On Fourier Series in the Context of Jacobi Matrices
Abstract
:1. Introduction
2. Polynomials of Jacobi Matrices
2.1. Orthogonal Polynomials
2.2. Linearization Coefficients
2.3. General Properties of Matrices
2.4. Recurrence Relations
- (a)
- (b)
- (a)
- ;
- (b)
- .
- (a)
- , for ;
- (b)
- , for .
3. Functions of the Matrix
- (a)
- ;
- (b)
- .
- (a)
- depends on ;
- (b)
- .
4. Applications
4.1. The Sign Function with Legendre Polynomials
4.2. Trigonometric Functions with Laguerre Polynomials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gautschi, W. Orthogonal polynomials: Applications and computation. Acta Numer. 1996, 5, 45–119. [Google Scholar] [CrossRef]
- Lewanowicz, S. Second-order recurrence relation for the linearization coefficients of the classical orthogonal polynomials. J. Comput. Appl. Math. 1996, 69, 159–170. [Google Scholar] [CrossRef]
- Ronveaux, A.; Hounkonnou, M.N.; Belmehdi, S. Generalized linearization problems. J. Phys. A Math. Gen. 1995, 28, 4423. [Google Scholar] [CrossRef]
- Szwarc, R. Linearization and connection coefficients of orthogonal polynomials. Monatshefte Für Math. 1992, 113, 319. [Google Scholar] [CrossRef]
- Adams, J.C., III. On the expression of the product of any two Legendre’s coefficients by means of a series of Legendre’s coefficients. Proc. R. Soc. Lond. 1878, 27, 63–71. [Google Scholar]
- Park, S.B.; Kim, J.H. Integral evaluation of the linearization coeficients of the product of two Legendre polynomials. J. Phys. A Math. Gen. 2006, 20, 623–635. [Google Scholar]
- Chaggara, H.; Koepf, W. On linearization and connection coefficients for generalized Hermite polynomials. J. Comput. Appl. Math. 2011, 236, 65–73. [Google Scholar] [CrossRef]
- Chaggara, H.; Koepf, W. On linearization coefficients of Jacobi polynomials. Appl. Math. Lett. 2010, 23, 609–614. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Release 1.1.10 of 2023-06-15. Available online: https://dlmf.nist.gov/ (accessed on 30 July 2024).
- Doha, E.; Abd-Elhameed, W. New linearization formulae for the products of Chebyshev polynomials of third and fourth kinds. Rocky Mt. J. Math. 2016, 46, 443–460. [Google Scholar] [CrossRef]
- Gene, H.; Golub, J.H.W. Calculation of Gauss quadrature rules. Math. Comput. 1969, 23, 221–230. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Dover Publications, Inc.: Mineola, NY, USA, 2011. [Google Scholar]
- Benzi, M.; Golub, G. Bounds for the Entries of Matrix Functions with Applications to Preconditioning. BIT Numer. Math. 1999, 39, 417–438. [Google Scholar] [CrossRef]
- Abd-Elhameed, W. New product and linearization formulae of Jacobi polynomials of certain parameters. Integral Transform. Spec. Funct. 2015, 26, 586–599. [Google Scholar] [CrossRef]
- Ahmed, H.M. Computing expansions coefficients for Laguerre polynomials. Integral Transform. Spec. Funct. 2021, 32, 271–289. [Google Scholar] [CrossRef]
- Matos, J.M.A.; Rodrigues, M.J.; de Matos, J.C. Explicit formulae for derivatives and primitives of orthogonal polynomials. arXiv 2017, arXiv:1703.00743. [Google Scholar]
- Roberts, J.D. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 1980, 32, 677–687. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y. A numerically stable high-order Chebyshev-Halley type multipoint iterative method for calculating matrix sign function. AIMS Math. 2023, 8, 12456–12471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, J.M.A.; Vasconcelos, P.B.; Matos, J.A.O. On Fourier Series in the Context of Jacobi Matrices. Axioms 2024, 13, 581. https://doi.org/10.3390/axioms13090581
Matos JMA, Vasconcelos PB, Matos JAO. On Fourier Series in the Context of Jacobi Matrices. Axioms. 2024; 13(9):581. https://doi.org/10.3390/axioms13090581
Chicago/Turabian StyleMatos, José M. A., Paulo B. Vasconcelos, and José A. O. Matos. 2024. "On Fourier Series in the Context of Jacobi Matrices" Axioms 13, no. 9: 581. https://doi.org/10.3390/axioms13090581
APA StyleMatos, J. M. A., Vasconcelos, P. B., & Matos, J. A. O. (2024). On Fourier Series in the Context of Jacobi Matrices. Axioms, 13(9), 581. https://doi.org/10.3390/axioms13090581