems
with the error distribution assumptions or the fitted regression model can be detected. The
following perturbation schemes are addressed:

• Case-weight;
• Perturbation of the response variable;
• Perturbation of an explanatory variable;
• Perturbation of the scale parameter.

4.2.1. Case-Weight Perturbation

Let ω be the n × 1 vector of case-weights for the log-FBS nonlinear regression model
introduced in Equation (8). The relevant part of the log-likelihood for the perturbed
model is
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ℓ(θ|ω) = −
n

∑
i=1

ωi(log(1 − Φ(δ)) + log(σ)) +
n

∑
i=1

ωilog(ξi1) (21)

−1
2

n

∑
i=1

ωi(ξ
2
i2 + 2δsgn(ξi2)ξi2 + δ2) +

n

∑
i=1

ωilog(Φ(λξi2)) . (22)

Then, for the i-th observation and the j-th coefficient β j, it follows that

∆ij =
1
σ

di,j

(
ξi1ξi2 −

ξi2
ξi1

)
− λ

σ
di,jξi1Wi +

δ

σ
di,jsgn(ξi2)ξi1, j = 1, 2, . . . , p.

Therefore, the ∆β matrix is given by:

∆β = D diag{κ1, κ2, . . . , κn}i=1,2,...,n (23)

where D = {dij} is a p × n matrix and

κi =
1
σ

(
ξi1ξi2 −

ξi2
ξi1

)
− λ

σ
ξi1Wi +

δ

σ
sgn(ξi2)ξi1 .

Moreover, ∆α,σ,δ,λ is a 4 × n matrix given by

∆α,σ,δ,λ = (ν1, ν2, . . . , νn),

where

νi =


− 1

α + 1
α ξ2

i2 −
λ
α Wiξi2 +

δ
α sgn(ξi2)ξi2

1
σ zi

(
ξi1ξi2 − ξi2

ξi1

)
− λ

σ ziξi1Wi +
δ
σ sgn(ξi2)ziξi1

ϕ(δ)
1−Φ(δ)

− sgn(ξi2)ξi2 − δ

ξi2Wi

 , i = 1, . . . , n .

4.2.2. Perturbation of the Response Variable

An additive perturbation scheme on the response variable is proposed as follows:

Yiw = Yi + ωisy, i = 1, . . . , n, (24)

where sy is the standard deviation of the response variable, and ωi ∈ R. So, the relevant
part of the perturbed log-likelihood is given by

ℓ(θ|ω) = −n log(1 − Φ(δ))− n log(σ) +
n

∑
i=1

log(ξi1ω) (25)

−1
2

n

∑
i=1

(ξ2
i2ω + 2δsgn(ξi2ω)ξi2ω + δ2) +

n

∑
i=1

log(Φ(λξi2ω)), (26)

where

ξi1ω =
2
α

cosh
(

yiω − f (β, xi)

σ

)
, ξi2ω =

2
α

sinh
(

yiω − f (β, xi)

σ

)
.

In this case, the elements of the ∆ matrix are given by
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∆ij(β) =
sy

σ2 di,j

[
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

]
+

λsy

σ2 di,jWi

[
−ξi2 + λξ2

i1(λξi2 + Wi)
]

+
δsy

σ2 di,jsgn(ξi2)ξi2, i = 1, . . . , n, j = 1, . . . , p.

∆ij(α, σ, δ, λ) = (υ1i, υ2i, υ3i, υ4i), i = 1, . . . , n, j = 1, . . . , 4,

where

υ1i =
2sy

ασ
ξi1ξi2 +

λsy

ασ
ξi1Wi[−1 + λξi2(λξi2 + Wi)] +

δsy

ασ
sgn(ξi2)ξi1,

υ2i =
sy

σ2

[
ξi1ξi2 −

ξi2
ξi1

]
+

sy

σ2 zi

[
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

]

−
λsy

σ2 Wi

[
ξi1 − zi(−ξi2 + λξ2

i1(λξi2 + Wi))
]
+

δsy

σ2 (ξi1 + ziξi2),

υ3i = −
sy

σ
sgn(ξi2)ξi1,

υ4i = −
sy

σ
ξi1Wi(−1 + λξi2(λξi2 + Wi)).

4.2.3. Perturbation of an Explanatory Variable

Let us now consider the following additive perturbation for the explanatory variable xq:

xiqw = xiq + ωisxq , i = 1, . . . , n, (27)

where sxq is the standard deviation of the xq variable, and ωi ∈ R. Then, the relevant part
of the perturbed log-likelihood is

ℓ(θ|ω) = −n log(1 − Φ(δ))− n log(σ) +
n

∑
i=1

log(ξi1qω) (28)

−1
2

n

∑
i=1

(ξ2
i2qω + 2δsgn(ξi2qω)ξi2qω + δ2) +

n

∑
i=1

log(Φ(λξi2qω)), (29)

where

ξi1qω =
2
α

cosh
(

yi − f (βw, xi)

σ

)
, ξi2qω =

2
α

sinh
(

yi − f (βw, xi)

σ

)
,

and βw is (x1, x2, . . . , xi(q−1), xiq + ωisxq , xi(q+1), . . . , xp).
The elements of ∆(β) are

∆ij(β) =
sxq

σ
rijq

[(
ξi1ξi2 −

ξi2
ξi1

)
− λξi1Wi + δsgn(ξi2)ξi1

]
−

δsxq

σ2 di,jriqsgn(ξi2)ξi2

−
sxq

σ2 di,jriq

[(
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

)
+ λWi(−ξi2 + λξ2

i1(λξi2 + Wi))

]
,

with rijq = ∂2 f (βw ,x)
∂βq∂xiqw

∣∣
θ=θ̂,ω=0 and riq = ∂ f (βw ,x)

∂xiqw

∣∣
θ=θ̂,ω=0.

Analogously, for parameters α, σ, δ, and λ, we have that

∆(α, σ, δ, λ) = (ĉ1, ĉ2, . . . , ĉn)

where
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ciα = −
2sxq

ασ
riqξi1ξi2 −

λsxq

ασ
riqξi1Wi[−1 + λξi2(λξi2 + Wi)]−

δsxq

ασ
riqsgn(ξi2)ξi1,

ciσ = −
sxq

σ2 riq

[(
ξi1ξi2 −

ξi2
ξi1

)
− λξi1Wi + δsgn(ξi2)ξi1

]
−

sxq

σ2 riqzi

[(
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

)
+ λWi(−ξi2 + λξ2

i1(λξi2 + Wi)) + δsgn(ξi2)ξi2

]
,

ciδ =
sxq

σ
sgn(ξi2)riqξi1,

ciλ =
sxq

σ
riqξi1Wi[−1 + λξi2(λξi2 + Wi)].

4.2.4. Perturbation of a Scale Parameter

Now, we focus on the effect of a minor perturbation on the scale parameter σ, which
may cause heteroscedasticity. In this subsection, the effect of this perturbation on the
MLEs is studied. Let us assume that the error term in Equation (8) is distributed as
ϵi ∼ FSHN(α, 0, σ/wi, δ, λ), i = 1, 2, . . . , n. Then, the perturbed log-likelihood is

ℓ(θ|ω) = −n log(1 − Φ(δ))−
n

∑
i=1

log(σ/ωi) +
n

∑
i=1

log(ξi1ω1)

−1
2

n

∑
i=1

(ξ2
i2ω1

+ 2δsgn(ξi2ω1)ξi2ω1 + δ2) +
n

∑
i=1

log(Φ(λξi2ω1)),

where

ξi1ω1 =
2
α

cosh
(
ziω1

)
, ξi2qω =

2
α

sinh
(
ziω1

)
, ziω1 =

yi − f (β, xi)

σ/ωi
.

In this case, we have

∆ij(β) =
1
σ

di,jzi

[(
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

)
+ λWi(−ξi2 + λξ2

i1(λξi2 + Wi))

]

+
δ

σ
sgn(ξi2)di,jziξi2,

and ∆i(α, σ, δ, λ) = (r̂1, r̂2, . . . , r̂n) with

riα =
2
α

ziξi1ξi2 +
λ

α
ziξi1Wi[−1 + λξi2(λξi2 + Wi)] +

δ

α
zisgn(ξi2)ξi1,

riσ =
1
σ

zi

[(
ξi1ξi2 −

ξi2
ξi1

)
− λξi1Wi + δsgn(ξi2)ξi1

]
+

1
σ

z2
i

[(
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

)
+ λWi(−ξi2 + λξ2

i1(λξi2 + Wi)) + δsgn(ξi2)ξi2

]
,

riδ = −sgn(ξi2)ziξi1,

riλ = −ziξi1Wi[−1 + λξi2(λξi2 + Wi)].

5. Residual Analysis

In this section, martingale-type residuals are considered to detect deficiencies in the
fitted FBS nonlinear regression model with respect to the error distributional assumptions
and to detect possible outliers. The study is based on the deviance component residual
built on the martingale-type residuals proposed in Therneau et al. [21]. For the nonlinear
log-FBS model, the martingale residuals can be obtained as

rMi = 1 + ln(1 − {FFSHN(ẑi)}), i = 1, 2, . . . , n,
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where FFSHN(·) is the CDF of the FSHN distribution, and ẑi = ξi2(θ̂).
Therneau et al. [21] proposed the deviance component residual as a transformation of

the martingale-type residual. For non-censored data, they can be taken as

rMTi = sgn(rMi )
{
−2
[
rMi + ln(1 − rMi )

]}1/2, i = 1, 2, . . . , n.

Here, rMTi can be used as martingale-type residuals since they are symmetrically
distributed around zero.

On the other hand, Ortega et al. [22] proposed the consideration of the standardized
residuals, r∗MTi

. For the log-BS nonlinear model, they are given by

r∗MTi
=

rMTi√
1 − GLii(θ̂)

, i = 1, . . . , n,

where GLii(θ̂) is the i-th principal component for the generalized leverage matrix evaluated
at θ̂; details can be seen in Wei et al. [23].

The generalized leverage matrix is defined by

GL(θ) = Dθ(−L̈)−1 L̈θy,

where Dθ = ∂ f (θ)
∂θ′ = (D, 0), L̈ is a Hessian matrix, and L̈θy = (L̈αy, L̈βy, L̈σy, L̈δy, L̈λy)

′, with

L̈αy =
2

ασ
ξi1ξi2 +

λ

ασ
ξi1Wi[−1 + λξi2(λξi2 + Wi)] +

δ

ασ
sgn(ξi2)ξi1,

L̈βyi =
1
σ2 di,j

[(
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

)
+ λWi(−ξi2 + λξ2

i1(λξi2 + Wi))

]

+
δ

σ2 sgn(ξi2)di,jξi2,

L̈σy =
1
σ2

[(
ξi1ξi2 −

ξi2
ξi1

)
− λξi1Wi + δsgn(ξi2)ξi1

]
+

1
σ2 zi

[(
2ξ2

i2 +
4
α2 − 1 +

ξ2
i2

ξ2
i2 + 4/α2

)
+ λWi(−ξi2 + λξ2

i1(λξi2 + Wi)) + δsgn(ξi2)ξi2

]
,

L̈δy = − 1
σ

sgn(ξi2)ξi1,

and
L̈λy = − 1

σ
ξi1Wi[−1 + λξi2(λξi2 + Wi)].

In general, the distributions of martingale residuals and deviance component residuals
are unknown. Based on the properties of deviance component residuals and the suggestions
proposed in Atkinson [24], the residual analysis must be based on envelopes with normality
plots. We will follow this recommendation in the practical applications carried out in
Section 7.

6. Simulation

In order to study the performance of MLEs in the log-FBS nonlinear regression model,
two simulation studies have been carried out. Both suggest the good performance of
our proposal.
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6.1. Simulation for the Two-Parameter Michaelis–Menten Model

Next, the two-parameter Michaelis–Menten model is introduced. This model is widely
used in kinetic chemistry to describe the concentration of a substrate (Y) in terms of the
reaction rate (X). In practice, it is applied to enzyme-catalyzed reactions of one substance
and is used in a variety of situations, such as antigen–antibody binding, DNA–DNA
hybridization, and protein–protein interactions.

The Michaelis–Menten model with log-FBS errors is given by

yi =
β2xi

β1 + xi
+ ϵi, i = 1, . . . , n, (30)

where the reaction rate x > 0, β2 > 0 represents the maximum rate of reaction, β1 > 0 is a
kinetic constant, and ϵ ∼ FSHN(α, 0, σ, δ, λ).

Properties of Equation (30) were studied by Cysneiros and Vanegas [25] by assuming
that β1 = 0.0645, β2 = 212, and the error term ϵ follows a Student’s t distribution. In our
simulation, we consider Equation (30) with these values of β1 and β2, but the error term is
FSHN distributed as ϵ ∼ FSHN(α, 0, σ, δ, λ).

Without loss of generality, σ = 2 is fixed. For the shape parameters in the FSHN model,
we take α = 0.75, 2.75, λ = 1, 2.5, and δ = −1.5,−0.75, 0.75, 1.5. We highlight that these
scenarios cover a variety of situations for the shapes of the FSHN distribution (unimodal
and bimodal), as can be seen in [8].

As for the sample size, for every scenario, we consider n = 30, 50, 100, 200. For
the explanatory variable X, a random sample of a U(0, 1) distribution was generated.
In every setting, 2000 simulations were carried out by using the maxLik function of the
R software and by applying the BFGS method. As statistical summaries, the standard
deviation (sd) of MLEs, the absolute value of bias (|bias|), and the root of the mean squared
error (

√
MSE) are given in Tables 1–4. In these tables, we can observe that, when the sample

size increases, the standard deviations, biases, and
√

MSE decrease in all scenarios. It can
also be determined that the bias and

√
MSE of β̂1 and β̂2 are negligible, which confirms

the asymptotic unbiasedness of these estimators in the Michaelis–Menten model.
Also note that we obtained satisfactory results in our estimates for δ < 0, suggesting

the good performance of our model in bimodal settings.
For (α, σ, δ, λ) parameters, we highlight that the greater bias was obtained for δ > 0

and n = 50. However, if n increases, then |bias| decreases. In all settings, the best results
are obtained for negative values of δ, even for n = 30.

Since these simulations cover a variety of situations and shapes of the FSHN distri-
bution, they suggest that the estimators of the parameters are consistent when the sample
size increases.

As for the interest of our results in practice, we highlight the importance of the
Michaelis–Menten model. Recall that, in kinetic chemistry, this model is applied in the
classical case of an enzyme substrate mechanism in which the reaction timescale of the
enzyme must be faster than the reaction timescale of the substrate.



Axioms 2024, 13, 576 14 of 32

Table 1. |Bias|, sd, and
√

MSE for the MLEs in the nonlinear FSHN(α, β1 = 0.0645, β2 = 212, σ = 2, δ = −1.5, λ) regression model.

n = 30 n = 50 n = 100 n = 200

α λ θj |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE

α 1.0008 2.2462 2.4581 0.5139 1.4779 1.5642 0.3016 1.06 1.1018 0.154 0.6548 0.6725
β1 0.0000 0.0005 0.0005 0.0000 0.0004 0.0004 0 0.0003 0.0003 0 0.0002 0.0002

1 β2 0.0820 0.3662 0.3751 0.0301 0.2839 0.2854 0.0076 0.1980 0.1980 0.009 0.1447 0.1450
σ 0.1063 1.5869 1.5898 0.2153 1.4548 1.4701 0.3131 1.3863 1.4208 0.2194 1.0837 1.1054
δ 0.0437 0.7784 0.7793 0.0239 0.5766 0.5769 0.0132 0.4391 0.4392 0.0076 0.3088 0.3088
λ 0.1901 0.9566 0.9749 0.1634 0.7098 0.7281 0.1330 0.5332 0.5494 0.0749 0.3549 0.3626

0.75 α 0.8865 1.8557 2.0552 0.4839 1.3727 1.4549 0.2467 0.8404 0.8756 0.1551 0.7013 0.7180
β1 0.0001 0.0005 0.0005 0.0000 0.0004 0.0004 0.0000 0.0003 0.0003 0.0000 0.0002 0.0002

2.5 β2 0.1426 0.3531 0.3805 0.0594 0.2775 0.2837 0.0137 0.2094 0.2098 0.0036 0.1827 0.1827
σ 0.1177 1.6055 1.6085 0.2733 1.5332 1.5567 0.2657 1.3060 1.3324 0.2249 1.2441 1.2643
δ 0.3248 0.8475 0.9069 0.1141 0.6391 0.6489 0.0497 0.4878 0.4902 0.0207 0.4241 0.4245
λ 0.5084 2.1027 2.1632 0.4425 1.5452 1.6066 0.3441 1.1168 1.1682 0.2063 0.8370 0.8618
α 0.3120 2.4598 2.4784 0.1955 2.2903 2.2978 0.2532 2.1052 2.1203 0.0390 1.8850 1.8854
β1 0.0001 0.0009 0.0009 0.0001 0.0006 0.0006 0 0.0004 0.0004 0.0000 0.0003 0.0003

1 β2 0.2337 0.5774 0.6227 0.1574 0.4361 0.4635 0.0641 0.3065 0.3130 0.0296 0.2195 0.2214
σ 0.7659 1.4792 1.6652 0.5457 1.1195 1.245 0.2845 0.7086 0.7634 0.1109 0.4229 0.4371
δ 0.4424 0.7825 0.8986 0.3415 0.6329 0.7189 0.1809 0.4946 0.5265 0.0636 0.4025 0.4074
λ 0.1496 0.5012 0.5229 0.1098 0.4537 0.4667 0.0327 0.4008 0.4020 0.0201 0.3471 0.3476

2.75 α 0.6689 2.5377 2.6244 0.5444 2.0995 2.1679 0.3647 1.7431 1.7802 0.0185 1.5518 1.5514
β1 0.0004 0.0009 0.0010 0.0003 0.0007 0.0007 0.0001 0.0005 0.0005 0 0.0004 0.0004

2.5 β2 0.5897 0.7349 0.9419 0.4189 0.5920 0.725 0.2282 0.5054 0.5544 0.0845 0.3681 0.3776
σ 0.8094 1.6277 1.8169 0.6858 1.3942 1.5531 0.3438 0.7213 0.7988 0.1377 0.4321 0.4534
δ 0.2255 0.8603 0.8893 0.1995 0.7052 0.7325 0.1525 0.5421 0.5629 0.0648 0.4146 0.4195
λ 0.6643 1.5532 1.6884 0.5497 1.3291 1.4377 0.2237 1.2552 1.2745 0.0556 1.1871 1.1881
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Table 2. |Bias|, sd, and
√

MSE for the MLEs in the nonlinear FSHN(α, β1 = 0.0645, β2 = 212, σ = 2, δ = −0.75, λ) regression model.

n = 30 n = 50 n = 100 n = 200

α λ θj |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE

α 1.2619 2.5259 2.8222 0.6735 1.7690 1.8921 0.2822 1.1092 1.1441 0.1241 0.6143 0.6265
β1 0.0000 0.0006 0.0006 0.0000 0.0004 0.0004 0.0000 0.0003 0.0003 0.0000 0.0002 0.0002

1 β2 0.0609 0.3885 0.3930 0.0282 0.3460 0.3470 0.0338 0.2469 0.2491 0.0268 0.1948 0.1966
σ 0.7200 1.7957 1.9347 0.4471 1.6701 1.7289 0.3592 1.4841 1.5264 0.3280 1.2659 1.3073
δ 0.1714 0.8152 0.8325 0.1928 0.6807 0.7071 0.1197 0.4928 0.5070 0.0694 0.3554 0.3620
λ 0.3075 0.9914 1.0379 0.1689 0.9837 0.9976 0.1980 0.9147 0.9356 0.1046 0.5340 0.5440

0.75 α 0.8614 1.8335 2.0242 0.5484 1.4235 1.5246 0.3236 1.0391 1.0879 0.1646 0.7811 0.7980
β1 0.0000 0.0005 0.0005 0.0000 0.0004 0.0004 0.0000 0.0002 0.0002 0.0000 0.0002 0.0002

2.5 β2 0.0394 0.2951 0.2975 0.0249 0.2172 0.2186 0.0185 0.1739 0.1748 0.0035 0.1399 0.1399
σ 0.5831 1.7424 1.8374 0.3804 1.5203 1.5672 0.2747 1.3811 1.4076 0.1787 1.3684 1.3800
δ 0.0222 0.7953 0.7949 0.0316 0.7477 0.7483 0.0135 0.6622 0.6621 0.0090 0.5516 0.5516
λ 0.5665 2.1875 2.2577 0.7411 2.0010 2.1326 0.6756 1.6576 1.7893 0.4951 1.2955 1.3865
α 0.5663 3.1198 3.1694 0.4971 2.8185 2.8620 0.5086 2.5052 2.5556 0.3869 2.2428 2.2759
β1 0.0000 0.0010 0.0010 0.0000 0.0008 0.0008 0.0000 0.0005 0.0005 0.0000 0.0004 0.0004

1 β2 0.2157 0.6739 0.7073 0.1263 0.5217 0.5366 0.0645 0.3705 0.3759 0.0317 0.2634 0.2653
σ 0.6392 1.6206 1.7414 0.5644 1.3796 1.4901 0.2792 0.9033 0.9452 0.1480 0.5875 0.6057
δ 0.3471 0.8917 0.9565 0.2720 0.7695 0.8159 0.1118 0.6381 0.6477 0.0359 0.5442 0.5452
λ 0.1501 0.6607 0.6773 0.1247 0.6139 0.6264 0.0853 0.5434 0.5498 0.0576 0.4816 0.4849

2.75 α 0.8108 2.7504 2.8674 0.5540 2.1766 2.2450 0.4585 1.9212 1.9745 0.3650 1.5705 1.6119
β1 0.0002 0.0010 0.0010 0.0001 0.0008 0.0008 0.0000 0.0006 0.0006 0.0000 0.0004 0.0004

2.5 β2 0.3392 0.7320 0.8064 0.2300 0.6258 0.6665 0.1061 0.5086 0.5193 0.0267 0.4458 0.4465
σ 0.8629 1.7817 1.9787 0.8173 1.3572 1.5837 0.6250 1.1474 1.3062 0.3488 0.6221 0.7130
δ 0.3800 0.8719 0.9506 0.3974 0.7350 0.8352 0.3090 0.6264 0.6982 0.2297 0.5059 0.5554
λ 0.6113 1.7079 1.8130 0.5432 1.5239 1.6171 0.2708 1.4400 1.4647 0.0918 1.2792 1.2821
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Table 3. |Bias|, sd, and
√

MSE for the MLEs of parameters in the nonlinear FSHN(α, β1 = 0.0645, β2 = 212, σ = 2, δ = 0.75, λ) regression model.

n = 30 n = 50 n = 100 n = 200

α λ θj |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE

α 2.1108 2.9608 3.6309 1.4057 2.3245 2.7123 0.9875 1.9073 2.1446 0.8043 1.7183 1.8944
β1 0.0001 0.0005 0.0005 0.0001 0.0004 0.0004 0.0001 0.0003 0.0003 0.0001 0.0002 0.0002

1 β2 0.2369 0.3454 0.4188 0.1023 0.3046 0.3207 0.0836 0.2342 0.2487 0.0744 0.1890 0.2028
σ 0.4017 1.7876 1.8284 0.1440 1.7734 1.7755 0.1072 1.7118 1.7120 0.1068 1.5550 1.5587
δ 0.6162 1.7212 1.8246 0.1996 2.0235 2.0291 0.1920 1.8514 1.8402 0.1982 1.5857 1.5951
λ 1.8053 2.8485 3.3724 1.4874 2.4124 2.8341 1.3146 1.7855 2.2146 0.6068 1.0620 1.2214

0.75 α 1.2944 2.2954 2.6307 0.7644 1.6713 1.8349 0.5569 1.2543 1.3723 0.4382 1.3193 1.3885
β1 0.0000 0.0004 0.0004 0.0001 0.0003 0.0003 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

2.5 β2 0.0501 0.2343 0.2391 0.0761 0.1870 0.2016 0.0773 0.1352 0.1557 0.0763 0.1013 0.1267
σ 0.3180 1.7369 1.7619 0.3031 1.9523 1.9756 0.2879 1.6463 1.6688 0.2814 1.6088 1.6310
δ 0.6808 1.4775 1.6238 0.5812 1.4641 1.5726 0.5628 1.2540 1.3728 0.2694 1.2843 1.3105
λ 1.9729 2.6751 3.3239 1.5213 2.5374 2.9543 1.3813 1.9897 2.4221 1.2252 1.6178 2.0276
α 2.3567 2.8848 3.7181 0.8979 2.6963 2.8419 0.6777 2.0076 2.1169 0.2569 1.5997 1.6201
β1 0.0000 0.0004 0.0004 0.0001 0.0010 0.0010 0.0001 0.0007 0.0007 0.0000 0.0006 0.0006

1 β2 0.4284 0.9595 1.0508 0.2046 0.7624 0.7893 0.1121 0.6519 0.6608 0.0254 0.5195 0.5196
σ 1.6940 1.6090 2.3363 1.5132 1.6300 2.2241 1.0485 1.5881 1.9017 0.9707 1.3685 1.6767
δ 1.5242 2.2937 2.7539 1.0093 1.0623 1.4646 0.9449 1.0496 1.4114 0.8077 0.8722 1.1882
λ 0.2632 1.6498 1.6656 0.1691 1.0744 1.0866 0.1070 1.0530 1.0584 0.0810 0.9354 0.9380

2.75 α 1.6058 2.8996 3.3145 1.4957 2.3819 2.8126 1.0571 1.7376 2.0322 0.9787 1.6344 1.9038
β1 0.0001 0.0010 0.0010 0.0001 0.0008 0.0008 0.0002 0.0005 0.0006 0.0002 0.0004 0.0005

2.5 β2 0.7109 0.9153 1.1589 0.3315 0.6603 0.7388 0.3033 0.5026 0.5865 0.2466 0.4437 0.5073
σ 1.5889 1.6265 2.2738 1.4450 1.7168 2.2440 1.4456 1.6668 2.2050 1.2058 1.4130 1.8566
δ 1.3270 1.8647 2.2887 1.0963 1.3638 1.7482 1.1484 0.9965 1.5198 1.0000 0.9666 1.3903
λ 0.6418 2.8511 2.9224 0.4011 2.0858 2.1218 0.4122 2.0135 2.0552 0.3777 1.8670 1.9033
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Table 4. |Bias|, sd, and
√

MSE for the MLEs of parameters in the nonlinear FSHN(α, β1 = 0.0645, β2 = 212, σ = 2, δ = 1.5, λ) regression model.

n = 30 n = 50 n = 100 n = 200

α λ θj |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE

α 1.3321 3.1923 3.4564 1.2461 2.0285 2.3745 1.0868 1.7757 2.0769 1.0086 1.5979 1.8858
β1 0.0001 0.0013 0.0013 0.0000 0.0003 0.0003 0.0001 0.0002 0.0002 0.0000 0.0001 0.0001

1 β2 0.2190 0.8386 0.8667 0.1585 0.2494 0.2947 0.0721 0.1668 0.1813 0.0231 0.1041 0.1064
σ 0.1885 1.6809 1.6914 0.0990 2.2292 2.2314 0.0229 1.8572 1.8512 0.0144 1.6128 1.6084
δ 0.9510 2.2002 2.3969 0.4849 2.1557 2.2020 0.2764 2.0100 2.0223 0.1950 1.6797 1.6909
λ 1.2860 2.6139 2.9131 1.2695 2.3624 2.6744 0.9981 1.5862 1.8697 0.5423 0.9422 1.0849

0.75 α 0.8852 2.9406 3.0709 0.7970 1.6712 1.8464 0.6649 1.3687 1.5184 0.5923 1.2810 1.4088
β1 0.0001 0.0012 0.0012 0.0001 0.0002 0.0002 0.0000 0.0002 0.0002 0.0000 0.0001 0.0001

2.5 β2 0.0180 0.7550 0.7541 0.0798 0.1517 0.1709 0.0809 0.1235 0.1474 0.0513 0.0936 0.1065
σ 0.6500 1.9598 2.0620 0.1369 2.0962 2.1006 0.1155 1.4954 1.4960 0.0726 1.6704 1.6719
δ 1.1244 1.9715 2.2696 0.8033 1.8345 1.9970 0.4552 1.7969 1.8492 0.0588 1.7381 1.7353
λ 1.6103 2.8710 3.2917 1.5760 2.5588 2.9978 1.7609 2.1633 2.7850 1.1074 1.6314 1.9688
α 1.6704 3.0504 3.4729 0.2643 2.7861 2.7921 0.2461 2.4365 2.4427 0.0770 2.5228 2.5187
β1 0.0001 0.0013 0.0013 0.0002 0.0010 0.0010 0.0003 0.0007 0.0007 0.0001 0.0005 0.0005

1 β2 0.6137 0.8675 1.0626 0.2631 0.8215 0.8608 0.2425 0.6921 0.7317 0.1712 0.4836 0.5121
σ 1.8340 1.9599 2.6842 1.6571 1.7980 2.4452 1.0247 1.6313 1.9229 0.9110 1.6398 1.8729
δ 1.7730 1.8202 2.5410 1.3264 1.7092 2.1603 0.9127 1.8085 2.0217 0.3544 1.7783 1.8096
λ 0.8348 1.9410 2.1129 0.5945 1.6926 1.7940 0.4609 1.6122 1.6729 0.3565 1.1140 1.1675

2.75 α 1.1420 3.0652 3.2640 0.7401 2.5240 2.6303 0.6398 2.2713 2.3559 0.6194 2.1003 2.1866
β1 0.0001 0.0011 0.0011 0.0001 0.0007 0.0007 0.0003 0.0005 0.0006 0.0002 0.0004 0.0004

2.5 β2 0.5882 0.6913 0.9077 0.3236 0.5841 0.6677 0.2770 0.4772 0.5511 0.2510 0.3822 0.4568
σ 0.2023 1.8242 1.8309 1.9826 1.9431 2.7760 1.3813 1.8272 2.2880 1.2014 1.5971 1.9965
δ 1.2485 1.8292 2.2146 1.0625 1.8562 2.1350 1.1734 1.7224 2.0817 0.9119 1.6783 1.9077
λ 0.9592 2.9735 3.1244 0.8472 2.7257 2.8483 0.8469 2.3657 2.5089 0.6073 1.8613 1.9551
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6.2. Simulation for a Nonlinear Regression Model Proposed in [15]

A second simulation study is carried out for the nonlinear regression model with
p = 3 covariates, 4 regression coefficients, and sinh-normal errors discussed in Lemonte
and Cordeiro [15]. The model is

µi = β1xi,1 + β2xi,2 + β3 exp(β4xi,3), i = 1, . . . , n.

Next, the MLE properties of parameters in this model are studied under the assump-
tion of FSHN errors.

As statistical summaries, again we give: the standard error (sd) of estimates, |bias|,
and

√
MSE.

The scenarios under consideration are: β1 = 4, β2 = 5, β3 = 3, β4 = 1.5, and σ = 3.
As for the parameters for the error term, we considered α = 0.75, 1.5, λ = 1, 2.5, and
δ = −2.5, − 0.75. The sample sizes in our simulations were n = 50, 100, 150. The
covariates X1, X2, X3 were random variables generated as uniform (0, 1). In every setting,
the simulations were repeated 2000 times. The maxLik function of the R software and the
BFGS method were applied.

Results are listed in Tables 5 and 6. In general, we can see that the standard errors, the
absolute bias, and the square root of the mean squared error decrease for all the parameters
if the sample size increases.

We highlight that the estimates of parameters β1, β2, β3, and β4, that is, for those in-
volved in the regression model, behave well, which suggests their asymptotic unbiasedness
and consistency.
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Table 5. |Bias|, empirical sd, and
√

MSE for the MLEs of the parameters in the nonlinear FSHN(α, 4, 5, 3, 1.5, 3,−0.75, λ) regression model.

n = 50 n = 100 n = 150

α λ θj |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE

α 1.3278 2.6594 2.9712 0.4640 1.4611 1.5324 0.2054 0.9908 1.0115
β1 0.0127 0.5236 0.5235 0.0061 0.3558 0.3558 0.0041 0.2850 0.2850
β2 0.0087 0.5465 0.5463 0.0049 0.3624 0.3624 0.0038 0.2789 0.2789

1 β3 0.0692 0.4888 0.4935 0.0136 0.3781 0.3783 0.0008 0.3075 0.3077
β4 0.0058 0.1499 0.1499 0.0069 0.1145 0.1146 0.0083 0.0909 0.0913
δ 0.1084 1.0004 1.0062 0.0967 0.6975 0.7042 0.0882 0.4929 0.5005
λ 0.2565 0.9038 0.9395 0.1744 0.9060 0.9223 0.1045 0.6923 0.6999

0.75 α 0.6796 1.8382 1.9585 0.3686 1.2026 1.2573 0.2519 1.0130 1.0435
β1 0.0120 0.4337 0.4336 0.0129 0.2889 0.2891 0.0039 0.2368 0.2367
β2 0.0065 0.4461 0.4458 0.0050 0.2952 0.2951 0.0010 0.2213 0.2213

2.5 β3 0.0439 0.3829 0.3851 0.0037 0.2651 0.2650 0.0011 0.2315 0.2317
β4 0.0050 0.1142 0.1142 0.0044 0.0800 0.0801 0.0030 0.0681 0.0681
δ 0.0846 0.8939 0.8978 0.0409 0.7071 0.7080 0.0294 0.6409 0.6413
λ 0.4954 2.0678 2.1248 0.6857 1.7562 1.8845 0.5697 1.5043 1.6080
α 1.1758 2.9068 3.1345 0.4951 2.0550 2.1132 0.3055 1.6689 1.6961
β1 0.0069 0.8074 0.8071 0.0060 0.5288 0.5288 0.0038 0.4244 0.4244
β2 0.0337 0.7960 0.7967 0.0264 0.5343 0.5350 0.0087 0.4157 0.4156

1 β3 0.1620 0.6968 0.7151 0.0589 0.5360 0.5390 0.0381 0.4312 0.4328
β4 0.0181 0.2146 0.2153 0.0012 0.1636 0.1636 0.0000 0.1337 0.1337
δ 0.1501 0.9077 0.9197 0.1218 0.6588 0.6698 0.0895 0.5521 0.5591
λ 0.0617 0.6945 0.6970 0.0372 0.6878 0.6886 0.0232 0.6023 0.6025
α 0.6311 2.4365 2.5155 0.0921 1.5692 1.5713 0.0219 1.2922 1.2920

1.5 β1 0.0192 0.6908 0.6911 0.0088 0.4680 0.4681 0.0033 0.3818 0.3816
β2 0.0130 0.7076 0.7077 0.0049 0.4630 0.4630 0.0024 0.3851 0.3849

2.5 β3 0.1391 0.6510 0.6653 0.0349 0.4880 0.4890 0.0208 0.4139 0.4143
β4 0.0107 0.1873 0.1875 0.0040 0.1445 0.1445 0.0029 0.1201 0.1201
δ 0.1416 0.9404 0.9510 0.1367 0.6979 0.7109 0.1350 0.6132 0.6279
λ 0.2127 2.1304 2.1409 0.1602 1.6150 1.6222 0.1497 1.5055 1.5124



Axioms 2024, 13, 576 20 of 32

Table 6. |Bias|, empirical sd, and
√

MSE for the MLEs of the parameters in the nonlinear FSHN(α, 4, 5, 3, 1.5, 3,−2.5, λ) regression model.

n = 50 n = 100 n = 150

α λ θj |bias| sd
√

MSE |bias| sd
√

MSE |bias| sd
√

MSE

α 0.3506 1.2033 1.2529 0.1560 0.7021 0.7190 0.1113 0.5457 0.5568
β1 0.0059 0.4137 0.4136 0.0033 0.2683 0.2684 0.0011 0.2221 0.2220
β2 0.0085 0.4150 0.4150 0.0062 0.2770 0.2770 0.0036 0.2216 0.2215

1 β3 0.0896 0.4543 0.4629 0.0356 0.2860 0.2881 0.0088 0.2373 0.2374
β4 0.0113 0.1354 0.1358 0.0050 0.0824 0.0825 0.0004 0.0695 0.0695
δ 0.0307 0.6869 0.6874 0.0260 0.4574 0.4580 0.0204 0.3664 0.3670
λ 0.1476 0.7338 0.7482 0.1447 0.6229 0.6394 0.0954 0.3625 0.3748

0.75 α 0.9213 1.8964 2.1068 0.4460 1.0851 1.1727 0.2751 0.8086 0.8539
β1 0.0146 0.4238 0.4237 0.0336 0.2802 0.2820 0.0007 0.2264 0.2263
β2 0.0225 0.4202 0.4204 0.0165 0.2822 0.2825 0.0045 0.2319 0.2319

2.5 β3 0.3120 0.6527 0.7229 0.2020 0.4219 0.4676 0.1725 0.3376 0.3790
β4 0.0538 0.1903 0.1976 0.0413 0.1136 0.1209 0.0381 0.0894 0.0972
δ 0.5141 1.0195 1.1409 0.3482 0.7174 0.7971 0.2598 0.5429 0.6016
λ 0.7986 1.8937 2.0552 0.3364 1.5904 1.6248 0.1472 1.4668 1.4742
α 0.4957 1.5216 1.6003 0.2721 1.3524 1.3791 0.2153 1.1273 1.1474
β1 0.0243 0.5179 0.5183 0.0003 0.3448 0.3447 0.0001 0.2774 0.2774
β2 0.0085 0.4935 0.4934 0.0064 0.3465 0.3465 0.0031 0.2753 0.2752

1 β3 0.2468 0.5959 0.6447 0.1023 0.4279 0.4398 0.0441 0.3325 0.3354
β4 0.0450 0.1725 0.1782 0.0178 0.1209 0.1221 0.0057 0.0943 0.0945
δ 0.2537 0.7339 0.7762 0.0787 0.5017 0.5077 0.0582 0.4081 0.4122
λ 0.2088 0.7408 0.7697 0.1201 0.6318 0.6430 0.0887 0.4707 0.4789
α 0.5712 2.0248 2.1017 0.4065 1.4279 1.4839 0.3128 1.1008 1.1439

1.5 β1 0.0544 0.4883 0.4908 0.0241 0.3454 0.3460 0.0069 0.2796 0.2796
β2 0.0073 0.5443 0.5438 0.0070 0.3423 0.3422 0.0019 0.2705 0.2705

2.5 β3 0.5942 0.9954 1.1583 0.3861 0.6357 0.7435 0.2816 0.5181 0.5895
β4 0.0964 0.2568 0.2741 0.0748 0.1695 0.1852 0.0559 0.1393 0.1500
δ 0.2298 0.9835 1.0099 0.1968 0.6376 0.6670 0.1721 0.4951 0.5239
λ 0.2078 1.8451 1.8547 0.1331 1.6260 1.6305 0.0266 1.5968 1.5970
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7. Real Applications

In this section, two illustrations of the log-FBS nonlinear regression model are given.
In Section 7.1, a discussion of linear and nonlinear regression models is carried out. The
residual analysis techniques proposed in Section 5 are applied to check the model’s ad-
equacy. On the other hand, in Section 7.2, the emphasis is put on the use of diagnostic
influence techniques proposed in Section 4.

7.1. Illustration I
7.1.1. Classical Discussion of Models

Let us consider the Australian Institute of Sport (AIS) dataset available from the sn
package of R [26]. It consists of n = 202 measurements from high-performance athletes
on various characteristics of the blood. We aim to explain the Hematocrit (Hc) variable in
terms of Hemoglobin (Hg). A linear model with log-FBS errors and two nonlinear models
with log-BS and log-FBS errors are considered for Y = log(Hc). First, it is established
that a nonlinear model is better. Later, by using a likelihood ratio test (LRT), it is seen
that a nonlinear model with log-FBS errors must be preferred. Its adequacy is checked by
envelope plots for the martingale-type residuals.

The regression models under consideration are:

1. Linear model for Y = log(Hc):

Yi = log(Hci) = β1 + β2xi + ϵi, i = 1, 2, . . . , n

where
ϵi ∼ Log − FBS(α, 0, 2, δ, λ) .

2. Nonlinear model for Y = log(Hc) with log-BS errors:

Yi = log(Hci) = β1xβ2
i + ϵi, i = 1, 2, . . . , n

where
ϵi ∼ Log − BS(α, 0, 2).

3. Nonlinear model for Y = log(Hc) with log-FBS errors:

Yi = log(Hci) = β1xβ2
i + ϵi, i = 1, 2, . . . , n

where
ϵi ∼ Log − FBS(α, 0, 2, δ, λ).

Table 7 provides the parameter estimates by using maximum likelihood, along with
the estimated standard errors (in parentheses) and the p-values of tests for the coefficients.
The proposed models are compared by using the Akaike information criterion (AIC) and
corrected AIC (AICc) defined as

AIC = −2ℓ(θ̂) + 2k and AICc = AIC +
2k(k + 1)
n − k − 1

,

where k is the number of parameters in the model. The better model is the one with the
lowest AIC or AICc.

From AIC and AICc in Table 7, the nonlinear log-BS and nonlinear log-FBS models
provide the better fit.

Since nonlinear log-BS and nonlinear log-FBS are nested models, they can be compared
with a likelihood ratio test (LRT), where

H0 : (δ, λ) = (0, 0) versus H1 : (δ, λ) ̸= (0, 0),
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and the test statistic is

∆ =
LLBS(α̃, β̃1, β̃2)

LLFBS(α̂, β̂1, β̂2, δ̂, λ̂)
.

By taking α = 0.05 and using the estimates in Table 7, we obtain

−2 log(∆) = −2(451.8546 − 457.0297) = 10.3502,

which is greater than the critical point χ2
2,0.95 = 5.9914. Therefore, the null hypothesis is

rejected, and it can be stated than the nonlinear log-FBS model provides a better fit than
the nonlinear log-BS one.

Moreover, Figure 1a,b give the envelopes for the martingale-type residuals for both
nonlinear models. Again, these plots suggest that the nonlinear log-FBS model provides a
better fit than the nonlinear log-BS one.

Table 7. Parameter estimates (standard error) and p-values for nonlinear log-BS, linear log-FBS, and
nonlinear log-FBS models, along with AIC and AICc values.

Parameter Estimates Nonlinear Log-BS Linear Log-FBS Nonlinear Log-FBS

α 0.0258 (0.0012) 0.0260 (0.0016) 0.0244 (0.0014)
p-value (0.0000) (0.0000) (0.0000)

β1 2.0343(0.0281) 2.9460 (0.0000) 2.0822 (0.0001)
p-value (0.0000) (0.0000) (0.0000)

β2 0.2295 (0.0051) 0.0593 (0.0001) 0.2259 (0.0002)
p-value (0.0000) (0.0000) (0.0000)

δ −1.9303 (0.0070) −2.0949 (0.0062)
p-value (0.0000) (0.0000)

λ −1.5232 (0.0071) −1.3293 (0.0053)
p-value (0.0000) (0.0000)

AIC −897.70 −893.27 −904.05
AICc −897.58 −892.96 −903.75
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Figure 1. Normal probability plots for rMTi with envelopes of Q-qplots for the scaled residuals for
the fitted models: (a) nonlinear log-BS model and (b) nonlinear log-FBS model.

7.1.2. Discussion of Models Based on Validation Techniques

An evaluation of regression models previously proposed is next carried out by using
validation techniques. Uses of cross-validation (CV) and generalized CV criteria to select
models or optimal ridge parameters in partial linear regression models can be seen in [27,28],
among others. In our case, we follow a validation approach.
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We randomly split the 202 observations into two sets: a training set containing 101 of
the data points, and a validation set with the remaining 101 observations. The regression
model fitted to the training sample is later evaluated on the validation sample by using the
mean squared error (MSE) as a measure of error. This process is repeated 100 times, that is,
using 100 different random splits of the original sample into training and validation sets.
In summary, the mean of the MSEi, i = 1, . . . , 100, is given in Table 8.

Table 8. MSE obtained for linear log-FBS, nonlinear log-BS, and nonlinear log-FBS models by using
validation approach (50%, 50%), 100 times.

Linear Log-FBS Nonlinear Log-BS Nonlinear Log-FBS

MSE 1.107259 0.8222637 0.004790429

Since the nonlinear log-FBS model exhibits the smallest MSE in Table 8, this model
would be preferred to describe our dataset.

As for goodness-of-fit tests to decide if the sample comes from a specific model, the
Anderson–Darling test, implemented in the goftest R package, Version 1.2-3 is used [29].
The p-values of these tests are listed in Table 9. These summaries suggest that the nonlinear
log-FBS model provides a good fit for this dataset.

Table 9. Results for the Anderson–Darling goodness-of-fit test.

Linear Log-FBS Nonlinear Log-BS Nonlinear Log-FBS

MSE 0.0052 0.0000 0.6750

7.2. Illustration II: Model Discussion with Emphasis on the Use of Diagnostic Influence Techniques

The real dataset under consideration consists of 46 independent observations of a
metal specimen subject to cyclic stress. This dataset has been previously studied by Rieck
and Nedelman [10], Galea et al. [30] and Xie and Wei [31]. The variables involved in
this study are: the response variable (T), number of cycles to failure, and the explanatory
covariable (X), which corresponds to the work by cycle (mJ/m3). The aim is to check the
number of cycles before a failure (crack) happens. Rieck and Nedelman [10] proposed to fit
the linear regression model

Yi = log(Ti) = β1 + β2 log(Xi) + ϵi, (31)

where ϵi ∼ SHN(α, 0, 2).
Note that Equation (31) is a linear model in the logarithm of the explanatory variable

X. This fact may render cumbersome the interpretation of parameters in the fitted model.
An alternative is to keep the original explanatory variable X and try to fit a nonlinear
model. As for what nonlinear model to propose, the scatter plot of {(xi, yi)} may be
useful. In this case, an exponential model is suggested. So, we propose to fit the nonlinear
regression model

Yi = log(Ti) = β1 + β2 exp(β3/Xi) + ϵi,

where ϵi ∼ FSHN(α, 0, σ, δ, λ).
Note that

E(Yi) = µi = β1 + β2 exp(β3/Xi) +E(ϵi) = β∗
1 + β2 exp(β3/Xi), (32)

with β∗
1 = β1 +E(ϵ) and ϵ ∼ FSHN(α, 0, σ, δ, λ).

Remark 3. A brief discussion to illustrate that, in this case, the nonlinear proposal is superior to
the linear one is given in Appendix A.3.
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The maximum likelihood estimates for the parameters in Equation (32) along with
their standard errors (in parentheses) are given in Table 10.

Table 10. Estimates of parameters in Equation (32).

α̂ = 2.3061 β̂1 = 10.1725 β̂2 = −5.8413 β̂3 = −17.9475
(1.3846) (1.4170) (1.0844) (8.5355)

σ̂ = 0.9499 δ̂ = 1.2984 λ̂ = −5.6195
(0.3100) (0.6121) (2.6171)

In Figure 2a,b, martingale-based residuals and the diagonal elements in matrix GLii
are plotted. These plots suggest that certain observations may be potentially influential.
These are cases #1, #2, #3, #4, #5, #12, #32, and #46, among others.
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Figure 2. (a) Plots of deviance component residuals rMTi . (b) Elements in the diagonal of the
generalized Leverage matrix GLii.

Analogously, diagnostic analyses have been carried out for the vector of parameter
β and the remaining parameters in the model α, σ, δ, λ. The statistic GDCi(θ) introduced
in Section 4.1 is used in the following settings: case-weights, perturbation of the response
variable, perturbed covariables, and perturbed scale parameters. Our results show that, in
the case-weights setting, cases #1, #3, and #4 are detected as potentially influential, whereas
for the perturbed response variable and the perturbed scale parameter setting, only case
#44 was detected as potentially influential. As for the perturbed covariable setting, cases
#1, #2, #3, #8, #13, and #19 are detected. The plots given in Figures 3a,b, 4a,b, 5a,b and 6a,b
show the results of these analyses.

Next, the influence of previously mentioned cases is studied thorough the relative
change statistic, defined as

RCθj =

∣∣∣∣∣ θ̂j − θ̂j(I)

θ̂j

∣∣∣∣∣× 100,

where θ̂j denotes the maximum likelihood estimate for the parameter θj, including all
observations, and θ̂j(I) denotes the estimate of the same parameter, deleting the influential
observations.
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Figure 3. Plots for the Ci(·) index in the case-weights scheme: (a) for β and (b) for θ1 = (α, σ, δ, λ).

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

 index

C
i(β

)

44

(a)

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

index

C
i(α

, 
σ

, 
δ
, 
λ
)

44

(b)

Figure 4. Plots for the Ci(·) index in the perturbation of the response variable scheme: (a) for β and
(b) for θ1 = (α, σ, δ, λ).
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Figure 5. Plots for the Ci(·) index in the perturbed covariate scheme: (a) for β and (b) for
θ1 = (α, σ, δ, λ).
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Figure 6. Plots for the Ci(·) index for the perturbation of the scale parameter scheme: (a) for β and
(b) for θ1 = (α, σ, δ, λ).

The approximation for the standard error (SE) of RC proposed in Santana et al. [32]
will be used:

RC(ŜE(θj)) =

∣∣∣∣∣ ŜE(θ̂j)− ŜE(θ̂j(I))

ŜE(θ̂j)

∣∣∣∣∣× 100,

where ŜE(θ̂j) denotes the SE for the maximum likelihood estimate for the parameter
θj, including all observations, and ŜE(θ̂j(I)) denotes the SE for the estimate of the same
parameter, deleting the influential observations.

Table 11 provides the RC(%), their RC(ŜE(θj)) in parentheses, and the p-values asso-
ciated with test H0 : β j = 0 versus H1 : β j ̸= 0 for j = 1, 2, 3.

From the results in Table 11, we may conclude that, individually, cases #2, #44, and
#46 affect the estimates of the parameters β1, β2, and β3 in the nonlinear regression model,
as well as the scale (σ), shape (δ), and skewness (λ) parameters. It can also be seen that
cases #2 and #46 have influence on the ML-estimator of α.

Moreover, the joint influence of cases {2, 44}, {2, 46}, {44, 46}, and {2, 44, 46} is ana-
lyzed. It can be seen that, jointly, these observations have influence on the estimates of
the model parameters. As for the hypothesis tests for the parameters in the nonlinear
regression model, none of the observations (#2, #44, and #46) affect their significance.

Therefore, cases #2, #44, and #46 were eliminated. The new fitted model is

µ̂i = ŷi|xi = 9.1327 − 5.3787e−21.3189/xi , (33)

whose error terms are distributed as ϵi ∼ FSHN(2.2841, 0, 0.9028, 1.0741,−4.6699).
The plots in Figure 7a,b show the envelope plot for the martingale-type residuals and

the dispersion plot for the final fitted model given in Equation (33). Both plots suggest that
this is a good choice for describing this dataset.
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Table 11. Relative change, RC%(RC(ŜE(θj))), and p-values for model parameters.

Dropped Case α̂ β̂1 β̂2 β̂3 σ̂ δ̂ λ̂

{1} RC 65.06 (373.35) 3.15 (95.07) 1.58 (92.37) 8.77 (98.23) 18.43 (27.66) 1.14 (392.14) 188.39 (726.20)
p-value <0.0001 <0.0001 <0.0001

{2} RC 52.71 (1.38) 6.78 (0.46) 10.31 (0.47) 20.22 (0.18) 20.22 (0.12) 42.08 (2.27) 6.76 (0.40)
p-value <0.0001 <0.0001 0.0019

{3} RC 32.49 (400.94) 0.56 (31.20) 1.80 (32.00) 0.64 (31.48) 15.48 (100.93) 28.76 (447.30) 123.62 (623.66)
p-value <0.0001 <0.0001 0.0022

{4} RC 21.11 (195.41) 7.75 (77.04) 15.98 (81.52) 28.77 (41.05) 1.92 (223.74) 101.39 (230.88) 665.89 (2330.91)
p-value <0.0001 <0.0001 <0.0001

{5} RC 57.45 (209.88) 0.82 (31.88) 3.41 (35.85) 5.17 (23.69) 27.15 (14.58) 34.87 (209.86) 133.96 (398.36)
p-value <0.0001 <0.0001 0.0037

{8} RC 59.70 (420.19) 0.17 (94.88) 3.32 (91.86) 2.06 (97.94) 23.12 (42.53) 25.68 (379.91) 120.30 (575.81)
p-value <0.0001 <0.0001 <0.0001

{12} RC 61.67 (565.47) 3.47 (51.15) 6.86 (55.68) 14.91 (32.77) 24.02 (72.43) 15.74 (551.91) 130.18 (751.91)
p-value <0.0001 <0.0001 0.0003

{13} RC 77.45 (519.92) 1.38 (37.44) 4.55 (41.19) 5.92 (27.83) 21.63 (43.23) 3.74 (510.58) 175.01 (841.64)
p-value <0.0001 <0.0001 0.0020

{19} RC 50.87 (375.77) 1.77 (37.60) 4.93 (42.11) 7.76 (25.55) 17.93 (52.82) 16.93 (391.25) 146.89 (643.19)
p-value <0.0001 <0.0001 0.0023

{32} RC 11.88 (109.88) 2.75 (94.60) 6.83 (91.06) 10.26 (97.26) 13.98 (16.50) 54.41 (149.02) 77.57 (205.20)
p-value <0.0001 <0.0001 <0.0001

{44} RC 3.87 (2.66) 5.88 (0.96) 8.57 (0.94) 17.81 (0.98) 7.59 (2.53) 49.73 (4.33) 17.77 (0.85)
p-value 0.6362 0.0000 0.0000 0.0000 0.3500 0.5512 0.3396

{46} RC 7.67 (1.42) 5.43 (0.95) 7.63 (0.93) 18.59 (0.98) 8.77 (0.67) 10.22 (2.17) 18.89 (0.28)
p-value <0.0001 <0.0001 <0.0001

{2, 44} RC 71.66 (2.59) 6.96 (0.98) 11.05 (0.97) 19.89 (0.99) 21.76 (0.02) 67.37 (3.55) 3.05 (0.94)
p-value <0.0001 <0.0001 <0.0001

{2, 46} RC 134.88 (4.40) 6.81 (0.96) 10.86 (0.90) 19.11 (0.96) 32.51 (0.25) 85.00 (4.63) 12.13 (1.63)
p-value <0.0001 <0.0001 <0.0001

{44, 46} RC 3.27 (2.16) 5.76 (0.98) 4.09 (0.94) 18.50 (0.99) 21.85 (3.44) 115.02 (5.22) 48.58 (0.09)
p-value <0.0001 <0.0001 <0.0001

{2, 44, 46} RC 0.95 (0.12) 5.47 (0.22) 7.91 (0.29) 18.78 (0.12) 4.95 (0.02) 17.26 (0.53) 16.89 (0.13)
p-value <0.0001 <0.0001 0.0262
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Figure 7. (a) Normal probability plots for rMTi with envelopes of Q-qplots for the scaled residuals
from the fitted model and (b) dispersion diagram for nonlinear model FSHN with errors.

8. Conclusions

In this paper, a nonlinear log-Birnbaum–Saunders regression model with additive
errors is introduced. It is assumed that the errors follow the flexible sinh-normal distribution
introduced in [8]. As an advantage, we highlight that this model can be used to describe a
continuous response variable with asymmetric, unimodal, or bimodal behavior by using a
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nonlinear function of covariates. Its theoretical properties are studied, along with results
from the maximum likelihood estimation of the parameters. Influence diagnostics are
introduced in order to provide tools to detect influential observations and deficiencies
in the fitted model. Statistics based on Cook’s generalized distance and local influence
diagnostics are considered. Several perturbation schemes are proposed. Specifically, these
are: case-weight, perturbations of the response variable, perturbations of an explanatory
variable, and perturbations of the scale parameter. Martingale-type residual analysis
is presented to detect deficiencies in the fitted model. Simulation studies are included,
where the Michaelis–Menten model of interest in kinetic chemistry is considered. The
simulations cover a variety of situations as for the range of parameters under consideration.
In particular, we highlight that negative and positive values for the parameter that controls
the unimodality or bimodality in our model are considered. Our results suggest that
the estimators of the parameters are consistent and show the good performance in both
unimodal and bimodal settings. To conclude, applications to real datasets are given in
order to illustrate how to use our methodology.

We highlight that, in the first application, a discussion of linear and nonlinear regres-
sion models is carried out, first from a classical point of view. Several information criteria
and the likelihood ratio test are applied. Martingale-type residual analysis techniques are
applied to check the model’s adequacy. Second, this discussion is also carried out by using
cross-validation techniques. In both cases, our proposal is superior to the other regres-
sion models under consideration. On the other hand, in the second real application, the
emphasis is on the use of diagnostic influence techniques to detect influential observations.

As important novelties and advantages of our model, we highlight the nonlinearity of
our proposal and the kind of distribution used for the errors, since it is assumed that they
follow a flexible sinh-normal distribution. Therefore, it is useful for modeling unimodal
and bimodal settings. Also, recall that it can be applied to nonnegative data and that it is of
interest in reliability and medicine. Moreover, our approach is more general and reduces
to other nonlinear regression models previously introduced in the literature, such as the
log-BS nonlinear regression model with asymmetric errors introduced in [15].

As future research, we will consider the extension of these models to a censored
continuous response variable Y. This kind of study is relevant, for instance, in medicine,
where, quite often, we have data that can only be recorded above or below a certain
threshold and that depend on the sensitivity of a laboratory test.
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Appendix A

Appendix A.1

The following lemma was used to establish the existence of Equations (9) and (10).

Lemma A1. Let ϵ ∼ FSHN(α, 0, 2, δ, λ). Then,

E(ϵ) = 2c1(α, δ, λ),

Var(ϵ) = 4V(α, δ, λ),

where

c1(α, δ, λ) = EFSN

(
arcsinh

(
αZ
2

))
= cδ

∫ ∞

−∞
arcsinh

(αz
2

)
ϕ(|z|+ δ)Φ(λz)dz,

and V(α, δ, λ) denotes the variance of the RV arcsinh(αZ/2), with Z ∼ Flexible Skew−Normal(δ, λ).

Proof. Since ϵ ∼ FSHN(α, 0, 2, δ, λ), it can be seen in [8] that ϵ = 2arcsinh(αZ/2), with
Z ∼ Flexible Skew − Normal(δ, λ). Recall that the PDF of Z is

fZ(z) = cδϕ(|z|+ δ)Φ(λz), z ∈ R.

Therefore,

E(ϵ) = 2 EFSN

(
arcsinh

(
αZ
2

))
= 2 cδ

∫
R

arcsinh
(αz

2

)
ϕ(|z|+ δ)Φ(λz)dz .

Taking into account the relationship arcsinh(x) = log(x +
√

x2 + 1), ∀x ∈ R, and the
fact that, if w = x +

√
x2 + 1 > 0, then log(w) ≤ w − 1 (see Love [33]), then we have that∫

R
arcsinh

(αz
2

)
ϕ(|z|+ δ)Φ(λz)dz

can be expressed in terms of incomplete moments of the skew-normal distribution. The
existence of moments of the skew-normal distribution can be seen in Haas [16]; therefore,
c1(α, δ, λ) also exists.

Note that we can proceed similarly for Var(ϵ) or EFSN

(
arcsinh

(
αZ
2

)j
)

with j ∈ Z+,

since the moments of the skew-normal distribution exist; see Haas [16]. Therefore, the

moments of EFSN

(
arcsinh

(
αZ
2

)j
)

with j ∈ Z+ also exist, in particular, V(α, δ, λ).

Appendix A.2

Next, the elements of the observed information matrix are given.

Corollary A1. Let Y1, . . . , Yn be a random sample of Y ∼ FLBS(α, f (β, xi), σ, δ, λ). Then, the
elements of the observed information matrix are:
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jαα = − n
α2 +

3
α2

n

∑
i=1

ξ2
i2 +

λ

α2

n

∑
i=1

Wiξi2[−2 + λξi2(λξi2 + Wi)] +
2δ

α2

n

∑
i=1

sgn(ξi2)ξi2,

jαβ j =
2

ασ

n

∑
i=1

di,jξi1ξi2 +
λ

ασ

n

∑
i=1

di,jWiξi1[−1 + λξi2(λξi2 + Wi)] +
δ

ασ

n

∑
i=1

di,jsgn(ξi2)ξi1,

jαδ = − 1
α

n

∑
i=1

sgn(ξi2)ξi2,

jαλ = − 1
α

n

∑
i=1

ξi2Wi[−1 + λξi2(λξi2 + Wi)],
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2
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∑
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ziξi1ξi2 −
λ

ασ

n

∑
i=1

ziξi1Wi[−1 + λξi2(λξi2 + Wi)] +
δ

ασ

n

∑
i=1
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jβ j β j′
= − 1

σ
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gi,jj′

[
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ξi2
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+

δ

σ2
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σ2

n

∑
i=1
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δ
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δ
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di,jsgn(ξi2)ziξi2 −
λ

σ2
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∑
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di,jξi1Wi
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1

σ2
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di,jzi
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4
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ξ2
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ξ2
i2 + 4/α2

]
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λ

σ2
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∑
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[
−ξi2 + λξ2

i1(λξi2 + Wi)
]
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jσσ =
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ξi1ξi2 −

ξi2
ξi1

]
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δ

σ2

n

∑
i=1

sgn(ξi2)zi[2ξi1 + ziξi2]−
2λ

σ2
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ziξi1Wi −
n
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z2
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2ξ2
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4
α2 − 1 +

ξ2
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λ

σ2

n

∑
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z2
i Wi

[
−ξi2 + λξ2

i1(λξi2 + Wi)
]
,

jβ jλ = − 1
σ

n

∑
i=1

dijWiξi1[−1 + λξi2(λξi2 + Wi)], jλλ =
n

∑
i=1

ξ2
i2Wi(λξi2 + Wi),

jσλ =
1
σ

n

∑
i=1

ziWiξi1 −
λ

σ

n

∑
i=1

ziξi1ξi2Wi(λξi2 + Wi), jσδ = − 1
σ

n

∑
i=1

sgn(ξi2)ziξi1,

jβ jδ = − 1
σ

n

∑
i=1

di,jsgn(ξi2)ξi1, jλδ = 0, jδδ = n(Wδ(δ − Wδ) + 1),

where Wδ = ϕ(δ)/(1 − Φ(δ)).

Proof. It is straightforward by applying standard calculus techniques.

Appendix A.3

In this appendix, it is shown that the nonlinear model proposed in Section 7.2 is
superior to a linear model. So, for the dataset studied in Section 7.2, let us consider the
linear model with sinh-normal errors or log-BS

Yi = log(Ti) = β1 + β2xi + ϵi,

with ϵi ∼ SHN(α, 0, 2). Summaries for this model and the nonlinear one proposed in
Equation (32) are given in Table A1. From AIC and AICc in Table A1, it can be con-
cluded that the nonlinear flexible log-BS provides a better fit to this dataset than the linear
log-BS model.
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Table A1. Parameter estimates (standard errors).

Estimates Log-BS Flexible Log-BS

α̂ 0.5202 (0.0543) 2.3061 (1.3846)
p-value (0.0000) (0.0479)

β̂1 7.9849 (0.1546) 10.1725 (1.4170)
p-value (0.0000) (0.0000)

β̂2 −0.0406 (0.0033) −5.8413 (1.0844)
p-value (0.0000) (0.0000)

β̂3 −17.9475 (8.5355)
p-value (0.0354)

σ̂ 0.9499 (0.3100)
p-value (0.0021)

δ̂ 1.2984 (0.6121)
p-value (0.0339)

λ̂ −5.6195 (2.6171)
p-value (0.0317)

AIC 75.5638 53.6077
AICc 76.5394 56.5550
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