On a Matrix Formulation of the Sequence of Bi-Periodic Fibonacci Numbers
Abstract
:1. Introduction
2. Matrix Formulation of the Sequence of Bi-Periodic Fibonacci Numbers and Their Analytic Formula
2.1. Matrix Formulation of the Bi-Periodic Fibonacci Sequence
2.2. The Analytic Binet Formula of Bi-Periodic Fibonacci Numbers via the Canonical Jordan Form
2.3. Another Compact Analytic Formula of the Binet Type for the Special Initial Conditions
3. Linear and Combinatorial Expressions of the Bi-Periodic Fibonacci Numbers and the Fibonacci Fundamental System
3.1. Linear Expression of the Bi-Periodic Fibonacci Numbers
3.2. Combinatorial Expression for the Bi-Periodic Fibonacci Numbers
3.3. Another Approach for the Analytical Formula for the Bi-Periodic Fibonacci Numbers
4. Concluding Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koshy, T. Fibonacci and Lucas Numbers with Applications; A Wiley-Interscience Publications: Hoboken, NJ, USA, 2001. [Google Scholar]
- Koshy, T. Pell and Pell–Lucas Numbers with Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Caldarola, F.; d’Atri, G.; Maiolo, M.; Pirillo, G. New algebraic and geometric constructs arising from Fibonacci numbers. Soft Comput. 2020, 24, 17497–17508. [Google Scholar] [CrossRef]
- Choo, Y. Some Identities on Generalized Bi-periodic Fibonacci Sequences. Int. J. Math. Anal. 2019, 13, 259–267. [Google Scholar] [CrossRef]
- Edson, M.; Yayenie, O. A new generalization of Fibonacci sequence and extended Binet’s formula. Integers 2009, 9, 639–654. [Google Scholar] [CrossRef]
- Pyo Jun, S.; Ho Choi, K. Some properties of the generalized Fibonacci sequence {qn} by matrix method. Korean J. Math. 2016, 24, 681–691. [Google Scholar] [CrossRef]
- Tan, E. Some properties of the bi-periodic Horadam sequences. Notes Number Theory Discret. Math. 2017, 23, 56–65. [Google Scholar]
- Tan, E.; Leung, H. Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences. Adv. Differ. Equ. 2020, 2020, 26. [Google Scholar] [CrossRef]
- Bilgici, G. Two generalizations of Lucas sequence. Appl. Math. Computat. 2014, 245, 526–538. [Google Scholar] [CrossRef]
- Horadam, A.F. Basic Properties of a Certain Generalized Sequence of Numbers. Fibonacci Quart. 1965, 3, 161–176. [Google Scholar]
- Wahbi, B.E.; Mouline, M.; Rachidi, M. Solving nonhomogeneous recurrences relations by matrix method. Fibonacci Q. 2002, 40, 109–117. [Google Scholar]
- Taher, R.B.; Rachidi, M. On the matrix powers and exponential by r-generalized Fibonacci sequences methods: The companion matrix case. Linear Algebra Appl. 2003, 370, 341–353. [Google Scholar] [CrossRef]
- Mouline, M.; Rachidi, M. Application of Markov chains properties to r-generalized Fibonacci sequences. Fibonacci Q. 1999, 37, 34–38. [Google Scholar]
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 3 | 4 | 11 | 15 | 41 | 56 | 153 | 209 | 571 | |
0 | 1 | 4 | 15 | 56 | 209 | 780 | 2911 | 10,864 | 40,545 | 151,316 | 564,719 | |
1 | 3 | 11 | 41 | 153 | 571 | 2131 | 7953 | 29,681 | 110,771 | 413,403 | 1,542,841 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | −3 | −2 | 5 | 3 | −7 | −4 | 9 | 5 | −11 | |
0 | 1 | −2 | 3 | −4 | 5 | −6 | 7 | −8 | 9 | −10 | 11 | |
1 | −3 | 5 | −7 | 9 | −11 | 13 | −15 | 17 | −19 | 21 | −23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachidi, M.; Spreafico, E.V.P.; Catarino, P. On a Matrix Formulation of the Sequence of Bi-Periodic Fibonacci Numbers. Axioms 2024, 13, 590. https://doi.org/10.3390/axioms13090590
Rachidi M, Spreafico EVP, Catarino P. On a Matrix Formulation of the Sequence of Bi-Periodic Fibonacci Numbers. Axioms. 2024; 13(9):590. https://doi.org/10.3390/axioms13090590
Chicago/Turabian StyleRachidi, Mustapha, Elen V. P. Spreafico, and Paula Catarino. 2024. "On a Matrix Formulation of the Sequence of Bi-Periodic Fibonacci Numbers" Axioms 13, no. 9: 590. https://doi.org/10.3390/axioms13090590
APA StyleRachidi, M., Spreafico, E. V. P., & Catarino, P. (2024). On a Matrix Formulation of the Sequence of Bi-Periodic Fibonacci Numbers. Axioms, 13(9), 590. https://doi.org/10.3390/axioms13090590