
Citation: Xiao, W.; Mao, K.; Liu, H.

Generalized Partially Functional

Linear Model with Interaction

between Functional Predictors.

Axioms 2024, 13, 583. https://

doi.org/10.3390/axioms13090583

Academic Editors: Christos Floros,

Christos Kountzakis and

Konstantinos Gkillas

Received: 10 July 2024

Revised: 15 August 2024

Accepted: 19 August 2024

Published: 27 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Generalized Partially Functional Linear Model with Interaction
between Functional Predictors
Weiwei Xiao 1,* , Kejing Mao 1 and Haiyan Liu 2

1 School of Science, North China University of Technology, Beijing 100144, China; kjmao0312@163.com
2 Department of Statistics, University of Leeds, Leeds LS2 9JT, UK; h.liu1@leeds.ac.uk
* Correspondence: xiaoww@ncut.edu.cn

Abstract: This paper proposes a generalized partially functional linear model with interaction terms.
It is suitable for cases where the response variable is scalar, and the predictor variables include a
mix of functional and scalar types, while considering the correlations among functional predictor
variables. The model uses principal component analysis for dimensionality reduction, employs
maximum likelihood estimation to obtain parameter values, proves the asymptotic properties of
the estimates, and validates the model’s accuracy through data simulation experiments. Finally, the
proposed model was applied to investigate the influence of air quality, climate factors, and medical
and social indicators, along with their interactions, on cancer incidence, which is a binary response.
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1. Introduction

With the advent of the big data era, more and more functional data, providing infor-
mation about objects varying over a continuum, are collected.

Currently, functional data analysis is being applied in various fields such as medicine,
environmental science, and economics and is receiving increasing attention. For details
on functional data analysis, see monographs by Ramsay and Silverman [1], Horváth and
Kokoszka [2], and Hsing and Eubank [3].

Several variants of functional linear regression models have been proposed to investi-
gate the influence of functional and/or scalar predictors on functional or scalar response
and, therefore, to make predictions. Cardot [4], Tony [5], and others have utilized spline
methods for estimation and prediction in functional linear regression models. In 2007,
Cardot et al. [6] extended the population least squares method to functional linear models,
proposing smooth spline estimates for model function coefficients and providing asymp-
totic results for this estimation. In 2012, Delaigle and Hall [7] utilized partial least squares
to demonstrate the consistency and convergence of functional linear models. Tony and
Ming [8] studied the estimation and prediction issues of functional linear regression models
within the framework of reproducing kernel Hilbert spaces. Nevertheless, these models
cannot deal with general responses such as binary and Poisson.

An important tool for functional data analysis is the functional linear regression model,
while the generalized functional regression model is an extension of the functional linear
regression model. As research progressed, the generalized functional regression model was
introduced to handle more complex response variables. This model was first introduced by
Nelder and Wedderburn [9] in 1972, and it investigates the relationship between continuous
and discrete response variables and the predictor variables through a link function. In 2002,
James [10] proposed generalized linear models with functional predictors and applied it to
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standard missing data problems. In 2005, Müller and Stadtmüller [11] proposed a general-
ized functional linear regression model where the response variable is a discrete scalar and
the predictor is functional. In 2011, Goldsmith et al. [12] developed fast fitting methods
for generalized functional linear models that can be applied to various functional data
designs, including functions measured with and without error and sparsely or densely sam-
pled. In 2021, Xiao et al. [13] proposed a generalized partially functional linear regression
model where the response variable is general and the predictors are scalar and functional.
However, none of these models incorporate the interaction of functional predictors.

To better address complex data that include both functional predictors and scalar
predictors, scholars have improved the functional linear model and proposed a functional
regression model with mixed predictors. In 2016, Kong et al. [14] explored the estimation
and variable selection problems in cases where the parametric part is high-dimensional
and the functional predictors are multidimensional. Yao [15] and Ma et al. [16] further
built upon the work of Kong [14], conducting more in-depth research and proving the
large sample properties of the estimators. In 2020, Xu et al. [17] studied the estimation and
hypothesis testing issues for models with multiple functional predictors and demonstrated
the corresponding large sample properties.

In many practical applications, we need to consider the interactions between variables,
and failure to consider the interaction term may lead to the problem of missing variables
in the model, thus introducing inaccurate predictions and inappropriate interpretations.
By introducing interaction terms, the inaccuracy can be reduced and the model can be
made more reliable, thereby improving the prediction by the model and providing more
reliable decision support. Indeed, functional linear regressions models with interaction
between functional predictors have been proposed recently; several examples follow. In
2016, Usset et al. [18] proposed a functional regression model with a scalar response and
multiple functional predictors with two-way interactions in addition to their main effects.
In 2019, Luo and Qin [19] proposed function-on-function regression models with interaction
and quadratic effects, together with an efficient estimation method that has a minimum
prediction error. In 2013, Yang et al. [20] introduced a class of nonlinear multivariate
time-frequency functional models that can identify important features in each signal as
well as the interaction of signals. Some models considered the interaction of two different
time points in the functional data. In 2020, Matsui [21] proposed a functional quadratic
model which took the interaction between two different time points of the functional data
into consideration. In 2020, Sun and Wang [22] also considered a quadratic regression
model where the predictor and the response are both functional; it estimated predictions
for the coefficient functions, and unknown responses and asymptotics were demonstrated.
Nonetheless, these models cannot be applied to general scalar responses. As far as we
know, only Fuchs et al. [23] in 2015 considered general scalar response with functional
predictors to include linear functional interaction terms. However, one drawback of the
method of Fuchs et al. [23] is that scalar predictors are not included, and a second drawback
is that the asymptotic properties of estimated regression coefficients were not established.

A practical motivation of this paper is the investigation of the influence of air qualities,
climate factors, medical and social indicators, and their interactions on cancer incidence,
which is a binary response. Cancer is one of the leading causes of death in humans; therefore,
it is crucial to analyze the factors related to cancer incidence. Studying cancer incidence can
help improve public health and quality of life, reduce social medical costs, and promote
human health and socio-economic development. In 2022, Qiu et al. [24] pointed out that
cancer incidence in China is much higher than those in the United States and the United
Kingdom due to the fact that China faces problems such as a large population, uneven
development in various regions, and a relative lag in cancer control strategies. In 2014,
Qin et al. [25] indicated that long-term exposure to air pollutants or short-term exposure
to some high concentrations of air pollutants such as PM2.5 may be associated with some
increased incidence rates of overall cancer, especially prostate cancer and female breast
cancer. In 2022, Wu et al. [26] found that areas with high green coverage have a lower
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risk of cancer. In 2023, Cao et al. [27] analyzed the relationship between per capita GDP
and cancer incidence in 55 regions of China, showing that regions with high GDP have
high cancer incidence. In 2017, Xu et al. [28] conducted a statistical analysis of the current
situation of PM2.5 in Changzhou in China and considered an interaction between PM2.5
and relative humidity during the same period, indicating a certain degree of interaction
between the two. In 2022, Yang et al. [29] used the generalized linear model to study the
effects of PM2.5 and relative humidity on visibility and found a significant interaction
between PM2.5 and relative humidity.

Therefore, we collected data on average daily PM2.5 concentration (from 1 January
2015 to 31 December 2020), average daily humidity (from 1 January 2015 to 31 December
2020), per capita GDP, green coverage rate in built-up areas, the proportion of medical
personnel (PMP) (which is the ratio of the number of licensed (assistant) doctors to the
population in the locality), and the binary cancer incidence in 49 cities in China from
http://www.cnemc.cn/, http://www.stats.gov.cn/sj/ndsj/ and http://www.chinancpcn.
org.cn/home. Our aim was to investigate the influence of PM2.5 concentration, air humidity,
per capita GDP, green coverage, and PMP on cancer incidence, with the focus not only on
the main effects but also on the interaction between PM2.5 concentration and air humidity
to, therefore, make predictions.

Existing models with interaction terms between functional predictors and general
scalar responses cannot deal with multiple functional and scalar predictors, which is the
case in our motivated datasets. Moreover, the asymptotic properties of estimators have not
been addressed in existing models. Therefore, in Section 2, we fully consider the combined
influence of functional predictors, scalar predictors, and interactions between functional
predictors on general scalar response by proposing a generalized partially functional linear
model with interaction terms. In Section 3, the asymptotic properties of our proposed
estimators are established. Extensive simulation studies are given in Section 4. Section 5 is
reserved for the real data analysis.

2. Model and Estimation
2.1. Model Introduction

Suppose we have n subjects, and the data we observe for the i-th subject are {(Xi1(t1),
t1 ∈ T1), (Xi2(t2), t2 ∈ T2), Zi, Yi}, i = 1, . . . , n. For j = 1, 2, the functional predictor Xij(tj)

is a random curve, which is observed for subject i and Xij(tj) ∈ L2(Tj), where Tj is a
bounded interval of R. Notice that, for the sake of simplicity in notations, we only consider
the case with two functional predictors, and the case with multiple functional predictors
can be easily similarly established. The scalar predictor vector Z = (Z1, Z2, . . . , Zq)T is a
q-dimensional random vector. The response Yi is a real-valued random variable that may
be continuous or discrete (e.g., binary, count, etc.).

We assume that there is a known link function g(·), which is a monotone and twice
continuously differentiable function with bounded derivatives that is, thus, invertible.

We introduce the following generalized partially functional linear model with interac-
tion between the functional predictors:

Yi =g
(

α +
∫

T1

Xi1(t1)β1(t1)dt1 +
∫

T2

Xi2(t2)β2(t2)dt2

+
∫∫

T1×T2

Xi1(t1)Xi2(t2)β(t1, t2)dt1dt2 + ZT
i γ

)
+ εi,

(1)

where α ∈ R is the intercept, β1(t1), β2(t2), and β(t1, t2) are the regression coefficient func-
tions corresponding to the two functional predictors and the interaction term, respectively,
Zi represents the i-th random variable in Z, and γ = (γ1, γ2, . . . , γq)

T is the regression
coefficient corresponding to the multiple scalar predictors Z. It is assumed that εi has mean
0 and variance σ2 and that εi is independent with ε j if i ̸= j.

Define the linear operator ℓ:

http://www.cnemc.cn/
http://www.stats.gov.cn/sj/ndsj/
http://www.chinancpcn.org.cn/home
http://www.chinancpcn.org.cn/home
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ℓ =α +
∫

T1

X1(t1)β1(t1)dt1 +
∫

T2

X2(t2)β2(t2)dt2

+
∫∫

T1×T2

X1(t1)X2(t2)β(t1, t2)dt1dt2 + ZTγ.

We specify

E(Y|X1(·), X2(·), Z) = η = g(ℓ), Var(Y|X1(·), X2(·), Z) = σ2(η).

For simplicity, we assume that the predictors Xj(tj) and Z are both centralized, i.e.,
E(Xj(tj)) = 0, j = 1, 2 and E(Zl) = 0, l = 1, . . . , q. The Karhunen–Loève expansion is a
mathematical technique for representing stochastic processes in terms of an orthonormal
basis derived from the process’s covariance function. It decomposes a random process
into a series of orthogonal functions, each weighted by uncorrelated random coefficients.
The basis functions are the eigenfunctions of the covariance function, and the expansion
efficiently captures the process’s variability, often using only a few terms. For a detailed
introduction to the Karhunen–Loève expansion, please refer to Equation (2.8) in [2]. Based
on Karhunen–Loève expansion, Xij(tj) can be expanded as

Xi1(t1) =
∞

∑
k=1

χi1k φ1k(t1),

Xi2(t2) =
∞

∑
l=1

χi2l φ2l(t2),

where χi1k, χi2l are the functional principal component scores, φ1k(t1), φ2l(t2) are the func-
tional principal component bases, and∫

T1

φ2
1k(t1)dt1 = 1,

∫
T2

φ2
2l(t2)dt2 = 1.

Using the functional principal component bases, the regression coefficient functions
β j(tj), β(t1, t2) are expanded as

β1(t1) =
∞

∑
k=1

b1k φ1k(t1),

β2(t2) =
∞

∑
l=1

b2l φ2l(t2),

β(t1, t2) =
∞

∑
k=1

∞

∑
l=1

ukl φ1k(t1)φ2l(t2).

Plugging the above expansions into Model (1) and truncating the predictors at pj,
which increases asymptotically with n → ∞, we can obtain truncated Model (2):

Yi = g(α +
p1

∑
k=1

χi1kb1k +
p2

∑
l=1

χi2lb2l +
p1

∑
k=1

p2

∑
l=1

ρiklukl+Zi
Tγ)+εi, (2)

where ρikl = χi1k · χi2l .

2.2. Parameter Estimation

Define the parameter vector

Ω =
(
b11, . . . , b1p1, b21, . . . , b2p2 , u11, . . . , u1p2 , u21, . . . , u2p2 , . . . ,

up11, . . . , up1 p2 , γ0, γ1, . . . , γq
)T ,
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and define

ℓi = α +
p1

∑
k=1

χi1kb1k +
p2

∑
l=1

χi2lb2l + ρT
i u + Zi

Tγ,

ηi = g(ℓi),

ωi =
(
χi11, . . . , χi1p1, χi21, . . . , χi2p2 , ρi11, . . . , ρi1p2 , ρi21, . . . , ρi2p2 , . . . ,

ρip11, . . . , ρip1 p2 , zi0, zi1, . . . , ziq
)T ,

where
bj = (bj1, . . . , bjpj)

T , j = 1, 2,

u =
(
u11, . . . , u1p2 , u21, . . . , u2p2 , . . . , up11, . . . , up1 p2

)T ,

γ = (γ0, γ1, . . . , γq)
T ,

ρi = (ρi11, . . . , ρi1p2 , ρi21, . . . , ρi2p2 , . . . , ρip11, . . . , ρip1 p2)
T ,

zi0 = 1, and γ0 = α.
The maximum likelihood estimate Ω̂ of Ω can be obtained by solving Equation (3):

U(Ω) =
n

∑
i=1

(Yi − g(ℓi))g′(ℓi)

σ2(ηi)
ωi = 0, (3)

Ω̂ =
(

b̂11, . . . , b̂1p1 , b̂21, . . . , b̂2p2 , û11, . . . , û1p2 , û21, . . . , û2p2 , . . . ,

ûp11, . . . , ûp1 p2 , γ̂0, γ̂1, . . . , γ̂q
)T ,

where
b̂j = (b̂j1, . . . , b̂jpj)

T
, j = 1, 2,

û =
(
û11, . . . , û1p2 , û21, . . . , û2p2 , . . . , ûp11, . . . , ûp1 p2

)T ,

α̂ = γ̂0, and γ̂ = (γ̂0, γ̂1, . . . , γ̂q)
T are the estimates of bj, u, α, γ, respectively.

Introducing the following matrices:

V = diag(σ2(η1), . . . , σ2(ηn)),

W = diag(g′(ℓ1), g′(ℓ2), . . . , g′(ℓn)),

A0 = An,q+1 =
(

g′(ℓi)zim
σ(ηi)

)
1≤i≤n,0≤m≤q

,

Aj = An,pj =

(
g′(ℓi)χijr

σ(ηi)

)
1≤i≤n,0≤r≤pj

, j ∈ {1, 2},

A12 = An,t =
(

g′(ℓi)ρit
σ(ηi)

)
1≤i≤n,1≤t≤p1 p2,

A = An,q+1+p1+p2+p1 p2 = diag(A1, A2, A12, A0),

and the vectors Y = (Y1, . . . , Yn)
T , η = (η1, . . . , ηn)

T , then Equation (3) can be written as

ATV− 1
2 (Y − η) = 0.

The estimation of Ω is usually solved iteratively using a weighted least squares method.
By Taylor expansion, we have

g−1(Y) =g−1(η) + [g−1(η)]′(Y − η)

=ℓ+ W−1(Y − η);



Axioms 2024, 13, 583 6 of 20

thus, there is
AT H(g−1(Y)− ℓ) = 0,

where H = V− 1
2 W.

Simplify to obtain estimates of bj, γ, u:

b̃j = (AT
j Aj)

−1
AT

j Hg−1(Y),

γ̃ =
(

AT
0 A0

)−1
AT

0 Hg−1(Y),

ũ =
(

AT
12 A12

)−1
AT

12Hg−1(Y).

Repeat the above process until convergence; then, the estimate of Ω is obtained:

Ω̂ =
(

b̂11, . . . , b̂1p1 , b̂21, . . . , b̂2p2 , û11, . . . , û1p2 , û21, . . . , û2p2 , . . . ,

ûp11, . . . , ûp1 p2 , γ̂0, γ̂1, . . . , γ̂q
)T .

3. Asymptotic Properties

Considering the truncated Model (2), we have the metric

d2
G(β̂ j, β j) = (b̂j − bj)

T
Γ̃j(b̂j − bj) +

∞

∑
k1,k2=pj+1

λj,k1k2 b̄2
j , j = 1, 2,

where
bj = (bj1, bj2, . . . , bjpj),

Γ̃j =
(

λj,k1k2

)
1≤k1,k2≤pj

is a symmetric positive definite matrix and

λj,k1k2 = E
[

g′(ℓ)2

σ2(η)
χjk1 χjk2

]
1≤k1,k2≤pj

is an eigenvalue of the generalized self-covariance operator AGj with kernel

Gj(s, t) = E[
g′(ℓ)2

σ2(η)
Xj(s)Xj(t)],

and we have
Γ̃−1

j = (ξ j,k1k2)1≤k1,k2≤pj

and
b̄j = (bj(pj+1), bj(pj+2), . . .)T .

Combined with Corollary 4.1 in Müller (2005) [11], we have

∞

∑
k1,k2=pj+1

λj,k1k2 b̄2
j = o

(√pj
n

)
.

We specify
∥ f ∥2 =

∫
S

f (s)2ds, f ∈ L2(S),

∥g∥2 =
∫

S

∫
T

g(s, t)2dsdt, g ∈ L2(S × T)
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and
( f ⊗ g)(x, y) = f (x)g(y), x ∈ X, y ∈ Y,

where X, Y are the domains of f , g, respectively.
Define CXj as the covariance function of a random function Xj, for j = 1, 2. By

Mercer’s theorem,
CX1(t11, t12) = ∑

k≥1
λk φ1k(t11)φ1k(t12),

CX2(t21, t22) = ∑
l≥1

σl φ2l(t21)φ2l(t22),

where t11, t12 ∈ T1; t21, t22 ∈ T2; λk and φ1k, k = 1, 2, . . ., are the non-negative eigenvalues
and the corresponding eigenfunctions of the covariance function CX1(t11, t12); and σl and
φ2l , l = 1, 2, . . ., are the non-negative eigenvalues and the corresponding eigenfunctions of
the covariance function CX2(t21, t22).

In order to derive the asymptotic nature of the regression coefficients, we have made
the following assumptions in addition to the basic conditions in Section 2:

(i) The connected function g(·) is monotonically invertible and has bounded second-order
derivatives, the derivative of the variance function σ2(·) is continuously bounded,
and there exists an σ(·) > ∆ > 0;

(ii) The scalar predictor variable Z and the functional predictor variable Xj(tj) are inde-
pendent of each other;

(iii) When n → ∞, pj satisfies pj → ∞ and pjn− 1
4 → 0;

(iv) E[
∫

Tj
{Xj(tj)}4dtj] < ∞;

(v) Define µX1,k = min
1≤k≤p1

(λp1 − λk+1), µX2,l = min
1≤l≤p2

(σl − σl+1), and µX1,k > 0, µX2,l > 0;

(vi) Define dn =
∥∥ĈX −CX

∥∥, K̃n = min{k ≥ 1 : λk ≤ 2dn}−1, L̃n = min{l ≥ 1 : σl ≤ 2dn}−1;
dn → 0, K̃n → ∞, and L̃n → ∞ when n → ∞.

Lemma 1. If the above basic conditions and assumptions hold, while p1 ≤ K̃n, p2 ≤ L̃n and
p1

∑
k=1

p2

∑
l=1

1
n
(

1
µ2

X1,k
+

1
µ2

X2,l
) → 0,

we have
∥∥β̂ − β

∥∥2
= Op

(p1 p2

∑
t=1

(ut − ût)
2
)

.

Proof.

∥∥β − β̂
∥∥2

=

∥∥∥∥∥ ∞

∑
k=1

∞

∑
l=1

ukl φ1k ⊗ φ2l −
p1

∑
k=1

p2

∑
l=1

ûkl φ̂1k ⊗ φ̂2l

∥∥∥∥∥
2

=

∥∥∥∥∥ p1

∑
k=1

p2

∑
l=1

ukl(φ1k ⊗ φ2l − φ̂1k ⊗ φ̂2l) +
p1

∑
k=1

p2

∑
l=1

(ukl − ûkl)φ̂1k ⊗ φ̂2l

+
p1

∑
k=1

∑
l>p2

ukl φ1k ⊗ φ2l + ∑
k>p1

∞

∑
l=1

ukl φ1k ⊗ φ2l

∥∥∥∥∥
2

≤4

∥∥∥∥∥ p1

∑
k=1

p2

∑
l=1

ukl(φ1k ⊗ φ2l − φ̂1k ⊗ φ̂2l)

∥∥∥∥∥
2

+ 4
p1

∑
k=1

p2

∑
l=1

(ukl − ûkl)
2

+ 4
p1

∑
k=1

∑
l>p2

u2
kl + 4 ∑

k>p1

∞

∑
l=1

u2
kl

=4I1 + 4
p1 p2

∑
t=1

(ut − ût)
2 + 4Rβ(p1, p2)

2,
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where Rβ(p1, p2) =

(
p1

∑
k=1

∑
l>p2

u2
kl + ∑

k>p1

∞
∑

l=1
u2

kl

) 1
2

→ 0, ∥β∥2 < ∞ (p1, p2 → ∞).

From the Cauchy–Schwarz’s inequality and Yifan Sun (2020) [22] Lemmas 1 and 2,
we obtain

I1 =

∥∥∥∥∥ p1

∑
k=1

p2

∑
l=1

ukl(φ1k ⊗ φ2l − φ̂1k ⊗ φ̂2l)

∥∥∥∥∥
2

=
∫

T1

∫
T2

[
p1

∑
k=1

p2

∑
l=1

ukl(φ1k ⊗ φ2l − φ̂1k ⊗ φ̂2l)

]2

dsdt

≤
∫

T1

∫
T2

(
p1

∑
k=1

p2

∑
l=1

u2
kl

)[
p1

∑
k=1

p2

∑
l=1

(φ1k ⊗ φ2l − φ̂1k ⊗ φ̂2l)
2

]
dsdt

≤ ∥β∥2
p1

∑
k=1

p2

∑
l=1

∥φ1k ⊗ φ2l − φ̂1k ⊗ φ̂2l∥2

= ∥β∥2
p1

∑
k=1

p2

∑
l=1

C
n

(
1

µ2
X1,k

+
1

µ2
X2,l

)
.

Therefore, we have

I1 = Op

( p1

∑
k=1

p2

∑
l=1

1
n

(
1

µ2
X1,k

+ 1
µ2

X2,l

))
→ 0.

Thus, we conclude that

∥∥β − β̂
∥∥ = Op

(
p1 p2

∑
t=1

(ut − ût)
2

)
.

Therefore, Lemma 1 is proven.

Theorem 1. If the above conditions and assumptions hold, then we have

nd2
G(β̂1,β1)−p1√

2p1
nd2

G(β̂2,β2)−p2√
2p2

nd2(β,β̂)−p1 p2τ√
2p1 p2τ√

nΘ0(γ0 − γ̂0)√
nΘ1(γ1 − γ̂1)

...√
nΘq(γq − γ̂q)


→ N(0, I),

where Θm = E
[

g′(ℓi)
2

σ2(ηi)
z2

im

]
, τ = E

[
g′(ℓi)

2

σ2(ηi)
ρ2

it

]
, and I is a unit matrix of (q + 1 + p1 + p2)× (q +

1 + p1 + p2).

Proof. A Taylor expansion-based approach is used to prove the asymptotic normality of
the estimates. The Hessian of the proposed likelihood is JΩ = ∆ΩU(Ω) and

AT A =
n

∑
i=1

g′(ℓi)
2

σ2(ηi)
ωiωi

T .

Thus, we have
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JΩ =
∂U(Ω)

∂Ω
=

∂U(Ω)

∂ℓi

∂ℓi
∂Ω

= −
n

∑
i=1

g′2(ℓi)ωiω
′
i

σ2(g(ℓi))
+

n

∑
i=1

(
g′′(ℓi)

σ2(ηi)
− g′2(ℓi)σ

2′(ηi)

σ4(ηi)

)
(Yi − g(ℓi))ωiω

′
i

= −AT A + R.

The remainder term R can be ignored and, using Taylor expansions, we obtain a Ω̃
that lies between Ω and Ω̂. We have

U(Ω)− U(Ω̂)

Ω − Ω̂
= JΩ̃;

therefore,
√

n(Ω − Ω̂) = [I + M + N]−1
(

AT A
n

)−1 U(Ω)√
n

,

where M =
(

AT A
n

)−1 JΩ̃−JΩ
n , N =

(
AT A

n

)−1 JΩ−AT A
n .

From Lemma 7.1 in Müller (2005) [11], it follows that

√
n(Ω − Ω̂) ∼

(
AT A

n

)−1 U(Ω)√
n

.

Asymptotic convergence of the lower proof
(

AT A
n

)−1 U(Ω)√
n gives

(
AT A

n

)−1 U(Ω)√
n

=

(
AT A

n

)−1 ATV− 1
2 (Y − η)√

n
=

(
AT A

n

)−1 AT ε̄√
n

,

where ε̄ = ε
σ(η)

and follows a standard normal distribution.
Thus, we have

√
n(Ω − Ω̂) ∼

(
AT A

n

)−1 AT ε̄√
n

.

Since β j(tj), β(t1, t2), and γ are of different data types,
√

n(Ω − Ω̂) is divided into
three terms, i.e.,

√
n(bj − b̂j) ∼

(
Aj

T Aj

n

)−1
Aj

T ε̄
√

n
, j = 1, 2,

√
n(u − û) ∼

(
A12

T A12

n

)−1
A12

T ε̄√
n

,

√
n(γ − γ̂) ∼

(
A0

T A0

n

)−1
A0

T ε̄√
n

,

where Aj
T Aj are symmetric matrices and A0

T A0 are diagonal matrices.
First, we prove

√
n(bj − b̂j) ∼

(
Aj

T Aj

n

)−1
Aj

T ε̄
√

n
, j = 1, 2.

Let

Xnj =
Λ̃− 1

2
j Aj

T ε̄
√

n
,Znj =

(
Aj

T Aj

n

)−1
Aj

T ε̄
√

n
,
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Ψnj = Γ̃
1
2
j

(
Aj

T Aj

n

)−1

Γ̃
1
2
j .

Thus, we have

nd2
G(β, β̂) = ZT

njΓ̃jZnj = X T
njΨ

2
njXnj

= X T
njXnj + 2X T

nj(Ψnj − Inj)Xnj +X T
nj(Ψnj − Inj)(Ψnj − Inj)Xnj,

From Lemma 7.2 in Müller (2005) [11], it follows that

nd2
G(β̂ j, β j) = X T

njXnj.

Then,

X T
njXnj =

1
n

pj

∑
k1=1

( pj

∑
k2=1

ζ j,k1k2

1
2

n

∑
i=1

g′(ηi)χijk2

σ(µi)
ε̄i

)2

= E + F,

where

E =
1
n

n

∑
i=1

ε̄2
i

pj

∑
k2′ ,k2′′=1

g′(ℓi)
2

σ2(ηi)
χijk2′

χijk2′′

pj

∑
k1=1

ζ j,k1k2′
1
2 ζ j,k1k2′′

1
2 ,

F =
1
n

n

∑
i1 ̸=i2=1

ε̄i1 ε̄i2
g′(ℓi1)g′(ℓi2)

σ(ηi1)σ(ηi2)

pj

∑
k2′ ,k2′′=1

χi1 jk2′
χi2 jk2′′

pj

∑
k1=1

ζ j,k1k2′
1
2 ζ j,k1k2′′

1
2 .

Since ε̄ follows a standard normal distribution, we have

E
[
X T

njXnj

]
= pj, Var

[
X T

njXnj

]
= 2pj.

Therefore,
nd2

G(β̂ j, β j)− pj√
2pj

→ N(0, 1) j = 1, 2.

The following proves that

√
n(u − û) ∼

(
A12

T A12

n

)−1
A12

T ε̄√
n

.

For the coefficient function of the interaction term, we have the metric d2(β, β̂) =∥∥β − β̂
∥∥2

, so, according to Lemma 1, we have

d2(β, β̂) =
p1 p2

∑
t=1

(ut − ût)
2 = (u − û)T(u − û).

Let

Qnt =

(
A12

T A12

n

)−1
A12

T ε̄√
n

,

Ant =
AT

12 ε̄√
n

,Fnt =

(
AT

12 A12

n

)−1

.

Thus, we have

nd2(β, β̂) = QT
ntQnt = AT

ntF 2
ntAnt

= AT
ntAnt + 2AT

nt(Fnt − Int)Ant +AT
nt(Fnt − Int)(Fnt − Int)Ant,
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From Lemma 7.2 in Müller (2005) [11], it follows that

nd2(β, β̂) = AT
ntAnt.

Then,

AT
ntAnt =

1
n

p1 p2

∑
t=1

(
n

∑
i=1

g′(ℓi)ρit
σ(ηi)

ε̄i

)2

=
1
n

n

∑
i=1

ε̄2
i

p1 p2

∑
t=1

g′(ℓi)
2

σ2(ηi)
ρit

2

+
1
n

n

∑
i1 ̸=i2=1

ε̄i1 ε̄i2
g′(ℓi1)

σ(ηi1)

g′(ℓi2)

σ(ηi2)

p1 p2

∑
t=1

ρi1tρi2t.

We have
E
[
AT

nkAnk

]
= p1 p2τ, Var

[
AT

nkAnk

]
= 2p1 p2τ.

Thus, there is
nd2(β, β̂)− p1 p2τ√

2p1 p2τ
→ N(0, 1).

Next, prove that

√
n(γ − γ̂) ∼

(
A0

T A0

n

)−1
A0

T ε̄√
n

.

Let

Z0 =

(
A0

T A0

n

)−1
A0

T ε̄√
n

.

Then, its matrix form is

Z0 =
√

n

(
n

∑
i=1

g′(ℓi)
2

σ2(ηi)
z2

im

)−1 n

∑
i=1

g′(ℓi)zim
σ(ηi)

ε̄i.

Therefore, we have

√
n(γm − γ̂m) ∼

√
n

(
n

∑
i=1

g′(ℓi)
2

σ2(ηi)
z2

im

)−1 n

∑
i=1

g′(ℓi)zim
σ(ηi)

ε̄i.

Since
E
[√

n(γm − γ̂m)
]
= 0,

Var
[√

n(γm − γ̂m)
]
=

(
E

[
g′(ℓi)

2

σ2(ηi)
z2

im

])−1

= Θ−1
m .

There is √
nΘm(γm − γ̂m) → N(0, 1).

Therefore, Theorem 1 is proven.

4. Simulation

In this simulation, we consider the case that has two functional predictors, three scalar
predictors, an interaction term between the two functional predictors, and a binary response.
In order to include the case in which the functional predictors do not have the same domain,
we define the functional predictors Xi1(t1), t1 ∈ [0, 1] and Xi2(t2), t2 ∈ [−1, 1], i = 1, . . . , n,
where n can be any positive integer. In the latter sample size, n takes the values of 50, 100,
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and 500, and, for each n, we run 100 simulations. First, we define two standard orthogonal
bases φ1k(t1), t1 ∈ [0, 1] and φ2l(t2), t2 ∈ [−1, 1], satisfying

φ1k(t1) =
√

2 cos(2kπt1), k = 1, . . . , 4,

φ2l(t2) =
√

2 sin(2lπt2), l = 1, . . . , 5.

Under the Gaussian assumption, we define the two randomly generated functional
principal component scores χi1k, χi2l that satisfy

χi1k ∼ N(0, λ1k), k = 1, . . . , 4,

χi2l ∼ N(0, λ2l), l = 1, . . . , 5,

where λ11 = 8, λ12 = 6, λ13 = 4, λ14 = 2, λ21 = 4, λ22 = 2, λ23 = 1, λ24 = 1
2 , λ25 = 1

4 .
Notice that the first three functional principal components explain up to 90% of the variation
in the two predictors. So, we have

Xi1(t1) =
4

∑
k=1

χi1k φ1k(t1),

Xi2(t2) =
5

∑
l=1

χi2l φ2l(t2).

Fifty images of X1(t1) and X2(t2) are shown in Figure 1.

Figure 1. Functional predictors X1(t1) and X2(t2).

For scalar predictors, we assume Z1 ∼ N(0, 2), Z2 ∼ N(0, 5), and Z3 ∼ N(0, 6).
We assume that the theoretical values of the regression coefficients are

γ = (4, 6, 8)T ,

β1(t1) =
4

∑
k=1

b1k φ1k(t1),

β2(t2) =
5

∑
l=1

b2l φ2l(t2),

where b1k =
k
5 , b2l =

l2

25 .
For the interaction term, its principal component score is denoted by ρikl and satisfies

ρikl = χi1kχi2l ,

ψkl(t1, t2) = φ1k(t1)φ2l(t2),

β(t1, t2) =
4

∑
k=1

5

∑
l=1

ukl φ1k(t1)φ2l(t2),
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where ukl =
(

k
10

)2
.

The corresponding response variable is generated by

p(Xi, Zi) =g
(∫

T1

Xi1(t1)β1(t1)dt1 +
∫

T2

Xi2(t2)β2(t2)dt2

+
∫∫

T1×T2

Xi1(t1)Xi2(t2)β(t1, t2)dt1dt2 + ZT
i γ

)
,

where the link function g(x) = exp(x)
1+exp(x) and Y(X, Z) ∼ Bernoulli(p(X, Z)) is a sequence

of pseudo-random numbers.
The principal component analysis was performed for n = 50, 100, 500, and the running

results showed that the principal component scores of X1 with 90% cumulative contribution
were 3, 3, 3 for each sample size, respectively and the principal component scores of X2
with 90% cumulative contribution were 2, 2, 2.

Table 1 shows how the standardized prediction error (SPE) varies with different sample
sizes, and the results show that the model’s predictions become more and more accurate as
the sample size increases. Here, SPE is defined by ∑i |Ŷi − Yi|/ ∑i |Yi|.

Table 1. Standardized prediction error for different sample sizes.

n SPE

50 0.0156

100 0.0130

500 0.0106

Figure 2 shows β̂1(t1), β̂2(t2) and the corresponding 95% confidence interval bands for
different sample sizes, where the red curves are the theoretical values of β1(t1) and β2(t2)
and the black curves are the corresponding estimates β̂1(t1) and β̂2(t2). From Figure 2, it
can be seen that, as the sample size increases, the estimated value becomes closer to the
theoretical value. Figure 3 β̂(t1, t2) shows the visualized 3D plot with β̂(t1, t2) in the middle
panel and the 95% confidence intervals for β̂(t1, t2) in the left and right panels.

Figure 2. Cont.



Axioms 2024, 13, 583 14 of 20

Figure 2. Estimated regression coefficient functions β̂1(t1), β̂2(t2) (black curves) and their 95%
confidence bands (grey area) for different sample sizes, where the red curves are the theoretical
regression coefficient functions β1(t1), β2(t2).

Figure 3. β(t1, t2) and β̂(t1, t2) are visualized in 3D.

Table 2 shows the estimated values of γ̂ and their corresponding standard deviations
for different sample sizes. It can be seen that, as n increases, the standard deviation becomes
smaller and the estimated value of γ becomes closer to the theoretical value, where the
theoretical values of γ are 4, 6, and 8, respectively. Table 3 shows the standard deviation
and root mean square error for β̂1, β̂2 and β̂(t1, t2) for different sample sizes. Here, we use
the coefficients of the basis expansion of the regression coefficient function to calculate the

root mean square error. For example, the root mean square error of β̂1 is
√

∑4
k=1(b̂1k − b1k)2.
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The results show that, as n increases, both the standard deviation and the RMS error become
smaller, indicating that, as sample size increases, the prediction becomes more accurate.

Table 2. Estimates of the regression coefficients and their standard deviations.

n γ̂1 γ̂2 γ̂3

50 3.912 (0.193) 5.902 (0.068) 8.053 (0.045)

100 4.013 (0.062) 5.958 (0.026) 8.015 (0.018)

500 3.998 (0.022) 5.993 (0.006) 7.996 (0.007)

Table 3. Standard deviation and root mean square error of the estimated values of the regression
coefficient function.

n Sd RMSE

β̂1

50 0.034 0.026

100 0.018 0.006

500 0.008 0.001

β̂2

50 0.325 0.204

100 0.126 0.044

500 0.043 0.004

β̂(t1, t2)

50 0.137 0.094

100 0.054 0.024

500 0.020 0.004

5. Application

To investigate the influence of the influence of air qualities, climate factors, medical
and social indicators, and their interactions on cancer incidence using the proposed model,
we collected data on average daily PM2.5 concentration, average daily humidity, per
capita GDP, green coverage rate in built-up areas, the proportion of medical personnel
(PMP), and the incidence of cancer in 49 cities in China from http://www.cnemc.cn/,
http://www.stats.gov.cn/sj/ndsj/, and http://www.chinancpcn.org.cn/home.

There are two functional predictors (average daily PM2.5 concentration and average
daily humidity from 1 January 2015 to 31 December 2020), three scalar predictors (per capita
GDP, greenery coverage, and PMP in 2020), and the response is the cancer incidence in
2020. The ratio of the number of new cancer cases to the total number of people in China in
2020 is 0.3156%. The data of the cancer incidence can only contain 0 and 1, indicating high
or low cancer incidence rate. When the cancer incidence of a city was less than 0.3156%, the
city was considered to have a low cancer incidence rate, denoted by 0; otherwise, the cancer
incidence was high, denoted by 1. Figure 4 shows average daily PM2.5 concentration and
daily relative humidity in 21 cities selected from the 49 cities.

Figure 4. PM2.5 concentrations and average daily humidity in 21 selected cities in 2020.

http://www.cnemc.cn/
http://www.stats.gov.cn/sj/ndsj/
http://www.chinancpcn.org.cn/home
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We chose g(x) = exp(x)
1+exp(x) as the link function. The model was first subjected to prin-

cipal component analysis and then the number of principal components was determined
based on the cumulative contribution to obtain the number of functional principal compo-
nents for PM2.5 concentrations and relative humidity, which were chosen as pPM2.5 = 7,
pHumidity = 14 in order to explain 75% of the variation.

The prediction accuracy is shown by the Generalized Cross Validation (GCV) with a
value of 0.0038.

The results of the regression coefficients for the scalar predictor variable γ̂ are shown
in Table 4, where we can see that the per capita GDP is positively correlated with the
incidence of cancer, i.e., the higher the GDP per capita, the higher the incidence of cancer
in that city, which is consistent with the findings of Cao et al. [27]. The reason for this
situation is that the promotion of cancer screening, early diagnosis, and treatment in the
more economically developed regions has, to some extent, facilitated the detection of the
disease. The greenery coverage is negatively correlated with the cancer incidence, i.e., the
higher the greenery coverage, the lower the cancer incidence, which is also consistent with
the findings of Wu et al. [26]. A high green coverage rate implies better air quality, which
in turn reduces the risk of cancer. Additionally, a high green coverage rate may provide
more outdoor recreational spaces, promoting physical activity and exercise, contributing
to maintaining good physical health, and, thus, reducing the risk of cancer. The PMP is
positively correlated with the incidence of cancer. As we all know, cancer incidence is
age-related, and older people are more susceptible to cancer. The higher PMP, the better
the medical conditions, the longer the average life expectancy of the people, and, therefore,
the higher the cancer incidence.

Table 4. Estimates of regression coefficients and their levels of significance.

Estimate Std. Error t Value Pr (>|t|)

GDP 1.165 × 10−6 2.632 × 10−7 4.424 6.45 × 10−5 ***

Greenery coverage −2.062 × 10−1 1.920 × 10−1 −2.654 0.0378 *

PMP 3.676 × 10−4 1.642 × 10−4 2.239 0.0491 *
PMP—Proportion of medical personnel. * indicates that the result is significant at the 5% significance level.
*** indicates that the result is significant at the 0.1% significance level.

The regression coefficient functions β̂1(t1) and β̂2(t2) for the functional predictors
are shown in Figure 5. From Figure 5, we can see that the effect of PM2.5 concentration
on cancer incidence is generally positively correlated, i.e., the higher the PM2.5 concen-
tration, the higher the cancer incidence. This result is consistent with Qin et al. [25] from
2014. Regarding the effect of humidity on cancer incidence, there is a more significant
positive correlation between humidity and cancer incidence, i.e., the higher the humidity,
the higher the cancer incidence. In high-humidity environments, there may be a higher
presence of mold and fungi, and the spores and harmful substances released by these
microorganisms may have negative effects on human health, increasing the risk of cancer.
In high-humidity environments, pollutants in the air are more likely to adhere to suspended
particles, making them more easily inhalable by humans. These pollutants include PM2.5,
organic compounds, and heavy metals, which are believed to be associated with the occur-
rence of cancer. High humidity increases the survival time of bacteria and viruses in the air,
increasing the chances of people becoming infected with diseases. Certain viruses such as
hepatitis B virus and human papillomavirus (HPV) are believed to be associated with the
occurrence of cancer.
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Figure 5. Regression coefficient functions β̂1(t1), β̂2(t2) and their 95% confidence bands

The interaction surface estimate β̂(t1, t2) (middle) ± two times the estimated standard
errors (left and right) are given in Figure 6. Figure 7 shows the contour map of β̂(t1, t2), from
which it can be seen that β̂(t1, t2) decreases and then increases with t1 when t2 ∈ [0, 1100]
and increases and then decreases with t1 when t2 ∈ [1100, 2192]. In the conditions of
higher humidity, PM2.5 particles may be more prone to settling, reducing the suspended
harmful particles in the air, potentially lowering the incidence of cancer. Conversely, in
lower-humidity conditions, PM2.5 may be more likely to remain suspended in the air,
increasing the risk of respiratory system exposure, thereby raising the incidence of cancer.
Additionally, the concentrations of PM2.5 and humidity may not fluctuate synchronously
throughout the day. By introducing interaction terms, the model can capture the temporal
complexities, making the estimation results more in line with real-world conditions.

Figure 6. Visualization of β̂(t1, t2) in 3D.

Figure 7. Contour map of β̂(t1, t2).

To verify the necessity of considering the interaction term, i.e., to demonstrate the
effectiveness of our proposed method, we compare mod1 proposed in this paper with
mod2, which does not include the interaction term, i.e.,
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mod1 : Yi =g
(

α +
∫

T1

Xi1(t1)β1(t1)dt1 +
∫

T2

Xi2(t2)β2(t2)dt2

+
∫∫

T1×T2

Xi1(t1)Xi2(t2)β(t1, t2)dt1dt2 + ZT
i γ

)
+ εi.

mod2 : Yi = g
(

α +
∫

T1

Xi1(t1)β1(t1)dt1+
∫

T2

Xi2(t2)β2(t2)dt2 + ZT
i γ

)
+ εi.

The general standards for evaluating model performance are AIC (Akaike Information
Criterion), residual, R-squared, RMSE (root mean square error), and MAE (mean absolute
error). The smaller values of AIC, residuals, RMSE, and MAE indicate that the model’s
fitting effect and generalization ability are better. The R-squared takes a value between 0
and 1, and, the bigger the value, the better the model’s fitting effect. According to Table 5,
we can see that the AIC, residuals, RMSE, and MAE values of mod1 are smaller and that
R-squared is much closer to 1 compared to that of mod2, which indicates that mod1 has a
better performance. Thus, including the interaction term between PM2.5 concentration and
relative humidity makes the research results more meaningful.

Table 5. Results of model comparison.

AIC R-Squared Residual RMSE MAE

mod1 8.281 0.9287 0.7816 0.1263 0.1036

mod2 35.592 0.6465 3.2158 0.2562 0.1989

6. Discussion

This paper proposes a generalized partially functional linear model with interaction
terms. We first use principal component analysis to reduce the dimensionality of the
functional data, followed by maximum likelihood estimation to obtain the estimates of the
unknown parameters, then prove the asymptotic property of the estimators, and finally
perform data simulations and apply our model to a real data example.

As the incidence and mortality of cancer in China are increasing year by year, it is
necessary to study the influencing factors and formulate corresponding measures. The effect
of PM2.5 concentration, average daily humidity, per capita GDP, the greenery coverage of
built-up areas, and PMP on cancer incidence in 49 cities in China was investigated, which
showed that the effect of PM2.5 concentration and relative humidity on cancer incidence
was generally positively correlated. The effect of greenery coverage in built-up areas
on cancer incidence is negatively correlated, while the effect of per capita GDP and the
proportion of medical personnel on cancer incidence is positively correlated. The higher
the economic level and the more developed the medical conditions, the longer the average
life expectancy of people and, therefore, the higher the cancer incidence. Comparing this
model with the model without the interaction term shows that considering the role of the
interaction term leads to more accurate and meaningful predictions.

Our research lays a foundation for further study on the generalized partially functional
linear model with interaction terms and of unknown link function or variance function.
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