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Abstract: In this paper, a novel class of rational cubic fractal interpolation function (RCFIF) has been
proposed, which is characterized by one shape parameter and a linear denominator. In interpolation
for shape preservation, the proposed rational cubic fractal interpolation function provides a simple
but effective approach. The nature of shape preservation of the proposed rational cubic fractal
interpolation function makes them valuable in the field of data visualization, as it is crucial to
maintain the original data shape in data visualization. Furthermore, we discussed the upper bound
of error and explored the mathematical framework to ensure the convergence of RCFIF. Shape
parameters and scaling factors are constraints to obtain the desired shape-preserving properties.
We further generalized the proposed RCFIF by introducing the concept of signature, giving its
construction in the form of a zipper-rational cubic fractal interpolation function (ZRCFIF). The
positivity conditions for the rational cubic fractal interpolation function and zipper-rational cubic
fractal interpolation function are found, which required a detailed analysis of the conditions where
constraints on shape parameters and scaling factor lead to the desired shape-preserving properties. In
the field of shape preservation, the proposed rational cubic fractal interpolation function and zipper
fractal interpolation function both represent significant advancement by offering a strong tool for
data visualization.

Keywords: fractal; iterated function system; fractal interpolation function; zipper fractal interpola-
tion function

MSC: 28A80; 26A18; 41A05; 41A29

1. Introduction

Interpolation is the process of finding the value of a function at a point from its
neighboring points, or it is a method for generating new data points within the range of a
discrete set of known data points. In numerous areas of scientific computation, especially
computer graphics, the science of biology and physical science, and the field of geology and
numerical computation, interpolation techniques are necessary, specifically when it comes
to repeatedly visualizing discrete data. In the field of science and engineering, visualizing
discrete scientific data in continuous form is crucial. Based on their graphical representation,
the collected data from any experiment are broadly categorized as positive, monotonic,
concave, complex, or constrained by their combination, curve, and surface. For example, in
chemical experiments, the quantity of obtained product is always positive, and in the case
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of metals, the resistivity with temperature monotonically increases in nature. Also, with a
certain given initial angle and velocity, the trajectory of a projectile is always concave, and
in the case of alternating current, the amplitude during some specific time interval shows
both concave and convex properties. For representing discrete data as a continuous curve,
splines have proven to be extremely valuable. For the initial development of spline theory
for various types of data polynomial splines studied, see [1–4].

Classical interpolants are suitable for approximating functions with irregular data sets
because some of the derivatives of classical interpolants are globally smooth, and some are
piecewise; however, it is not possible to preserve the hidden shape properties of the data.
This is why it is not an ideal method for designing irregular curves and surfaces. When non-
desirable oscillations occur, like a pendulum’s motion on a cart placed in an electrochemical
system [5] or a spherical ball falling in a hot micellar solution [6], the observed results
are extremely misguided, violating the inherited nature of the data; meanwhile, fractal
interpolations are ideal methods for irregularity. Apart from the theoretical significance
of fractal interpolation, fractal interpolation has a self-similarity property and the ability
to possess fractality in the functions or their respective derivatives, which helps them to
approximate nonlinear phenomena accurately. Fractal interpolation is an advanced and
modern technique that can be used to analyze numerous scientifically obtained data from
some scientific phenomena and unknown complicated functions. Fractal interpolation
not only helps construct rough structures but also ensures that smooth structures can be
constructed. Depending on the values of parameters of iterated function systems, such
structures can have a non-integer dimension [7–9].

The word “fractal” was coined by the mathematician Mandelbrot in 1975 to describe
sophisticated and irregular natural objects and to better understand some scientific experi-
ments that have the presence of self-similarity. The roots of fractal theory began to form
in the 17th century when Leibniz mistakenly considered the case that self-similarity only
occurs in straight lines. Karl Weierstrass, on 18 July 1872, presented a paper in which he
gave the first definition for a function that was continuous everywhere but differentiable
nowhere. Soon afterward, Georg Cantor, in 1883, presented examples of a subset of the real
line, known as the Cantor set, which had some irregular properties that made it a fractal. At
the end of that century, Henri Poincare and Felix Klein introduced another type of fractal,
known as a self-inverse fractal. In 1904, Helge Von Koch extended Poincare’s idea and
was also not satisfied with the abstract and analytic definition given by Weierstrass. He
presented a definition that was more geometric, along with a hand drawn image of such a
function; these functions are now known as Koch snowflakes. Wacław Sierpinski made
his contribution in 1915 by presenting the triangle and carpet. The fractal interpolation
function was presented by Barnsley [8,10] in 1986. There, he introduced a real-valued
interpolation function, which was defined on a compact interval of R. This function works
well with objects that are present in nature, with some geometrical self-similarity. Ever
since, fractal interpolation has been attracting more attention, as it can be used in almost
every field of life science, including medicine, visualization, engineering science, finance,
and other areas. Fractal interpolation has a wide area of use in the real world; it is used in
movies, medical science, image compression, etc. Knowledge of fractals and ecosystems to-
gether is used to determine the acidrain spread of smoke. The best method to construct the
fractal interpolation function is using the theory of IFS [11]. Harrington [12] introduced the
k-times differentiable fractal interpolation function (FIF). The smooth FIF [13] was shown
by Navascués in 2006. Many researchers have worked on shape-preserving smooth FIFs
since they are useful in many scientific and economic areas such as medicine, stock markets,
etc. Rational splines are one of the most used shape-preserving interpolants as they are
more flexible [14–18]. M. A. Navascués introduced the concept of α fractal function [19],
and M. Nasim Akhtar, together with M. A. Navascués [20], introduced the local non-affine
α fractal interpolation function. In recent years, many authors have worked on different
areas of fractal theory, such as fractal dimensions and fractal surfaces [21–28]. Recently,
Bilel Selmi discussed the dimension of fractal functions on the product of the Sierpinski
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gasket [29]. M. A. Navascués [30] discussed a new type of contraction and the existence
and uniqueness theorem of this map. In Ref. [31], the fractal interpolation function using
the Kannan contraction is discussed, and the generation of fractals using the IFS of the
Kannan contraction in a controlled metric space is presented in [32].

Shape preservation is one of the most important properties of fractal interpolation. The
geometrical characteristics of the interpolating data are maintained using shape preserva-
tion. Shape preservation involves three key properties of functions: positivity, monotonicity,
and convexity. All these three properties are essential in numerous real-world applications
as they can define or maintain the curvature and nature of functions or data within their
domain. Positivity is important in various real-world applications, including physical
quantities such as mass, length, probability distributions, time series analysis, and more.
The positivity of various classical and fractal interpolation functions has been discussed
in the literature. For detailed studies, see [33–37] and the references therein. Similarly,
monotonicity is another crucial property. This property ensures that the function follows a
consistent trend (non-decreasing or non-increasing). Monotonicity is useful in preserving
the trend and order of functions or data, which is crucial in maintaining the integrity of
time series data and other applications. The monotonicity of various classical and fractal
interpolation functions has been discussed in the literature; for detailed studies, see [38–40]
and the references therein. The convexity is also equally crucial for many real-world ap-
plications, such as in the stock market. It helps in predicting market trends and behavior.
The convexity property ensures that the function maintains a specific smoothness in the
shape of the function or data. The convexity of various classical and fractal interpolation
functions has been discussed in the literature; for detailed studies, see [41–44] and the
references therein.

Basic constructions of the zipper have been reported [45,46]. The fractal interpolation
functions using the zipper provide greater flexibility due to the presence of a binary
vector, also known as a signature. Sangita Jha discussed the zipper quadratic fractal
interpolation function and its positivity [47]. They also ensured that the discussed function
is non-negative in the defined interval. Vijay and Chand [48] proposed the zipper fractal
interpolation function considering variable scaling. By considering variable scaling, one
can enhance the adaptability of the function. The convexity of the zipper cubic fractal
interpolation function with a quadratic denominator has been discussed by Vijay and
Chand [49]. In this paper, we present the construction of a zipper-rational cubic fractal
interpolation function. Interpolation with constrained data has a wide application in real-
world applications, such as removing undesired wiggles in prominent lines of automobile
roofs, in engineering, preventing oscillations between points, and more.

The aim of this paper is to construct a family of shape-preserving rational cubic fractal
interpolation functions, including their zipper form, and to demonstrate their advantage
over the classical interpolation functions. The qualitative features of an interpolant curve
depend mainly on the scaling factor and shape parameters. The constrained RCFIF is
designed to ensure that it lies above the straight line for all real values that share this char-
acteristic. This paper is organized as follows: In the Section 2, we provide a short review of
the fractal interpolation function (FIF) and the zipper fractal interpolation function (ZFIF).
First, we discussed the fundamental concepts and mathematical construction of the fractal
interpolation function, along with its uniqueness and existence theorems. This section also
highlights the difference between classical interpolation functions and fractal interpolation
functions. Then, we discuss the zipper fractal interpolation function, including its basic con-
struction and the presence of a signature, which enhances the flexibility of the interpolating
function or data. In the Section 3, we present the construction of the rational cubic fractal
interpolation function, and the zipper-rational cubic fractal interpolation function. For the
rational cubic fractal interpolation function, we consider a rational function of the form
uj(θ)

vj(θ)
, while for zipper-rational cubic fractal interpolation, the rational function is

uj,ε(θ)

vj,ε(θ)
,

where the numerator is a cubic polynomial, and the denominator is a linear polynomial
with one shape parameter. In the Section 4, we discuss the convergence of the rational cubic
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fractal interpolation function and the zipper-rational cubic fractal interpolation function re-
garding the data-generating function. Their respective theorems are given with proofs. The
convergence analysis includes the error bound and conditions that guarantee the precision
and reliability of the considered interpolant. In the Section 5, we constrain the RCFIF and
ZRCFIF so that they lie above the straight line. In the Section 6, sufficient conditions are met
to obtain the positivity conditions for the rational cubic fractal interpolation function and
zipper-rational cubic fractal interpolation function. We derive the mathematical framework
to provide the necessary and sufficient conditions for the function to be non-negative.
To support the theoretical part, we provide an example with graphical representations.
The respective theorems for providing sufficient conditions for the rational cubic fractal
interpolation function and zipper-rational cubic fractal interpolation function to be positive
are discussed. In the Section 7, we conclude the work done in previous sections and discuss
their results. We also suggest potential future work in this area, which can be done by
extending the given function to higher-order dimensions and other possible extensions.

2. Basics of Fractal Interpolation Functions and Zipper Fractal Interpolation Functions

In this section, we provide a short review of fractal interpolation functions (FIFs) and
zipper fractal interpolation functions (ZFIFs) together with their fundamental equation
and uniqueness and existence theorems. First, we discuss the fundamental concepts and
mathematical construction of the fractal interpolation function. This section also highlights
the difference between classical interpolation functions and fractal interpolation functions.
Then, we discuss the zipper fractal interpolation function, including its basic construction
and the presence of a signature, which enhances the flexibility of the interpolating function
or data.

2.1. Fractal Interpolation Function

Let {(ym, zm) ∈ J × K, m ∈ MM = 1, 2, 3 . . . M} be the dataset, where K is a compact
set of R and J = [y1, yM] satisfying y1 < y2 < y3 . . . < yM and Jj = [yj, yj+1] for j ∈ MM−1,
MM−1 = 1, 2, . . . , M − 1. Consider Lj : J → Jj the contractive homomorphism defined as
Lj(y) = ajy + bj such that ∀y, y∗ ∈ J and for some 0 ≤ ↕j < 1.∣∣Lj(y)− Lj(y∗)

∣∣ ≤ ↕j|y − y∗|; Lj(y1) = yj, Lj(yM) = yj+1, j ∈ MM−1 (1)

Define Fj : K := J × [c, d] → R such that, for and let δj ∈ (−1, 1),

Fj(y, z)− Fj(y, z) ≤
∣∣δj

∣∣|z − z∗|; Fj(y1, z1) = zj, Fj(yM, zM) = zj+1, j ∈ MM−1 (2)

Now construct a function

µj : J × R → Jj × R,

µj(y, z) = (Lj(y), Fj(y, z)), j ∈ MM−1.

Theorem 1 (see [8,10]). The iterated function system
{

J × K; µj, j ∈ MM−1
}

possesses a unique
attractor H, which is also the graph of the continuous function g′ : J → R that satisfies g′(yj) =
zj∀j.

The above function g′ is known as the fractal interpolation function corresponding
to the IFS

{
J × K; µj, j ∈ MM−1

}
. The most widely studied fractal interpolations and their

applications are taken from the following iterated function system:{
J × K; µj(y, z) =

(
Lj(y), Fj(y, z)

)
; j ∈ MM−1

}
(3)

Lj(y) = ajy + bj, Fj(y, z) = δjz + Qj(y), where Qj : J → R is a continuous function. The
multiplier δj is known as the vertical scaling factor of a continuous map µj.
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Let Cr(J) be the collection of all r-times continuously differentiable real-valued func-
tions on J. The differentiable fractal interpolation functions are given by the following theo-
rem:

Theorem 2 [12]. Let {(ym, zm) ∈ J × K : m = 1, 2, . . . , M} be the dataset, where y1 < y2 <
. . . < yM. Let Lj(y) = ajy + bj, Fj(y, z) = δjz + Qj(y), where Qj is a continuous function for j ∈

MM−1. Suppose that for some integer r q ≥ 0,
∣∣δj

∣∣ < aq
j , j ∈ MM−1. Let Fj,r(y, z) =

δjz+Q(r)
j (y)

ar
j

,

Q(r)
j (y) be the rth derivative of Qj(y)

z1,r =
Q(r)

1 (y1)

ar
1 − δ1

, zM,k =
Q(r)

M−1(yM)

a(r)M−1 − δM−1

, r = 1, 2, . . . , q.

If Fj−1,r(yM, zM,r) = Fj,r(y1, z1,r) for j ∈ MM−2 & r = 1, 2, . . . , q then a fractal interpolation
function g′ is determined by an iterated function system

{
J × K; µj(y, z) =

(
Lj(y), Fj(y, z)

)
,

j ∈ MM−1} and the fractal interpolation function g′(r) ∈ Cq[y1, yM] is determined by an iterated
function system

{
J × K, µj(y, z) =

(
Lj(y), Fj,r(y, z)

)
, j ∈ MM−1

}
.

2.2. Zipper Fractal Interpolation Function

In this subsection, we review the construction of the zipper IFS for a given data set.
First, we recall the definition of a zipper.

Definition 1. Consider a non-surjective map µj, j ∈ MM−1 on a complete metric space (X, d).
Then, the system ℑ =

{
X; µj : j ∈ MM−1

}
is known as the zipper-iterated function system

with the vertices (v1, v2, . . . , vM) and a signature ε = (ε1, ε2, . . . , εm) ∈ {0, 1}M−1, if µj satis-
fies µj(v1) = vj+ε j , µj(vM) = vj+1−ε j ∀j ∈ MM−1. Let B ⊂ X be any compact set satisfying the
self-referential equation

B = ∪M−1
j=1 µj(B)

This is known as the attractor corresponding to the zipper IFS ℑ. The definition of IFS with ver-
tices (v1, v2, . . . , vM) and the definition of zipper IFS coincide if we take the signature vector ε j = 0
j ∈ MM−1. The following review of the zipper fractal interpolation function is based on [10,46,50].

Let {(ym, zm) ∈ J × R, m ∈ MM} be the dataset with y1 < y2 < . . . < yM. Consider J =
[y1, yM] & Jj = [yj, yj+1], j ∈ MM−1. Let Lj : J → Jj the affine map given by Lj(y) = ajy +
bj, j ∈ MM−1 such that

Lj(y1) = yj+ε j , Lj(yM) = yj+1−ε j (4)

aj =
yj+1−ε j − yj+ε j

yM − y1
, bj =

yMyj+ε j − y1yj+1−ε j

yM − y1
.

Let j ∈ MM−1, Fj : K := J × [c, d] → R be a function defined as

Fj(y, z) = δjz + Qj(y)

where Qj : J → R is the continuous function and δj be the vertical scaling factor such that |δ|∞ =
max

{∣∣δj
∣∣ : j ∈ MM−1

}
< 1, and the following condition holds:

Fj(y1, z1) = zj+ε j , Fj(yM, zM) = zj+1−ε j , j ∈ MM−1. (5)

Now, define a map µj : K → Jj × R, j ∈ MM−1 as

µj(y, z) =
(

Lj(y), Fj(y, z)
)
∀(y, z) ∈ K.
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The system ℑ =
{

K; µj, j ∈ MM−1
}

is a zipper-iterated function system with vertices
{(ym, zm), m ∈ MM} and a signature ε = (ε1, ε2, . . . , εM−1). The construction of Zipper-FIF
is presented in the following theorem from [51].

Theorem 3. The following conditions hold for the IFS
{

K; µj, j ∈ MM−1
}

• There is a unique compact set H ⊂ K such that H = ∪M−1
j=1 µj(H).

• The continuous function gδ
ε : J → R that interpolates the dataset {(ym, zm) ∈ J × R : m ∈

MM}, i.e., H =
{(

y, gδ
ε (y)

)
: y ∈ J

}
& gδ

ε

(
yj
)
= zj∀j.

3. Construction of Rational Cubic Fractal Interpolation Function and Zipper-Rational
Cubic Fractal Interpolation Function

This section is divided into two parts. In the first subsection, we discuss the construc-
tion of the rational cubic fractal interpolation function, and in the second, we discuss the
construction of the zipper-rational cubic fractal interpolation function:

3.1. C1—Rational Cubic Fractal Interpolation Function

In this subsection, we provide the construction of the rational cubic fractal interpolation
function with one shape parameter. Let {(ym, zm) ∈ J × K; m ∈ MM} be the given set of
data for an original function φ such that y1 < y2 < . . . < yM. Let

{
J × K; µj(y, z) = (Lj(y),

Fj(y, z))∀j ∈ MM−1
}

be the IFS, where Lj(y) = ajy + bj, Fj(y, z) = δjz + Qj(y), Qj(y) =
uj(y)
vj(y)

, uj(y) is a cubic polynomial and vj(y) is a linear polynomial, vj(y) ̸= 0∀y ∈ J,∣∣δj
∣∣ < aj, j ∈ MM−1. Let

F(1)
j (y, d) =

δjd + Q(1)
j (y)

aj
,

where Q(1)
j (y) is the first-order derivative of Qj(y), y ∈ [y1, yM]. The following join-up

conditions are satisfied by Fj
(
y, Sδ

)
Fj
(
y1, Sδ

1
)
= zj, Fj

(
yM, Sδ

M
)
= zj+1,

F(1)
j (y1, d1) = dj, F(1)

j (yM, dM) = dj+1,
(6)

where dj is the first-order derivative of Sδ regarding y at knot yj. The attractor obtained
by the above-iterated function system will be the graph of the C1-rational cubic fractal
interpolation function. Now, from (3), it can be observed that the FIF can be written as:

Sδ
(

Lj(y)
)
= δjSδ(y) + Qj(y) = δjSδ(y) +

uj(θ)

vj(θ)
, (7)

uj(θ) = A(1 − θ)3 + B(1 − θ)2θ + C(1 − θ)θ2 + Dθ3,

vj(θ) = 1 + sj(1 − θ), θ =
y − y1

l
, l = yM − y1∀y ∈ J,

and sj is a positive shape parameter. The following conditions are imposed to ensure that
the rational cubic fractal interpolation function is C1-continuous:

Sδ
(

Lj(y1)
)
= zj, Sδ

(
Lj(yM)

)
= zj+1,(

Sδ
)′(Lj(y1)

)
= dj,

(
Sδ
)′(Lj(yM)

)
= dj+1, j ∈ MM−1.

(8)

From Equations (7) and (8), it is evident that if we take y = y1 in Equation (7), then
we obtain

Sδ
(

Lj(y1)
)
= zj ⇒ zj = δjz1 +

A
1 + sj

⇒ A =
(
1 + sj

)(
zj − δjz1

)
.
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Similarly, to calculate the value of D, if we take y = yM in Equation (7), then we obtain

Sδ
(

Lj(yM)
)
= zj+1 ⇒ zj+1 = δjzM +

D
1

⇒ D = zj+1 − δjzM.

Differentiate Equation (7) with respect to the y,(
Sδ
)(1)(

Lj(y)
)

Lj
(1)(y) = δj

(
Sδ
)(1)

(y) + Qj
(1)(y)

Now, to calculate the value of B, if we take y = y1 in
(
Sδ
)′(Lj(y)

)
and use Equation (8),

we obtain
⇒ B =

(
3 + 2sj

)(
zj − δjz1

)
+ lj

(
1 + sj

)(
ajdj − δjd1

)
Similarly, to calculate the value of C, take y = yM in

(
Sδ
)′(Lj(y)

)
and use Equation (8).

Then, we have(
Sδ
)′(

Lj(yM)
)
= dj+1 ⇒ ajdj+1 = δjdM +

(−C + 3D)− D
(
−sj

)
lj

⇒ C =
(
3 + sj

)(
zj+1 − δjzM

)
− lj

(
ajdj+1 − δjdM

)
Now, by substituting the values of A, B, C & D into Equation (7), we obtain the required

well-defined C1-rational cubic fractal interpolation function, whose numerator is:

uj(θ) =
(
1 + sj

)(
zj − δjz1

)
(1 − θ)3 +

{(
3 + 2sj

)(
zj − δjz1

)
+ lj

(
1 + sj

)(
ajdj − δjd1

)}
(1 − θ)2θ

+
{(

3 + sj
)(

zj+1 − δjzM
)
− lj

(
ajdj+1 − δjdM

)}
(1 − θ)θ2 +

(
zj+1 − δjzM

)
θ3.

The derivatives dm, m ∈ MM can be calculated either using numerical methods or from the
given set of data if it is not given. We calculated it using the arithmetic mean method on a
given set of data.

Remark 1. If δj = 0, then the rational cubic fractal interpolation function will be reduced to the
rational cubic interpolant, which is of the form

S(y) =
u∗

j (t)

v∗j (t)
, y ∈

[
yj, yj+1

]
, (9)

with

u∗
j (t) =

(
1 + sj

)
zj(1 − t)3 +

{(
3 + 2sj

)
zj + ℏj

(
1 + sj

)
dj
}
(1 − t)2t +

{(
3 + sj

)
zj+1 − ℏjdj+1

}
(1 − t)t2 + zj+1t3, v∗j (t) = 1 + sj(1 − t), t = y−y1

yM−y1
, y ∈ J

Example 1. To verify the diversity and flexibility of the rational cubic fractal interpolation func-
tion over the classical cubic fractal interpolation function, we provide an example considering
the interpolating points (0, 0), (2, 10), (4, 15), (7, 38), (10, 50). Throughout Figure 1, the shape
parameter sj is considered (50, 50, 50, 50). The rational cubic fractal interpolation function is
shown in Figure 1. Now, if we compare the figures with each other, the change is visible and is
due to different values of the scaling factor. We have taken different values for each figure. In
Figure 1a, we have taken the scaling factor δ = (0, 0, 0, 0) and δ = (0.2, 0.25, 0.45, 0.5) in Fig-
ure 1b, comparing Figure 1a,b, Figure 1a is less detailed, whereas Figure 1b is more detailed
and dense due to the increased scaling factor. Similarly, in Figure 1c,d, the scaling factors
are δ = (0.3, 0.24, 0.6, 0.72) and δ = (0.04, 0.15, 0.35, 0.75), respectively. Figure 1d is more
basic compared to Figure 1c, where the shape is more filled in and intricate. Figure 1e with scaling
factor δ = (0.14, 0.42, 0.56, 0.92) and Figure 1f with scaling factor δ = (0.04, 0.15, 0.35, 0.75) can
be compared similarly. In this way, we can compare all these figures based on the scaling factor.
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(a) Rational cubic fractal interpolation with scaling factor δ = (0, 0, 0, 0). (b) Rational cubic
fractal interpolation with scaling factor δ = (0.2, 0.25, 0.45, 0.5). (c) Rational cubic fractal in-
terpolation with scaling factor δ = (0.3, 0.24, 0.6, 0.72). (d) Rational cubic fractal interpolation
with scaling factor δ = (0.04, 0.15, 0.35, 0.75). (e) Rational cubic fractal interpolation with scal-
ing factor δ = (0.04, 0.15, 0.35, 0.75). (f) Rational cubic fractal interpolation with scaling factor
δ = (0.14, 0.42, 0.56, 0.92).
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3.2. C1-Zipper-Rational Cubic Fractal Interpolation Function

In this subsection, we construct the zipper-rational cubic fractal interpolation function:
Consider the zipper-rational iterated function system, where the rational function is

Qj,ε(y) =
uj,ε(θ)

vj,ε(θ)

where
uj,ε(θ) = Aj,ε(1 − θ)3 + Bj,ε(1 − θ)2θ + Cj,ε(1 − θ)θ2 + Dj,εθ

3,

vj,ε(θ) = 1 + sj(1 − θ)

For 0 ≤ θ = y−y1
yM−y1

≤ 1, sj is a non-negative shape parameter. Suppose C̃(J) = {g : J → R,

g(y1) = z1, g(yM) = zM}. Then, C̃(J) is the subspace of space C(J) and C̃(J) is complete
with respect to the uniform norm. Let ε j ∈ {0, 1}M−1 be fixed and define the Read–
Bajraktarevic (R–B) operator Tδ

ε : C̃(J) → C̃(J) as:

Tδ
ε

(
Lj(y)

)
= Fj(y, g(y))

= δjg(y) +
Aj,ε(1 − θ)3 + Bj,ε(1 − θ)2θ + Cj,ε(1 − θ)θ2 + Dj,εθ

3

1 + sj(1 − θ)

Tδ
ε is a contraction on complete metric space

(
C̃(J), ∥.∥∞

)
. By the Banach contraction,

theorem, Tδ
ε possesses a fixed point Sδ

ε that satisfies:

Sδ
ε

(
Lj(y)

)
= δjSδ

ε (y) + Qj,ε(y) (10)

= δjSδ
ε (y) +

Aj,ε(1 − θ)3 + Bj,ε(1 − θ)2θ + Cj,ε(1 − θ)θ2 + Dj,εθ
3

1 + sj(1 − θ)

The coefficients in this expression Qj,ε(y) can be calculated using conditions given in
Equation (2), which is an operation similar to calculating them from the relation Sδ

ε

(
yj
)
=

yj+ε j & Sδ
ε

(
yj+1

)
= yj+1−ε j . According to [12], for a differentiable fractal interpolation

function, the scaling factor is selected as
∣∣δj

∣∣ < aj∀j ∈ MM−1. For the construction of the
C1 zipper-rational cubic fractal interpolation function, we need the following interpolat-
ing conditions:

Sδ
ε

(
Lj(y1)

)
= zj+ε j , Sδ

ε

(
Lj(yM)

)
= zj+1−ε j &(

Sδ
ε

)(1)(Lj(y0)
)
= dj+ε j ,

(
Sδ

ε

)(1)(Lj(yM)
)
= dj+1−ε j ,

where dj+ε j is the first-order derivative with respect to “y” at knots yj, respectively. To
calculate the value of Aj,ε, take y = y1 in Equation (10) and we obtain

Aj,ε =
(
1 + sj

)(
zj+ε j − δjz1

)
Similarly, to calculate the value of Dj,ε, take y = yM in Equation (10) and we obtain

Dj,ε = zj+1−ε j − δjzM

By taking the first-order derivative of the functional equation, we obtain(
Sδ

ε

)(1)(
Lj(y)

)
Lj

(1)(y) = δj

(
Sδ

ε

)(1)
(y) + Qj,ε

(1)(y)
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to calculate the value of Bj,ε, take y = y1 in the above equation, and we obtain

Bj,ε =
(
3 + 2sj

)
zj+ε j +

(
1 + sj

)
hjdj+ε j − δj

((
3 + 2sj

)
z1 +

(
1 + sj

)
(yM − y1)d1

)
where hj = yj+1−ε j − yj+ε j . Again, to calculate the value of Cj,ε, taking y = yM in the above
equation, we obtain

Cj,ε =
(
3 + sj

)
zj+1−ε j − hjdj+1−ε j − δj

((
3 + sj

)
zM − (yM − y1)dM

)
.

Thus, we obtain the desired zipper-rational cubic fractal interpolation function, which is

Sδ
ε

(
Lj(y)

)
= δjSδ

ε (y) +
u∗

j,ε(θ)

vj,ε(θ)

The values of u∗
j,ε(θ) and vj,ε(θ) are provided below:

uj,ε(θ) ≡ u∗
j,ε(θ) =

(
1 + sj

)(
zj+ε j − δjz1

)
(1 − θ)3 +

(
zj+1−ε j − δjzM

)
θ3

+
((

3 + 2sj
)
zj+ε j +

(
1 + sj

)
hjdj+ε j − δj

((
3 + 2sj

)
z1 +

(
1 + sj

)
(yM − y1)d1

))
(1 − θ)2θ

+
((

3 + sj
)
zj+1−ε j − hjdj+1−ε j − δj

((
3 + sj

)
zM − (yM − y1)dM

))
(1 − θ)θ2,

vj,ε(θ) = 1 + sj(1 − θ)

Remark 2. If the signature is εm = 0, then the zipper-rational cubic fractal interpolation function
reduces to the rational cubic fractal interpolation function

Sδ
(

Lj(y)
)
= δjSδ(y) + Qj(y),Qj(y) =

uj(θ)

vj(θ)
(11)

where the values of uj(θ) and vj(θ) are given in Section 3.1.

Remark 3. If ε j = 0 = δj, then the zipper-rational cubic fractal interpolation function reduces to
the rational cubic interpolant, discussed in Remark 1 of Section 3.1.

Example 2. To verify the diversity and flexibility of the zipper-rational cubic fractal interpo-
lation function compared to the rational cubic fractal interpolation function, we provide an ex-
ample considering the interpolating points (0, 0), (2, 10), (4, 15), (7, 38), (10, 50). Throughout
Figure 2, the shape parameter sj is considered (50, 50, 50, 50). In Figure 2a, we have taken the
scaling factor δ = (0, 0, 0, 0) and signature as ε = (0, 0, 0, 0), and in Figure 2b, the signa-
ture as ε = (0, 0, 0, 0) and scaling factor as δ = (0.2, 0.25, 0.45, 0.5). Comparing Figure 2a,b,
Figure 2a is less detailed, whereas Figure 2b is more is more detailed and dense due to the in-
creased scaling factor. Since we have taken the signature as ε = (0, 0, 0, 0), these figures are the
same as Figure 1a and Figure 1b. Comparing Figure 2b,c, we have taken the same scaling factor
as δ = (0.2, 0.25, 0.45, 0.5) for both figures and the signature as ε = (0, 0, 0, 0) and ε = (1, 1, 1, 0),
respectively, Figure 2c is more detailed or enhanced as it is producing a negative graph due to the
change in signature value. Figure 2d,e can be compared as we have taken the same scaling fac-
tor δ = (0.04, 0.15, 0.35, 0.75) in both figures and signature as ε = (0, 1, 1, 0) and ε = (1, 1, 1, 1),
respectively. Comparing Figure 2e with scaling factor δ = (0.04, 0.15, 0.35, 0.75) and signa-
ture as ε = (1, 1, 1, 1) to Figure 2f with scaling factor δ = (0.14, 0.42, 0.56, 0.92) and signature
as ε = (1, 1, 1, 1), Figure 2f is more detailed compared to Figure 2e, which is due to the increase in
the scaling factor.
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Figure 2. Zipper-rational cubic fractal interpolation functions Sδ
ε with the different values of signature

ε and scaling factor δ. (a) zipper-rational cubic fractal interpolation with signature ε = (0, 0, 0, 0)
and scaling factor δ = (0, 0, 0, 0). (b) zipper-rational cubic fractal interpolation with signature
ε = (0, 0, 0, 0) and scaling factor δ = (0.2, 0.25, 0.45, 0.5). (c) zipper-rational cubic fractal interpolation
with signature ε = (1, 1, 1, 0) and scaling factor δ = (0.2, 0.25, 0.45, 0.5). (d) zipper-rational cubic
fractal interpolation with signature ε = (0, 1, 1, 0) and scaling factor δ = (0.04, 0.15, 0.35, 0.75). (e)
zipper-rational cubic fractal interpolation with signature ε = (1, 1, 1, 1) and scaling factor δ =

(0.04, 0.15, 0.35, 0.75). (f) zipper-rational cubic fractal interpolation with signature ε = (1, 1, 1, 1) and
scaling factor δ = (0.14, 0.42, 0.56, 0.92).
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The changes in the graphs of Figures 1 and 2 are clearly visible. We have taken the
same scaling factor in some of the graphs, but in Figure 2, due to the presence of signature,
the curve of function is changed.

4. Convergence of Rational Cubic Fractal Interpolation Function and Zipper-Rational
Cubic Fractal Interpolation Function

In this section, we determine the error bounds for uniform distance between the
data-generating function φ, which belongs to C2[y1, yM], and the rational cubic fractal
interpolation function. It is difficult to calculate the uniform error bound

∥∥φ − Sδ
∥∥

∞ using
the standard techniques since the rational cubic fractal interpolation function Sδ has an
implicit expression. Hence, we use the classical rational cubic function to drive the upper
bound of the uniform error:∥∥∥φ − Sδ

∥∥∥
∞
≤ ∥φ − S∥∞ +

∥∥∥S − Sδ
∥∥∥

∞
(12)

To show the convergence of the C1-zipper-rational cubic fractal interpolation function
Sδ

ε toward the φ, the data-generating function belongs to C2[y1, yM]. We need to find
a uniform distance between them. It will be difficult to calculate

∥∥φ − Sδ
ε

∥∥
∞ using the

standard techniques due to the implicit nature of Sδ
ε . Let Sδ

ε be the C1 zipper-rational cubic
fractal interpolation function and φ data-generating function, respectively. We will derive
an upper bound of the error using Sδ

ε − Sδ.
By the triangular inequality, we have∥∥∥φ − Sδ

ε

∥∥∥
∞
≤

∥∥∥φ − Sδ
∥∥∥

∞
+

∥∥∥Sδ
ε − Sδ

∥∥∥
∞

(13)

Now, we use the convergence result of the classical rational cubic interpolation function S.

Theorem 4. The error between the data-generating function φ ∈ C2 and the classical rational cubic
function is

|φ(y)− S(y)| ≤ 1
2

∥∥∥φ(2)
∥∥∥ℏ2

j ej, y ∈ [yj, yj+1], (14)

where ej = max
0≤tj≤1

σ
(
sj, t

)
∀sj ≥ 0 and for any positive value of sj, the error optimal constant ej is

bounded by 0 ≤ ej ≤ 0.2685.

Theorem 5. Let φ be the data-generating function for the given set of data {(ym, zm) ∈ J × K,
m ∈ MM} and Sδ be the C1-rational cubic fractal interpolation function. At knot yj, dj, j ∈
MM−1 is the bounded first-order derivative. Let

ℏ = max
1≤j≤M−1

ℏj, Ξ(ℏ) = ∥φ∥∞ + ℏjt(1 − t)Ξ1, Ξ∗(ℏ) = Z + ℏjt(1 − t)Ξ2

Ξ1 = max|dm|
1≤m≤M

, Z = max{|z1|, |zM|}, Ξ2 = max{|d1|, |dM|}

then, the condition holds∥∥∥φ − Sδ
∥∥∥

∞
≤ eℏ2

j

∥∥∥φ(2)
∥∥∥

∞
+

|δ|∞
1 − |δ|∞

{Ξ(ℏ) + Ξ∗(ℏ)}

where e = max
1≤j≤M−1

ej, ej = max
0≤t≤1

σ
(
sj, t

)
.

Proof. Consider C̃(J) as a space

C̃(J) =
{

g′ : J → R,
∣∣g′(y1) = z1, g′(yM) = zM, g′′(y1) = d1, g′′(yM) = dM

}
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from Equations (2) and (7), the R–B operator

Tδ
ε : C̃(J) → C̃(J)

for rational cubic fractal interpolation function, this can be written as

T∗
δ g′(y) = δjg′

(
L−1

j (y)
)
+

uj

(
L−1

j (y), δj

)
vj

(
L−1

j (y)
) , y ∈ Jj, j ∈ MM−1. (15)

Clearly, the interpolant Sδ is a fixed point of T∗
δ with δ ̸= 0 and g′ being a fixed point of T∗

δ
with δ = 0. Since the R–B operator T∗

δ is a contractive operator with |δ|∞ as its contractivity
factor, we have ∥∥∥T∗

δ Sδ − T∗
δ S

∥∥∥
∞
≤ |δ|∞

∥∥∥Sδ − S
∥∥∥

∞
. (16)

Using the mean value theorem of a function with multiple variables and from Equation (15),
we have

|T∗
δ S(y)− T∗

0 S(y)| ≤ |δ|∞

∥S∥∞ +

∣∣∣∣∣∣∣∣∣∣
∂

{
uj

(
L−1

j (y),τj

)
vj

(
L−1

j (y)
)

}
∂δj

∣∣∣∣∣∣∣∣∣∣

;
∣∣τj

∣∣ ∈ (
0, δj

)
. (17)

Now, we calculate the right-hand side of Equation (17). From the classical rational cubic
interpolation function in Equation (9), we have

S(y) = ω1
(
sj, t

)
zj + ω2

(
sj, t

)
zj+1 + ω3

(
sj, t

)
dj − ω4

(
sj, t

)
dj+1, (18)

where

ω1
(
sj, t

)
=

(
1 + sj

)
(1 − t)3 +

(
3 + 2sj

)
(1 − t)2t

1 + sj(1 − t)
≥ 0

ω2
(
sj, t

)
=

t3 +
(
3 + sj

)
(1 − t)t2

1 + sj(1 − t)
≥ 0

ω3
(
sj, t

)
=

ℏj
(
1 + sj

)
(1 − t)2t

1 + sj(1 − t)
≥ 0 andω4

(
sj, t

)
=

−ℏj(1 − t)t2

1 + sj(1 − t)
≥ 0

we can easily verify that ω1
(
sj, t

)
+ ω2

(
sj, t

)
= 1 and ω3

(
sj, t

)
− ω4

(
sj, t

)
= hjt(1 − t).

From Equation (18), we obtain

S(y) ≤ max
m=j,j+1

{|zm|}+ hjt(1 − t) max
m=j,j+1

{|dm|}.

The above inequality is true ∀j ∈ MM−1; we obtain the following expression:

∥S∥∞ ≤ Ξ(ℏ) := ∥φ∥∞ + ℏjt(1 − t)Ξ1. (19)

As vj(t) is independent of δj, from the first term of the right-hand side of Equation (17),

∂

{
uj

(
L−1

j (y),τj

)
vj

(
L−1

j (y)
)

}
∂δj

= ω1
(
sj, t

)
z1 + ω2

(
sj, t

)
zM + ω3

(
sj, t

)
d1 − ω4

(
sj, t

)
dM.
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Now, using the same arguments we used for the first part, we obtain the following bound:

∂

{
uj

(
L−1

j (y),τj

)
vj

(
L−1

j (y)
)

}
∂δj

≤ Ξ∗(ℏ);= z + ℏjt(1 − t)Ξ2 (20)

substituting Equations (19) and (20) in Equation (17), we have

|T∗
δ S(y)− T∗

0 S(y)| ≤ |δ|∞(Ξ(ℏ) + Ξ∗(ℏ)), y ∈
[
yj, yj+1

]
Since the above result is valid in each subinterval, then we obtain

∥T∗
δ S − T∗

0 S∥∞ ≤ |δ|∞(Ξ(ℏ) + Ξ∗(ℏ)). (21)

Using Equations (16) and (21) in∥∥∥Sδ − S
∥∥∥

∞
=

∥∥∥T∗
δ Sδ − T∗

0 S
∥∥∥

∞
≤

∥∥∥T∗
δ Sδ − T∗

δ S
∥∥∥

∞
+ ∥T∗

δ S − T∗
0 S∥∞,

from the above inequality, we have the following estimate:∥∥∥Sδ − S
∥∥∥

∞
≤ |δ|∞{Ξ(ℏ) + Ξ∗(ℏ)}

1 − |δ|∞
. (22)

As we have
∥∥φ − Sδ

∥∥
∞ ≤ ∥φ − S∥∞ +

∥∥S − Sδ
∥∥

∞ using the Theorem 4 and Equation (22)
in the above inequality, we obtain the desired upper bound∥∥∥φ − Sδ

∥∥∥
∞
≤ eℏ2

j

∥∥∥φ(2)
∥∥∥

∞
+

|δ|∞
1 − |δ|∞

{Ξ(ℏ) + Ξ∗(ℏ)} (23)

□

Theorem 6. Let Sδ
ε and Sδ be the zipper-rational cubic fractal interpolation function and rational

cubic fractal interpolation function, respectively, for the dataset {(ym, zm) ∈ J × K; m ∈ MM} with
vertical scaling

∣∣δj
∣∣ < aj, and then for fixed signature ε ∈ (0, 1)M−1,

∥∥∥Sδ
ε − Sδ

∥∥∥
∞
≤ |ε|∞

λ(1 − |δ|∞)

{
(2 + |s|∞)

(
4ω(φ,ℏ) + ℏω

(
φ′,ℏ

))}
where

ℏ = max
{∣∣hj

∣∣; j ∈ MM−1
}

, ω(φ,ℏ) = sup
|y1−y2|≤h

{φ(y1)− φ(y2); y1, y2 ∈ J}, λ = min
{

λj : j ∈ MM
}

λj = min
{

vj,ε(θ) : 0 ≤ θ ≤ 1
}

and |ε|∞ =

{
0, i f ε j = 0
1, i f ε j ̸= 0

.

Proof. Using the self-referential equation for the zipper-rational fractal interpolation
function Sδ

ε and rational fractal interpolation function Sδ, ∀y ∈ Jj, we have

∣∣∣Sδ
ε

(
Lj(y)

)
− Sδ

(
Lj(y)

)∣∣∣
∞
=

∣∣∣∣∣∣∣∣∣∣∣
δj
(
Sδ

ε (y)− Sδ(y)
)
+

(1+sj)
(

zj+ε j
−zj

)
vj,ε(θ)

(1 − θ)3 +

(
zj+1−ε j

−zj+1

)
vj,ε(θ)

(θ)3

+
(3+2sj)zj+ε j

+(1+sj)hjdj+ε j
−(3+2sj)zj−(1+sj)hjdj

vj,ε(θ)
(1 − θ)2θ

+
(3+sj)zj+1−ε j

−hjdj+1−ε j
−(3+sj)zj+1+hjdj+1

vj,ε(θ)
(1 − θ)θ2

∣∣∣∣∣∣∣∣∣∣∣
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using the properties of modulus, the above inequality can be written as

≤ |δ|
∥∥Sδ

ε (y)− Sδ(y)
∥∥

∞ +

∣∣∣(1+sj)
(

zj+ε j
−zj

)∣∣∣
|vj,ε(θ)| +

∣∣∣(3+2sj)
(

zj+ε j
−zj

)∣∣∣+∣∣∣(1+sj)hj

(
dj+ε j

−dj

)∣∣∣
|vj,ε(θ)|

+

∣∣∣(3+sj)
(

zj+1−ε j
−zj+1

)∣∣∣−∣∣∣hj

(
dj+1−ε j

−dj+1

)∣∣∣
|vj,ε(θ)| +

∣∣∣zj+1−ε j
−zj+1

∣∣∣
|vj,ε(θ)|

≤ |δ|∞
∥∥Sδ

ε − Sδ
∥∥

∞ +
∣∣ε j

∣∣ |zj+1−zj|+|s|∞|zj+1−zj|
λ +

∣∣ε j
∣∣ 3

∣∣zj+1 − zj
∣∣+ 2|s|∞

∣∣zj+1 − zj
∣∣

+ℏ
∣∣dj+1 − dj

∣∣+ ℏ|s|∞
∣∣dj+1 − dj

∣∣
λ

+
∣∣ε j

∣∣ 3|zj+1−zj|+|s|∞|zj+1−zj|+ℏ|dj+1−dj|
λ +

∣∣ε j
∣∣ |zj+1−zj|

λ

≤ |δ|∞
∥∥∥Sδ

ε − Sδ
∥∥∥

∞
+ |ε|∞

4|s|∞
∣∣zj+1 − zj

∣∣+ 8
∣∣zj+1 − zj

∣∣+ ℏ|s|∞
∣∣dj+1 − dj

∣∣+ 2ℏ
∣∣dj+1 − dj

∣∣
λ

≤ |δ|∞
∥∥∥Sδ

ε − Sδ
∥∥∥

∞
+ |ε|∞

4|s|∞ω(φ,ℏ) + 8ω(φ,ℏ) + ℏ|s|∞ω(φ′,ℏ) + 2ℏω(φ′,ℏ)
λ

≤ |δ|∞
∥∥∥Sδ

ε − Sδ
∥∥∥

∞
+ |ε|∞

(2 + |s|∞)(4ω(φ,ℏ) + ℏω(φ′,ℏ))
λ

.

which is the required result. □

Theorem 7. Let Sδ
ε be the zipper-rational cubic fractal interpolation function for the considered

dataset {(ym, zm) ∈ J × K; m ∈ MM} with fixed signature ε ∈ (0, 1)M and the vertical scal-
ing

∣∣δj
∣∣ < aj, then∥∥∥φ − Sδ

∥∥∥
∞
≤ eℏ2

j

∥∥∥φ(2)
∥∥∥

∞
+

|δ|∞
1 − |δ|∞

{Ξ(ℏ) + Ξ∗(ℏ)}+ |ε|∞
λ(1 − |δ|∞)

{
(2 + |s|∞)

(
4ω(φ,ℏ) + ℏω

(
φ′,ℏ

))}
.

Proof. Now, since in Theorems 5 and 6, we have calculated the values of
∥∥φ − Sδ

∥∥
∞ and∥∥Sδ

ε − Sδ
∥∥

∞, by substituting these values in the following inequality:∥∥∥φ − Sδ
ε

∥∥∥
∞
≤

∥∥∥φ − Sδ
∥∥∥

∞
+

∥∥∥Sδ
ε − Sδ

∥∥∥
∞

we obtain our desired result. □

Convergence Result: Since we have
∣∣δj

∣∣ ≤ aj, this implies |δ|∞ ≤ ℏ
h . From the above

theorem, we can say that the zipper-rational cubic fractal interpolation function converges
to the data-generating function φ as ℏ → 0 , and in the case of the rational cubic fractal
interpolation function |δ|∞ ≤ ℏ

l , then from Theorem 6, we can say that the rational cubic
fractal interpolation function converges to the data-generating original function φ as ℏ → 0 ,
if we take

∣∣δj
∣∣ ≤ a2

j , then
∥∥φ − Sδ

ε

∥∥
∞ = O

(
ℏ2) and

∥∥φ − Sδ
∥∥

∞ = O
(
ℏ2) as ℏ → 0 .

5. Constrained Rational Cubic Fractal Interpolation Function and Zipper-Rational Cubic
Fractal Interpolation Function

In this section, we discuss the constrained RCFIF and ZRCFIF, whose graph lies above
the straight line. Due to the arbitrary choice of IFS parameters, the RCFIF and ZRCFIF may
not lie above the straight line. Therefore, to avoid such circumstances, we have deduced
the sufficient conditions on the shape parameter sj and scaling factor δj.

Theorem 8. Let {(ym, zm) ∈ J × R : m ∈ MM} be the given dataset and Sδ be the rational cubic
fractal interpolation function. Suppose that the given dataset lies above the straight line L = Y =
ny + k, the parametric form of L is Y

(
Lj(y)

)
= (1 − θ)β + θγ on [y1, yM], then the C1 rational
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cubic fractal interpolation function defined here will lie above the straight line if the conditions given
below hold:

δj ∈
{

[0, ς]
[0, a)

, ς < a
, a < ς

where

ς = min
{

aj,
zj − β j

z1
,

zj − β j − γj

z1
,

zj − γj

zM

}
and conditions over shape parameters are

cond1 < sj < cond2

cond1 =
3
(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
2
(
zj − δjz1

)
− β j − γj

cond2 = max


0,

3(zj−δjz1)−2β j−γj+(1+sj)lj(ajdj−δjd1)
2(zj−δjz1)−β j−γj

,

zj+1−δjzM−lj(ajdj+1−δjdM)
zj+1−δjzM−γj

.

Proof. Let {(ym, zm) ∈ J × R : m ∈ MM} be the given positive data which lie above a
straight line. The parametric form of the straight line is Y

(
Lj(y)

)
= (1 − θ)β + θγ and if

we take y = y1 then β j = Yj = nyj + k. Similarly, if we take y = yM then β j+1 = Yj+1 =
nyj+1 + k.
Now the C1 rational cubic fractal interpolation function lies above a straight line if

Sδ
(

Lj(y)
)
> Y

(
Lj(y)

)
⇒ δjSδ(y) +

uj(θ)

vj(θ)
> (1 − θ)β + θγ

this implies

⇒ δjSδ(y) +
uj(θ)

vj(θ)
− ((1 − θ)β + θγ) > 0 (24)

⇒ δjSδ(y) +
ûj(θ)

vj(θ)
> 0 (25)

ûj(θ) = Â(1 − θ)3 + B̂(1 − θ)2θ + Ĉ(1 − θ)θ2 + D̂θ3

here,
Â =

(
1 + sj

)(
zj − δjz1 − β j

)
&D̂ = zj+1 − δjzM − γj

B̂ = sj
(
2
(
zj − δjz1

)
− β j − γj

)
+ 3

(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
Ĉ =

(
2 + sj

)(
zj+1 − δjzM − γj

)
+ zj − δjzM − lj

(
ajdj+1 − δjdM

)
Now, to show that Equation (24) holds, we need to prove that Equation (25) is true for
y = yj. As we know, Sδ

(
yj
)
> 0 because of the scaling factor δj ≥ 0. The shape parameter

sj is non-negative, provided vj(θ) > 0. Now, all we are left with is ûj(θ) and ûj(θ) ≥ 0 if all
the free parameters are non-negative. Therefore, let

Â ≥ 0 ⇒ δj ≤
zj − β j

z1
andD̂ ≥ 0 ⇒ δj ≤

zj+1 − γj

zM

Let B̂ ≥ 0. Then, we have
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B̂ = sj
(
2
(
zj − δjz1

)
− β j − γj

)
+ 3

(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
if we

take ajdj − δjd1 ≥ 0, then sj ≥ 0 and 2
(
zj − δjz1

)
− β j − γj ≥ 0 ⇒ δj ≤

zj−β j−γj
z1

, provided
B̂ ≥ 0. Otherwise, to validate that B̂ ≥ 0, we choose

sj ≥
3
(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
2
(
zj − δjz1

)
− β j − γj

If 2
(
zj − δjz1

)
− β j − γj > 0, then

sj >
3
(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
2
(
zj − δjz1

)
− β j − γj

and if 2
(
zj − δjz1

)
− β j − γj < 0, then

sj <
3
(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
2
(
zj − δjz1

)
− β j − γj

Similarly, let Ĉ ≥ 0. Then, we have

Ĉ =
(
2 + sj

)(
zj+1 − δjzM − γj

)
+ zj+1 − δjzM − lj

(
ajdj+1 − δjdM

)
If we take ajdj+1 − δjdM ≥ 0, then sj ≥ 0 and zj+1 − δjzM − γj ≥ 0 ⇒ δj ≤

zj+1−γj
zM

,
provided Ĉ ≥ 0. Otherwise, to validate that Ĉ ≥ 0, we choose

sj ≥
zj+1 − δjzM − lj

(
ajdj+1 − δjdM

)
zj+1 − δjzM − γj

.

The above calculation can be written as

δj ∈
{

[0, ς]
[0, a)

, ς < a
, a < ς

where

ς = min
{

aj,
zj − β j

z1
,

zj − β j − γj

z1
,

zj − γj

zM

}
and conditions over shape parameters are

cond1 < sj < cond2

cond1 =
3
(
zj − δjz1

)
− 2β j − γj +

(
1 + sj

)
lj
(
ajdj − δjd1

)
2
(
zj − δjz1

)
− β j − γj

cond2 = max


0,

3(zj−δjz1)−2β j−γj+(1+sj)lj(ajdj−δjd1)
2(zj−δjz1)−β j−γj

,

zj+1−δjzM−lj(ajdj+1−δjdM)
zj+1−δjzM−γj

.

Hence, we obtain the desired conditions for the rational fractal interpolation function to lie
above the straight line.

Similarly, we discuss the sufficient condition for the C1-zipper-rational cubic fractal
interpolation function to lie above the straight line. □

Theorem 9. Let {(ym, zm) ∈ J × R : m ∈ MM} be the given dataset and Sδ
ε be the zipper-

rational cubic fractal interpolation function. Suppose that the given dataset lies above the straight
line L = Y = ny + k, the parametric form of L is Y

(
Lj(y)

)
= (1 − θ)β + θγ on [y1, yM], then
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the C1 zipper-rational cubic fractal interpolation function defined here lies above the straight line if
the conditions given below hold:

δj ∈
{

[0, ς]
[0, a)

, ς < a
, a < ς

where

ς = min

{
aj,

zj+ε j − β j

z1
,

zj+ε j − β j − γj

z1
,

zj+1−ε j − γj

zM

}
and conditions over shape parameters are

cond1 < sj < cond2

cond1 =
3
(

zj+ε j − δjz1

)
− 2β j − γj +

(
1 + sj

)(
hjdj+ε j − δj(yM − y1)d1

)
2
(

zj+ε j − δjz1

)
− β j − γj

cond2 = max


0,

3
(

zj+ε j
−δjzj

)
−2β j−γj+(1+sj)

(
hjdj+ε j

−δj(yM−y1)d1

)
2
(

zj+ε j
−δjz1

)
−β j−γj

,

zj+1−ε j
−δjzM−hjdj+1−ε j

+δj(yM−y1)dM

zj+1−ε j
−δjzM−γj

.

Proof. Let {(ym, zm) ∈ J × R : m ∈ MM} be the given positive data, which lies above
the straight line. The parametric form of the straight line is Y

(
Lj(y)

)
= (1 − θ)β + θγ

and if we take y = y1 then β j = Yj = nyj + k. Similarly, if we take y = yM, then
β j+1 = Yj+1 = nyj+1 + k. Now, the C1-zipper-rational cubic fractal interpolation function
lies above a straight line if

Sδ
ε

(
Lj(y)

)
> Y

(
Lj(y)

)
⇒ δjSδ

ε (y) +
uj,ε(θ)

vj,ε(θ)
> (1 − θ)β + θγ

⇒ δjSδ
ε (y) +

uj,ε(θ)

vj,ε(θ)
− ((1 − θ)β + θγ) > 0 (26)

⇒ δjSδ
ε (y) +

u∧
j,ε(θ)

vj,ε(θ)
> 0 (27)

u∧
j,ε(θ) = Âj,ε(1 − θ)3 + B̂j,ε(1 − θ)2θ + Ĉj,ε(1 − θ)θ2 + D̂j,εθ

3

here,
Âj,ε =

(
1 + sj

)(
zj+ε j − δjz1 − β j

)
, D̂j,ε = zj+1−ε j − δjzM − γj

B̂j,ε = sj

(
2
(

zj+ε j − δjz1

)
− β j − γj

)
+ 3

(
zj+ε j − δjz1

)
− 2β j − γj

+
(
1 + sj

)(
hjdj+ε j − δj(yM − y1)d1

)
Ĉj,ε =

(
2 + sj

)(
zj+1−ε j − δjzM − γj

)
+ zj+1−ε j − δjzM − hjdj+1−ε j + δj(yM − y1)dM

Now, to show that Equation (26) holds, we need to prove that Equation (27) is true for
y = yj. As we know, Sδ

ε

(
yj
)
> 0 because of the scaling factor δj ≥ 0. In addition, the shape

parameter sj is non-negative provided vj,ε(θ) > 0. Now, all we are left with is u∧
j,ε(θ) and

u∧
j,ε(θ) ≥ 0 if all the free parameters are non-negative. Therefore, let

Âj,ε ≥ 0 ⇒ δj ≤
zj+ε j − β j

z1
and D̂j,ε ≥ 0 ⇒ δj ≤

zj+1−ε j − γj

zM
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Let B̂j,ε ≥ 0, we have

B̂j,ε = sj

(
2
(

zj+ε j − δjz1

)
− β j − γj

)
+ 3

(
zj+ε j − δjz1

)
− 2β j − γj +

(
1 + sj

)
(hjdj+ε j−

δj(yM − y1)d1) if we take hjdj+ε j − δj(yM − y1)d1 ≥ 0, then sj ≥ 0 and 2
(

zj+ε j − δjz1

)
−

β j − γj ≥ 0 ⇒ δj ≤
zj+ε j

−β j−γj

z1
, provided B̂j,ε ≥ 0. Otherwise, to validate that B̂j,ε ≥ 0,

we choose

sj ≥
3
(

zj+ε j − δjz1

)
− 2β j − γj +

(
1 + sj

)(
hjdj+ε j − δj(yM − y1)d1

)
2
(

zj+ε j − δjz1

)
− β j − γj

If 2
(

zj+ε j − δjz1

)
− β j − γj > 0 then

sj >
3
(

zj+ε j − δjz1

)
− 2β j − γj +

(
1 + sj

)(
hjdj+ε j − δj(yM − y1)d1

)
2
(

zj+ε j − δjz1

)
− β j − γj

and if 2
(

zj+ε j − δjz1

)
− β j − γj < 0 then

sj <
3
(

zj+ε j − δjz1

)
− 2β j − γj +

(
1 + sj

)(
hjdj+ε j − δj(yM − y1)d1

)
2
(

zj+ε j − δjz1

)
− β j − γj

Similarly, let Ĉj,ε ≥ 0, we have

Ĉj,ε =
(
2 + sj

)(
zj+1−ε j − δjzM − γj

)
+ zj+1−ε j − δjzM − hjdj+1−ε j + δj(yM − y1)dM

if we take −hjdj+1−ε j + δj(yM − y1)dM ≥ 0, then sj ≥ 0 and zj+1−ε j − δjzM − γj ≥

0⇒ δj ≤
zj+1−ε j

−γj

zM
, provided Ĉj,ε ≥ 0. Otherwise, to validate that Ĉj,ε ≥ 0, we choose

sj ≥
zj+1−ε j − δjzM − hjdj+1−ε j + δj(yM − y1)dM

zj+1−ε j − δjzM − γj

Hence, we obtain the desired conditions for the rational fractal interpolation function to lie
above the straight line. □

6. Positivity of Rational Cubic Fractal Interpolation Function and Zipper-Rational Cubic
Fractal Interpolation Function

In this section, we discuss the conditions over the scaling factor and shape parameter
to preserve the positivity conditions for the rational cubic fractal interpolation function and
zipper-rational cubic fractal interpolation function. In shape preservation, we deal with
three properties of functions, which are positivity, monotonicity, and convexity. Positivity is
one of the critical properties of shape preservation. This is important in various real-world
applications such as physical quantities like mass, length etc., probability distributions, time
series analysis, and so on. We constrained the scaling factor and shape parameter to obtain
sufficient conditions for positivity. The shape parameter plays a crucial role in the curvature
of a function and in defining the behavior of a function in its domain. In Theorem 10, we
discuss the positivity of the rational cubic fractal interpolation function, and in Theorem 11,
we discuss the positivity of the zipper-rational cubic fractal interpolation function.



Axioms 2024, 13, 584 20 of 26

Theorem 10. Let {(ym, zm) ∈ J × K; m ∈ MM} be the given positive dataset, then the rational
cubic fractal interpolation function Sδ is positive if the following conditions hold for the shape
parameter and scaling factor:

0 ≤ δj < min
{

aj,
zj

z1
,

zj+1

zM

}

sj > max

{
0,

−lj
(
ajdj − δjd1

)
zj − δjz1

,
lj
(
ajdj+1 − δjdM

)
zj+1 − δjzM

, j ∈ MM−1

}

Proof. To prove that the rational cubic fractal interpolation function Sδ is positive, it will
be sufficient to show that Sδ

(
Lj(y)

)
≥ 0. By the hypothesis of the iterated function system,

we can say that Sδ
(

Lj(y)
)

will be positive if uj(θ) ≥ 0 ∀θ ∈ [0, 1]. To prove that uj(θ) ≥ 0,
we need to show that A, B, C and D ≥ 0, so we have A ≥ 0 ⇒

(
1 + sj

)(
zj − δjz1

)
≥ 0, as

sj is a non-negative shape parameter, the scaling factor is constrained as

⇒ δj ≤
zj

z1

Similarly, D ≥ 0 ⇒ zj+1 − δjzM ≥ 0 . Then, we obtain

⇒ δj ≤
zj+1

zM

Now, B ≥ 0 if
(
3 + 2sj

)(
zj − δjz1

)
+ lj

(
1 + sj

)(
ajdj − δjd1

)
≥ 0

⇒ sj ≥
−lj

(
ajdj − δjd1

)
zj − δjz1

; j ∈ MM−1 , provided zj − δjz1 > 0

Similarly, C ≥ 0 if
(
3 + sj

)(
zj+1 − δjzM

)
− lj

(
ajdj+1 − δjdM

)
≥ 0

⇒ sj ≥
lj
(
ajdj+1 − δjdM

)
zj+1 − δjzM

; j ∈ MM−1 , provided zj+1 − δjzM > 0.

□

Example 3. Let (0, 0), (1, 5), (2, 7), (3, 9), (4, 10) be the positive interpolating points, and with
these data points, we generate the positive rational cubic fractal interpolation function with differ-
ent values of shape parameters and scaling factors. Now, for the positive rational cubic fractal
interpolation function, we have calculated the shape parameters according to the above theo-
rem. In Figure 3a, we have taken the shape parameter, i.e., sj = (2, 4, 4.2, 3) and the scaling
factor δ = (0.15, 0.5, 0.35, 0.47). The corresponding graph is positive. In Figure 3b and Fig-
ure 3c, we used the same shape parameter, i.e., sj = (7, 9.8, 10.2, 11) but different scaling factors
δ = (0.24, 0.12, 0.32, 0.55) and δ = (0.15, 0.25, 0.32, 0.46), respectively. We can easily witness
the change in shape due to the different vertical scaling factors. In Figure 3d and Figure 3e, we
used the same scaling factor, i.e., δ = (0.1, 0.12, 0.23, 0.5) but different shape parameters, which
are sj = (5, 5.8, 6.2, 7) and sj = (7, 9.8, 10.2, 11), respectively. The change in the graph of the
positive rational cubic fractal interpolation function is due to the different values for signature and
shape parameters. Similarly, by taking the shape parameter sj = (9, 11.2, 12.8, 13) and scaling
factor, δ = (0.15, 0.25, 0.35, 0.45), Figure 3f is generated, which is another positive graph for the
rational cubic fractal interpolation function.



Axioms 2024, 13, 584 21 of 26

Axioms 2024, 13, x FOR PEER REVIEW 23 of 29 
 

Now, 0≥B  if ( )( ) ( )( ) 0123 11 ≥−++−+ ddaslzzs jjjjjjjj δδ  

( )
1

1

1 ; −∈
−

−−
≥⇒ M

jj

jjjj
j Mj

zz
ddal

s
δ

δ
, provided 01 >− zz jj δ   

Similarly, 0≥C  if ( )( ) ( ) 03 11 ≥−−−+ ++ MjjjjMjjj ddalzzs δδ  

( )
1

1

1 ; −
+

+ ∈
−

−
≥⇒ M

Mjj

Mjjjj
j Mj

zz
ddal

s
δ
δ

, provided 01 >−+ Mjj zz δ .  

□ 

Example 3. Let ( ) ( ) ( ) ( ) ( )10,4,9,3,7,2,5,1,0,0  be the positive interpolating points, and with these 
data points, we generate the positive rational cubic fractal interpolation function with different 
values of shape parameters and scaling factors. Now, for the positive rational cubic fractal inter-
polation function, we have calculated the shape parameters according to the above theorem. In 
Figure 3a, we have taken the shape parameter, i.e., ( )3,2.4,4,2=js  and the scaling factor 

( ),0.47 0.35 0.5, 0.15,=δ . The corresponding graph is positive. In Figures 3b and 3c, we used the 
same shape parameter, i.e., ( ),11 10.2 ,9.8, 7=js  but different scaling factors

( )0.55 ,0.32, 0.12 0.24,=δ  and ( ),0.46 0.32 ,0.25, 0.15=δ , respectively. We can easily witness 
the change in shape due to the different vertical scaling factors. In Figures 3d and 3e, we used the 
same scaling factor, i.e., ( )0.5 0.23, ,0.12, 0.1=δ  but different shape parameters, which are

( )7 6.2, 5.8, 5,=js  and ( ),11 10.2 ,9.8, 7=js , respectively. The change in the graph of the positive 
rational cubic fractal interpolation function is due to the different values for signature and shape 
parameters. Similarly, by taking the shape parameter ( )8,139,11.2,12.=js  and scaling factor, 

( )0.45 0.35, 0.25, 0.15,=δ , Figure 3f is generated, which is another positive graph for the rational 
cubic fractal interpolation function. 

  
(a)  (b)  

Axioms 2024, 13, x FOR PEER REVIEW 24 of 29 
 

 

 

(c)  (d)  

 z  
(e)  (f)  

Figure 3. Positive rational cubic fractal interpolation with different values of shape parameter and 
scaling factor δS . (a) Positive rational cubic fractal interpolation with shape parameter 

)3,2.4,4,2(=js  and scaling factor ),0.47 0.35 0.5, 0.15,(=δ . (b) Positive rational cubic fractal 

interpolation with shape parameter ( ),11 10.2 ,9.8, 7=js  and scaling factor 

)0.55 ,0.32, 0.12 0.24,(=δ . (c) Positive rational cubic fractal interpolation with shape parameter 

( ),11 10.2 ,9.8, 7=js  and scaling factor ( ),0.46 0.32 ,0.25, 0.15=δ . (d) Positive rational cubic 

fractal interpolation with shape parameter ( )7 6.2, 5.8, 5,=js  and scaling factor 

( )0.5 0.23, ,0.12, 0.1=δ . (e) Positive rational cubic fractal interpolation with shape parameter 

( ),11 10.2 ,9.8, 7=js  and scaling factor ( )0.5 0.23, 0.12, 0.1,=δ . (f) Positive rational cubic frac-

tal interpolation with shape parameter ( )8,139,11.2,12.=js  and scaling factor 

0.45 0.35, 0.25, 0.15,=δ . 

Theorem 11. Let ( ){ }Mmm MmKJzy ∈×∈ ;,  be the considered positive dataset, then the zip-

per-rational cubic fractal interpolation function δ
εS  is positive if the following conditions hold for 

the shape parameter and scaling factor: 













<≤
−++

M

jj
jj z

z

z

z
a jj εε

δ
1

1
,,min0   

Figure 3. Positive rational cubic fractal interpolation with different values of shape parameter and
scaling factor Sδ. (a) Positive rational cubic fractal interpolation with shape parameter sj = (2, 4, 4.2, 3)
and scaling factor δ = (0.15, 0.5, 0.35, 0.47). (b) Positive rational cubic fractal interpolation with
shape parameter sj = (7, 9.8, 10.2, 11) and scaling factor δ = (0.24, 0.12, 0.32, 0.55). (c) Positive
rational cubic fractal interpolation with shape parameter sj = (7, 9.8, 10.2, 11) and scaling factor
δ = (0.15, 0.25, 0.32, 0.46). (d) Positive rational cubic fractal interpolation with shape parameter
sj = (5, 5.8, 6.2, 7) and scaling factor δ = (0.1, 0.12, 0.23, 0.5). (e) Positive rational cubic fractal
interpolation with shape parameter sj = (7, 9.8, 10.2, 11) and scaling factor δ = (0.1, 0.12, 0.23, 0.5). (f)
Positive rational cubic fractal interpolation with shape parameter sj = (9, 11.2, 12.8, 13) and scaling
factor δ = 0.15, 0.25, 0.35, 0.45.
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Theorem 11. Let {(ym, zm) ∈ J × K; m ∈ MM} be the considered positive dataset, then the zipper-
rational cubic fractal interpolation function Sδ

ε is positive if the following conditions hold for the
shape parameter and scaling factor:

0 ≤ δj < min
{

aj,
zj+ε j

z1
,

zj+1−ε j

zM

}

sj > max

0,
−
(

hjdj+ε j − δj(yM − y1)d1

)
zj+ε j − δjz1

,

(
hjdj+1−ε j − δj(yM − y1)dM

)
zj+1−ε j − δjzM

, j ∈ MM−1


Proof. To prove that the zipper-rational cubic fractal interpolation function Sδ

ε is posi-
tive, it will be sufficient to show that Sδ

ε

(
Lj(y)

)
≥ 0, and by the hypothesis of the iter-

ated function system, we can say that Sδ
ε

(
Lj(y)

)
will be positive if uj,ε(θ) ≥ 0∀θ ∈ [0, 1].

To prove that uj,ε(θ) ≥ 0 we need to show that Aj,ε, Bj,ε, Cj,ε and Dj,ε ≥ 0, so we have

Aj,ε ≥ 0 ⇒
(
1 + sj

)(
zj+ε j − δjz1

)
≥ 0, as sj is a non-negative shape parameter, so

⇒ δj ≤
zj+ε j

z1

Similarly, Dj,ε ≥ 0 ⇒ zj+1−ε j − δjzM ≥ 0 , we obtain

⇒ δj ≤
zj+1−ε j

zM

Now, Bj,ε ≥ 0 if
(
3 + 2sj

)
zj+ε j +

(
1 + sj

)
hjdj+ε j − δj

((
3 + 2sj

)
z1 +

(
1 + sj

)
(yM − y1)d1

)
≥

0

⇒ sj ≥
−
(

hjdj+ε j − δj(yM − y1)d1

)
zj+ε j − δjz1

; j ∈ MM−1 , provided zj+ε j − δjz1 > 0

Similarly, Cj,ε ≥ 0 if
(
3 + sj

)
zj+1−ε j − hjdj+1−ε j − δj

((
3 + sj

)
zM − (yM − y1)dM

)
≥ 0

⇒ sj ≥

(
hjdj+1−ε j − δj(yM − y1)dM

)
zj+1−ε j − δjzM

; j ∈ MM−1 , provided zj+1−ε j − δjzM > 0.

□

Example 4. Let (0, 0), (1, 5), (2, 7), (3, 9), (4, 10) be the positive interpolating points, and with
these data points, we will be generating the positive zipper-rational cubic fractal interpolation
function with different shape parameters, signatures, and scaling factors. In Figure 4a, we used
the arbitrary shape parameters, i.e., sj = (2, 4, 4.2, 3) and the scaling factor and signature
are δ = (0.15, 0.5, 0.35, 0.47) , and ε = (1, 1, 1, 1), respectively. The corresponding graph is
non-positive. For the positive zipper-rational cubic fractal interpolation function, we calculated the
shape parameters according to the above theorem. In Figure 4b and Figure 4c, we used the same
shape parameter, i.e., sj = (7, 9.8, 10.2, 11) but different scaling factor and signature, i.e., δ =
(0.24, 0.12, 0.32, 0.55), δ = (0.15, 0.25, 0.32, 0.46), and ε = (0, 0, 0, 0), ε = (1, 1, 1, 1), respec-
tively. We can clearly witness the change in shape due to the signature and scaling factor. In Figure
4d and Figure 4e, we used the same scaling factor and signature, i.e., δ = (0.1, 0.12, 0.23, 0.5), ε =
(0, 1, 0, 1) but different shape parameters, which are sj = (5, 5.8, 6.2, 7) and sj = (7, 9.8, 10.2, 11),
respectively. We can witness the change in the graph of the positive zipper-rational cubic fractal
interpolation function due to the different values for signature and shape parameters.
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Figure 4. Non-positive and positive zipper-rational cubic fractal interpolation Sδ
ε with different values

of the shape parameter sj, signature ε, and scaling factor δ. (a) Non-positive zipper-rational cubic
fractal interpolation with shape parameter sj = (2, 4, 4.2, 3), signature ε = (1, 1, 1, 1), and scaling factor
δ = (0.15, 0.5, 0.35, 0.47). (b) Positive zipper-rational cubic fractal interpolation with shape parameter
sj = (7, 9.8, 10.2, 11) signature ε = (0, 0, 0, 0), and scaling factor δ = (0.24, 0.12, 0.32, 0.55). (c) Positive
zipper-rational cubic fractal interpolation with shape parameter sj = (7, 9.8, 10.2, 11), signature
ε = (1, 1, 1, 1), and scaling factor δ = (0.15, 0.25, 0.32, 0.46). (d) Positive zipper-rational cubic fractal
interpolation with shape parameter sj = (5, 5.8, 6.2, 7), signature ε = (0, 1, 0, 1) and scaling factor
δ = (0.1, 0.12, 0.23, 0.5). (e) Positive zipper-rational cubic fractal interpolation with shape parameter
sj = (7, 9.8, 10.2, 11), signature ε = (0, 1, 0, 1) and scaling factor δ = (0.1, 0.12, 0.23, 0.5). (f) Positive
zipper-rational cubic fractal interpolation with shape parameter sj = (9, 11.2, 12.8, 13), signature
ε = (1, 1, 1, 1) and scaling factor δ = (0.15, 0.25, 0.35, 0.45).
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If we see Figures 3a and 4a, we have taken the same values for the scaling factor, but
for the C1 rational cubic fractal interpolation function, it is a positive graph. For the C1

zipper-rational cubic fractal interpolation function, it is a negative graph.

7. Conclusions and Future Work

In this paper, the C1 rational cubic fractal interpolation function (RCFIF) and C1 zipper
cubic fractal interpolation function (ZRCFIF) with a linear denominator and one shape
parameter are constructed. The proposed ZRCFIF becomes the classical rational cubic
interpolation function, if we take zero values of both signature and scaling factor. Also,
if only the values of the scaling factor are taken to be zero, then ZRCFIF reduces to the
classical C1 zipper-rational cubic interpolation function, and if only the signature is taken to
be zero, then it reduces to RCFIF. The uniform convergence of the C1 rational cubic fractal
interpolation function and the C1 zipper-rational cubic fractal interpolation function to the
original function is also discussed. The results are also supported by numerical examples
for both the rational cubic fractal interpolation function and the zipper-rational cubic fractal
interpolation function. The graphs of the interpolating function are demonstrated for
various selections of signature, scaling factor, and shape parameters. If one suitably chooses
(as stated in Theorems 10 and 11) the range of scaling factors and shape parameters, then
the proposed RQFIF and ZRQFIF preserve positivity.

Figures 1–4 demonstrate the sensitivity of the proposed class of fractal interpolation
functions with respect to the signature, scaling factors, and shape parameters. We can
also see that the zipper fractal interpolation function is more flexible than the fractal
interpolation function due to the presence of a signature. Duan et al. [52] demonstrated that
cubic spline gives a better approximation with a linear denominator than with quadratic or
cubic denominators. In that way, the zipper-rational cubic fractal interpolation function
with a linear denominator will give a better approximation as compared to the zipper
fractal interpolation function with quadratic or cubic denominators. The proposed C1

RCFIFs and ZRCFIFs can be used for data visualization and in physics.
For future work, the vertical scaling factor can be replaced by a variable scaling for

generating a C1 rational cubic fractal interpolation function and a C1 zipper-rational cubic
fractal interpolation function with variable scaling.
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