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Abstract: The Z-function is the real function given by Z(t) = eiθ(t)ζ
(

1
2 + it

)
, where ζ(s) is the

Riemann zeta function, and θ(t) is the Riemann–Siegel theta function. The function, central to the
study of the Riemann hypothesis (RH), has traditionally posed significant computational challenges.
This research addresses these challenges by exploring new methods for approximating Z(t) and its
zeros. The sections of Z(t) are given by ZN(t) := ∑N

k=1
cos(θ(t)−ln(k)t)√

k
for any N ∈ N. Classically,

these sections approximate the Z-function via the Hardy–Littlewood approximate functional equation

(AFE) Z(t) ≈ 2ZÑ(t)(t) for Ñ(t) =
[√

t
2π

]
. While historically important, the Hardy–Littlewood AFE

does not sufficiently discern the RH and requires further evaluation of the Riemann–Siegel formula.
An alternative, less common, is Z(t) ≈ ZN(t)(t) for N(t) =

[ t
2
]
, which is Spira’s approximation using

higher-order sections. Spira conjectured, based on experimental observations, that this approximation
satisfies the RH in the sense that all of its zeros are real. We present a proof of Spira’s conjecture using
a new approximate equation with exponentially decaying error, recently developed by us via new
techniques of acceleration of series. This establishes that higher-order approximations do not need
further Riemann–Siegel type corrections, as in the classical case, enabling new theoretical methods
for studying the zeros of zeta beyond numerics.

Keywords: Riemann zeta function; Hardy Z-function; approximate functional equation; Spira’s
approximation; series acceleration; Riemann hypothesis; numerical analysis; analytic number theory
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1. Introduction
1.1. Riemann’s Analytic Extension of Zeta

The Riemann zeta function is given by ζ(s) := ∑∞
n=1 n−s in the range Re(s) > 1. In

his revolutionary 1859 work [1], Riemann extended the zeta function ζ(s) analytically to
a meromorphic function on the entire complex plane with a single pole at s = 1. This
extension allowed him to explore the zeta function from a complex analytic perspective,
uncovering its profound connection to the distribution of prime numbers. Riemann’s
analytic continuation of ζ(s) is given by the integral representation:

ζ(s) =
Γ(1 − s)

2πi

∫ ∞

−∞

(−x)s

ex − 1
dx
x

. (1)

Although the integral representation outlined in Equation (1) was of tremendous
importance for Riemman’s theoretical explorations in his manuscript, it is not amenable for
direct computations. To practically compute ζ(s), asymptotic techniques are required.
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1.2. The Approximate Functional Equation (AFE) and the Riemann–Siegel Formula

The development of the AFE for the Z-function due to Hardy and Littlewood, marks
a cornerstone in the computation methods of zeta [2–5]. The Hardy Z-function, denoted as
Z(t), is the real function defined by

Z(t) = eiθ(t)ζ

(
1
2
+ it

)
(2)

where θ(t) is the Riemann–Siegel θ-function, given by the equation

θ(t) = arg
(

Γ
(

1
4
+

it
2

))
− t

2
log(t), (3)

see [6,7]. The Hardy–Littlewood approximation is encapsulated in the formula

Z(t) = 2
Ñ(t)

∑
k=1

cos(θ(t)− ln(k)t)√
k

+ R(t), (4)

where Ñ(t) =
[√

t
2π

]
, and the error term is given by

R(t) = O
(

1√
t

)
. (5)

This representation, while powerful, for many purposes, requires further refinement of the
error term R(t) to enhance the level of precision.

In the 1930’s, C. L. Siegel uncovered previously unpublished notes by Riemann which
revealed that, remarkably, Riemann not only knew the Hardy–Littlewood Formula (4) but
also developed complex asymptotic saddle point techniques which enable the required
further evaluation of its error term R(t) for any order [6,8]. For instance, expanded to
first-order, the Riemann–Siegel formula gives

R(t) = (−1)N(t)−1
(

t
2π

)− 1
4 cos(2π(p2 − p − 1

16 ))

cos(2πp)
+ O

(
1

t
3
4

)
, (6)

where p =
√

t
2π − Ñ(t). As an asymptotic formula, for a given specific value of t, in-

definitely increasing the order of the expansion does not guarantee improved approxi-
mation. It is conjectured by Berry and Keating [9] that, when expanded to its optimal
order, the Riemann–Siegel formula can reach the accuracy level of exponentially decaying
error O

(
e−πt).

Since its introduction, the Riemann–Siegel formula, especially when enhanced with the
Odlyzko–Schönhage algorithm [10], has been the main method for numerical verification
of the RH, see [11–17]. The most comprehensive verification to date, achieved by Platt
and Trudigian, confirms the RH up to 3 · 1012, see [18]. However, it can be argued that
one of the great challenges in the Riemann hypothesis is the fact that while the Riemann–
Siegel formula gives efficient methods for the numerical estimation of R(t) to any given
order, it offers little analytical insight on its structure, crucial for the understanding of the
properties of the zeros in general, especially as the order of its expansion increases due
to the complexity of the expressions involved. It should be noted that recently, various
alternative methods have been suggested, see [19–21].
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1.3. Sections of the Z-Function and Spira’s Approximation

In [22,23], Spira introduced the notion of sections of the AFE of Z(t), which are
essentially defined by

ZN(t) :=
N

∑
k=1

cos(θ(t)− ln(k)t)√
k

, (7)

and conducted a study of their zeros for any N ∈ N. In particular, Spira noted that the
sections of Z(t) give an additional approximation of the function to that of the AFE

Z(t) = ZN(t)(t) + O
(

1√
t

)
, (8)

at the higher range N(t) =
[ t

2
]
.

This approximation and its proof most certainly pre-date Spira and were probably
already known to Riemann, see Theorem 1.8 of [24] for a variant. For instance, Figure 1
shows the values of the sections ZN(t) for the fixed value of t = 3000 and N = 1, . . . , 1500
(blue), the Hardy–Littlewood approximation of 1

2 Z(3000) (green) and Spira approximation
Z(3000) (brown):

Figure 1. Values of the sections ZN(t) for the fixed value of t = 3000 and N = 1, . . . , 1500 (blue), the
Hardy-Littlewood approximation of 1

2 Z(3000) (green) and the Spira approximation Z(3000) (brown).

For numerical computations, employing (4) coupled with the Riemann–Siegel formula
is clearly more efficient than utilizing Spira’s approximation, for the following reasons:

1. The number of terms required for Spira’s approximation, N(t) =
[ t

2
]
, increases

quadratically compared to Ñ(t) =
[√

t
2π

]
required by (4), making it far more costly

for numerical calculations. This alone likely made (8), even if folklorically known,
impractical for computational use, particularly before the advent of computers.

2. The theoretical asymptotic estimation of Spira’s approximation error, obtained by

classical means, is O
(

1√
t

)
, which is similar to that of the Hardy–Littlewood formula,

before the application of the Riemann–Siegel expansion of the error whose first term
already gives an error of order O

(
t−

3
4

)
. It should be noted, however, that these are

approximate results, and hence, this seemingly superior asymptotic bound does not
necessarily ensure greater practical accuracy over Spira’s approximation.

A particularly noteworthy aspect of this additional approximation (8), however, is its
unique properties when compared to the classical AFE.

1.4. Spira’s Conjecture and the Absence of Theoretical Justification

Despite being far more costly, Spira, through his empirical investigations, suggested
that (8) might have a critical significance, see S.6 of [22]. Remarkably, contrary to the
Hardy–Littlewood formula, this higher-range approximation does not seem to admit zeros
off the real line. That is, it is sensitive enough to observe the RH without the need for the
expansion of the error term, as in the classical Riemann–Siegel formula. Although not
explicitly stated by Spira in the following form, this can be formalized as follows:



Axioms 2024, 13, 577 4 of 8

Conjecture (Spira’s RH for sections). All the non-trivial zeros of ZN(t)(t) are real.

Figure 2 shows ln|Z(t)| (orange) and compares between the Spira approximation
ln|ZN(t)| with N = N(t) = 205 (blue-left) and the classical Hardy-Littlewood approxima-
tion ln|2ZN(t)| with N = Ñ(t) = 8 (blue-right) in the range 412 < t < 419:

Figure 2. Graphs of ln|Z(t)| (orange) and the Spira approximation ln|ZN(t)| with N = N(t) = 205
(blue-left) and the classical Hardy–Littlewood approximation ln|2ZN(t)| with N = Ñ(t) = 8 (blue-
right) in the range 412 < t < 419.

Figure 2 illustrates an instance of two real zeros accurately predicted by Spira’s formula,
as anticipated, but missed by the Hardy–Littlewood formula (highlighted here in red),
which actually erroneously identifies them as complex zeros.

Spira’s conjecture, while grounded in empirical and experimental observations, lacks
direct theoretical underpinnings. Our aim in this work is to present a theoretical justification
for the phenomena observed in Spira’s conjecture of the advantage of the higher-order
section ZN(t)(t) over the Hardy–Littlewood sections ZÑ(t)(t), via our new techniques of
accelerated approximations.

2. Spira’s Approximation and Accelerated Approximations

In [25], we have developed an AFE based on the accelerated global series for ζ(s)
due to Hasse–Sondow, which admits an error of exponential decay, see also [26] for a
further study of this formula. For the Z-function, we have the following variant of our
accelerated formula:

Z(t) = Z̃N(t)(t) + O
(
e−ωt), (9)

where

Z̃N(t) :=
N

∑
n=0

1
2n+1

n

∑
k=0

(
n
k

)
cos(θ(t)− ln(k + 1)t)√

k + 1
, (10)

with ω > 0 a certain positive constant computed in [25] and N(t) =
[ t

2
]

is the same
order as in Spira’s approximation. The following Figure 3 shows ln|Z(t)| (orange) and our
approximation ln|Z̃N(t)(t)| with N = N(t) = 205 (blue) in the range 412 < t < 419:

Figure 3. Graphs of ln|Z(t)| (orange) and our accelerated approximation ln|Z̃N(t)(t)| of [25] with
N = N(t) = 205 (blue) in the range 412 < t < 419.
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Figure 4 illustrates the content of formula (9) by displaying ln|R(t)| (blue) and the line
−ω · t (orange), where R(t) = Z(t)− Z̃N(t)(t) is the error of (9), for the range 0 ≤ t ≤ 350:

Figure 4. The graph of ln|R(t)| (blue) and the line −ω · t (orange), where R(t) = Z(t)− Z̃N(t)(t) is
the error of formula (9), for the range 0 ≤ t ≤ 350.

It should be noted that our approximation via the accelerated Z̃N(t)(t) actually achieves
the superior accuracy expected to be attained by the Hardy–Littlewood AFE coupled with
the Riemann–Siegel formula when evaluated at the optimal order, according to the Berry
and Keating conjecture. Our main result is the following reformulation:

Proposition 1. The Hardy Z-function can be approximated via

Z(t) = Z̃N(t)(t) + O
(
e−ωt), (11)

where

Z̃N(t)(t) =
N(t)

∑
k=1

α̃acc
k (t)

cos(θ(t)− ln(k)t)√
k

(12)

is the accelerated N-th section with the coefficients αacc
k (t) given by

α̃acc
k (t) :=

N(t)

∑
n=k−1

1
2n+1

(
n

k − 1

)
. (13)

Proof. Denote by

βn,k(t) := β0
n,k

cos(θ(t)− ln(k + 1)t)√
k + 1

, (14)

where

β0
n,k :=

1
2n+1

(
n
k

)
. (15)

The accelerated formula is given as the sum of all the coefficients βn,k(t) within the
triangle 0 ≤ n ≤ N(t) and 0 ≤ k ≤ n. In particular, summing first along the k indices leads
to the definition of

A(n, t) =
n

∑
k=0

βn,k(t). (16)

The accelerated Formula (9) is thus given by the summation of A(n, t) for 0 ≤ n ≤ N(t).
Figure 5 illustrates the triangle of coefficients βn,k(t) and their possible summation orders:
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Figure 5. The triangle of coefficients βn,k(t) with A(n, t) arising from the horizontal order of summa-
tion (red) and α̃k(t) arising from the vertical order of summation (blue).

On the other hand, changing the order of summation to be first along k − 1 ≤ n ≤
N(t) for given k and then along 1 ≤ k ≤ N(t) leads to the definition of α̃k(t) and the
required formula.

It should be noted that our new Formula (17) is far more cost-efficient than the original
accelerated Formula (10). Spira’s section can be written as

ZN(t)(t) =
N(t)

∑
k=1

α
step
k (t)

cos(θ(t)− ln(k)t)√
k

, (17)

where the coefficients α
step
k (t) are given by the step function:

α
step
k (t) :=

{
1 1 ≤ k ≤ N(t)
0 otherwise

. (18)

Figure 6 shows a comparison between the accelerated coefficients α̃acc
k (t) (blue) and

the step coefficients α
step
k (t) (orange) of Spira’s section for t = 400 and k = 1, . . . , 400:

Figure 6. The accelerated coefficients α̃acc
k (t) (blue) and the step coefficients α

step
k (t) (orange) of Spira’s

section for t = 400 and k = 1, . . . , 400.

We thus have

Corollary 1. The accelerated section Z̃N(t)(t) is related to Spira’s section ZN(t)(t) via a smoothing

of the step coefficients α
step
k (t) to obtain α̃acc

k (t). Moreover,

limt→∞||α̃acc
k (t)− α

step
k (t)|| = 0 (19)

in the ℓ2 norm.
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3. Discussion and Conclusions

Sections of the Hardy Z-function are known to approximate the Hardy Z-function in
two different ways: (a) The classical Hardy–Littlewood AFE given by 2ZÑ(t)(t) in (4) and
(b) Spira’s approximation given by ZN(t)(t) in (8). Although the AFE is more efficient and
theoretically expected to be superior, Spira suggested, based on his numerical experimenta-
tions, that, in practice, his approximation might consistently satisfy the RH for any t ∈ R,
in the sense that all of its zeros are real. This is in striking contrast to the properties of the
AFE, which requires the further evaluation of the Riemann–Siegel formula for this purpose.

In this work, we have presented theoretical justification for this mysterious observation,
based on our new techniques of the asymptotic analysis of series acceleration, developed
in [25], where we introduced a new accelerated approximation satisfying

Z(t) = Z̃N(t)(t) + O(e−ωt), (20)

where ω > 0 is a certain positive constant. This approximation achieves the superior
accuracy expected to be attained by the Hardy–Littlewood AFE coupled with the Riemann–
Siegel formula when evaluated at the optimal order, according to the Berry and Keating
conjecture. In general, for any sequence αk = (α1, α2, . . . ) ∈ ℓ2, set

Z(t; αk) :=
∞

∑
k=1

αk
cos(θ(t)− ln(k)t)√

k
. (21)

In a unified manner, we have shown in Proposition 1 that both Spira’s sections and our
accelerated sections can be expressed as elements in this space

Z̃N(t)(t) = Z(t; α̃acc
k (t)) ; ZN(t)(t) = Z(t; α

step
k (t)), (22)

where α
step
k (t) is defined in (18), and the definition of αacc

k (t) is defined in (13). Furthermore,
Corollary 1 shows that

limt→∞||α̃acc
k (t)− α

step
k (t)|| = 0. (23)

This essentially implies that Spira’s section ZN(t)(t) asymptotically coincides with our
accelerated sections Z̃N(t)(t) as t → ∞.

In conclusion, our results provide the required theoretical justification to the numerical
phenomena observed by Spira. Indeed, the fact that the difference between the accelerated
sections Z̃N(t) and the Hardy Z-function Z(t) itself is imperceptible, coupled with the
convergence of ZN(t)(t) to Z̃N(t) at large t, establishes that Spira’s RH for sections is
essentially equivalent to RH for Z(t) itself. Moreover, our results further motivate the
definition of the new parametrized space of sections Z(t; αk) and the study of the properties
of their zeros with respect to variation in the parameters αk ∈ ℓ2, suggesting a promising
direction for further exploration.

Finally, let us note that one of the features responsible for the notorious difficulty
of the Riemann hypothesis is the fact that the Riemann–Siegel formula includes terms of
the form (6) beyond the main Hardy–Littlewood sum (4). These correcting terms, while
computationally feasible, present significant analytical challenges. We argue that the
results of this work, showing that Spira’s higher-order sections, which do not require any
further correction terms, already capture the location of the zeros, represent a substantial
theoretical development, potentially enabling innovative approaches to studying the zeros
of the Riemann zeta function.
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