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Abstract: In this paper, we present a novel explicit structure-preserving numerical method for solving
nonlinear space-fractional Schrödinger equations based on the concept of the scalar auxiliary variable
approach. Firstly, we convert the equations into an equivalent system through the introduction of a
scalar variable. Subsequently, a semi-discrete energy-preserving scheme is developed by employing
a fourth-order fractional difference operator to discretize the equivalent system in spatial direction,
and obtain the fully discrete version by using an explicit relaxed Runge–Kutta method for temporal
integration. The proposed method preserves the energy conservation property of the space-fractional
nonlinear Schrödinger equation and achieves high accuracy. Numerical experiments are carried out
to verify the structure-preserving qualities of the proposed method.

Keywords: fractional nonlinear Schrödinger equation; scalar auxiliary variable approach; relaxed
Runge–Kutta method; energy-preserving scheme
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1. Introduction

Fractional differential equations have been effectively utilized in many fields, including
chemistry, physics, biology, and hydrology [1]. The classical Schrödinger equation stands as
a foundation of quantum mechanics. By extending quantum mechanics based on the path
integral over Lévy-like quantum-mechanical paths, the fractional Schrödinger equations
can be obtained. During the past decades, the space-fractional nonlinear Schrödinger
(F-NLS) equation has attracted more and more scholars’ interest. Some mathematical
properties of F-NLS equations, such as the well-posedness and energy preservation, as well
as many physical properties and applications, have been given in the literature, see [2–4]
for example.

However, due to the intricacy of nonlinear terms and the intangible functions included
in analytical solutions, finding an exact solution is difficult. Thus, efficiently developing
accurate, reliable, and easy-to-implement numerical methods for the F-NLS equation
naturally becomes an urgent topic.

In this context, we consider the F-NLS equation as follows

i
∂u(x, t)

∂t
+

1
2
(−△)

α
2 u(x, t) + ρ|u(x, t)|2u(x, t) = 0, (x, t) ∈ Rd × (0, T],

subject to the initial conditions

u(x, 0) = ψ(x), x ∈ Rd, (1)
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and the periodic boundary condition

u
(
x + δej, t

)
= u(x, t), (x, t) ∈ Rd × (0, T],

where i =
√
−1 is the imaginary unit, u(x, t) is a complex-valued wave function on

t ∈ (0, T], and x ∈ Rd for d = {1, 2, 3}. Equation (1) is written in multi-dimensions. The
parameter ρ describes the strength of short-range (or local) nonlinear interactions: when
ρ is positive, the interactions are repulsive or defocusing, whereas, if ρ is negative, the
interactions are attractive or focusing [5]. ej = (0, · · · , 0, 1, 0, · · · , 0), j = 1, 2, · · · , n denotes
an orthonormal basis of Rd, where δ > 0 signifies a periodic cycle. Generally, we can select
a sufficiently large domain, D, so that the solution outside D becomes negligible because of
the algebraic decay of u(x, t) in space. This domain, D, can be modeled as a periodic region
with Dirichlet boundary conditions. Therefore, we can consider an approximation to the
original problem’s solution as the solution of the F-NLS equation with periodic boundaries
when T is fixed [6]. In this sense, we will, without loss of generality, focus solely on the
problem within the periodic region D = (a, b)× · · · × (a, b) ⊂ Rd. The fractional Laplacian
(−∆)α/2 with 1 < α ≤ 2 represents a pseudo-differential operator, |ξ|α, in the Fourier space,
which is commonly used in the context of fractional calculus to generalize the concept of
the Laplace operator to non-integer orders

(−∆)
α
2 u(x) = −F−1[−|ξ|αF [u]

]
,

where F denotes the Fourier transform and F−1 is its inverse. It is well known that the
F-NLS (1) satisfies the specific conserved physical quantities such as mass and energy
conservation [7]

M(t) =
∫

Rd

|u(x, t)|2dx = M(0).

E(t) =
1
4

∫
Rd

[∣∣∣(−∆)
α
4 u(x, t)

∣∣∣2 + ρ|u(x, t)|4
]

dx = E(0).

In recent years, there has been an increasing focus among authors on developing effi-
cient numerical schemes for the F-NLS equation. From a numerical standpoint, conservative
algorithms exhibit superior performance compared with non-conservative algorithms be-
cause the latter are prone to nonlinear blow-up phenomena. Therefore, maintaining the
properties of the original differential equations (ODEs) invariant is essential for the accuracy
and reliability of numerical simulations. For the case of α = 1, Equation (1) simplifies to the
classical nonlinear Schrödinger equation. Various methods have been proposed to solve the
classical NLS, such as finite difference methods [8,9], finite element methods [10,11], and
time-splitting spectral methods [12]. It is widely recognized that structure-preserving algo-
rithms offer substantial advantages for long-term integrations. These algorithms typically
produce higher-quality numerical solutions with larger time steps [13–16].

For the space-fractional NLS equation, several structure-preserving algorithms have
been developed in the literature. For example, Fourier pseudo-spectral methods [14],
compact difference methods [17], local discontinuous Galerkin methods [18] and collocation
methods [19]. However, most of the resulting schemes are costly because they are fully
implicit for all nonlinearities, i.e., they require a nonlinear system that is quite complex
in practical computations. To effectively address the nonlinear functions of the problem
efficiently, several techniques have been derived, such as the split-step method and the
linearized method [20,21]. Recently, Liu et al. proposed in [22] a class of methods combining
the invariant energy quadratization (IEQ) approach with the scalar auxiliary variable (SAV),
which can effectively preserve similar energy–mass laws. In [23], a new relaxation-type
method for the classical nonlinear Schrödinger equation was introduced. This scheme
not only preserves both the discrete mass and energy but also can efficiently avoid costly
numerical treatment of the nonlinearity. Here, energy conservation refers to a discrete
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analogue of continuous energy, called discrete energy. These numerical methods ensure
the conservation of this discrete energy, which approximates the original energy of the
continuous conservative system.

Using the relaxation-type method, the nonlinear parts can be substituted by a new
variable, which can linearize the nonlinearities and save computing time. Very recently,
in [4], two conservative relaxation schemes were proposed for the F-NLS equation, which
adopt the exponential time difference scheme and the integral factor scheme in time,
respectively. In [6], an energy-preserving relaxation method developed for a class of spatial
F-NLS equations with periodic boundary conditions is introduced and thoroughly analyzed.
This method effectively conserves both the discrete mass and energy of the F-NLS equation
and attains second-order convergence in the temporal direction. Duo and Zhang in [5]
introduced a relaxation Fourier spectral method for solving the F-NLS Equation (1) and
proved that the scheme demonstrates conservation in both mass and energy. However,
they did not consider the unconditional stability of the relaxation scheme. Motivated by
these developments, based on the SAV approach and the explicit relaxed Runge–Kutta
(RRK) method, an explicit conservative scheme for the F-NLS equation is obtained, which
inherits the advantages and avoids their limitations.

The remainder of this article is structured as follows. In Section 2, we transform the
F-NLS equation into an equivalent system by introducing a scalar auxiliary variable. A
semi-discrete conservative system is given with the weighted and shifted Lubich difference
(WSLD) method employed on the reconstructed system in Section 3. In Section 4, we
introduce a time discretization of the equivalent system using the invariant conservative
explicit RRK method. The numerical properties of the methods are demonstrated in
Section 5.

2. SAV Approach for F-NLS Equation

Compared with various typical energy-preserving schemes, the Hamiltonian system
exhibits properties that ensure energy conservation and system stability [24], which are
crucial for the theoretical analysis and numerical computations of the preserving relaxation-
type scheme [25]. To utilize these properties, we develop the SAV approach [26] to rewrite
function (1). Similarly, we can extend such an equivalent system and method to the 2D case.

Firstly, we analyze the one-dimensional fractional F-NLS Equation (1) for x ∈ D =
(a, b) ⊂ R and t ∈ (0, T]. In this case, the fractional Laplacian on the bounded interval, D,
with periodic boundary conditions can be given by the Fourier series as follows

(−∆)
α
2 u(x, t) = ∑

k∈Z
|vk|αûkeivk(x−a),

where vk =
2kπ
b−a , and the Fourier coefficient, ûk, is given by

ûk =
1

b − a

∫
D

u(x, t)e−ivk(x−a)dx.

We introduce two useful lemmas provided in [27] for the subsequent theoretical analysis.

Lemma 1 ([27]). For two real periodic functions, φ and ψ, we have∫
D

φ(−∆)
α
2 ψdx =

∫
D

ψ(−∆)
α
2 φdx =

∫
D
(−∆)

α
4 ψ(−∆)

α
4 φdx. (2)

Lemma 2 ([27]). Assuming the function G[ϕ] is defined as

G[ϕ] =
∫

D
g
(

θ, ϕ(θ), (−∆)
α
4 ϕ(θ)

)
dθ,

where g is a smooth function on D, then the variational derivative of G[ϕ] is expressed as follows
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δG
δϕ(θ)

=
∂g
∂ϕ

+ (−∆)
α
4

∂g

∂(−∆)
α
4 ϕ

. (3)

2.1. Hamiltonian System

By setting u = p + iq, we can transform the one-dimensional system (1) into the
following real-valued equations

pt = −1
2
(−∆)

α
2 q − ρ

(
p2 + q2

)
q,

qt =
1
2
(−∆)

α
2 p + ρ

(
p2 + q2

)
p,

(4)

with the periodic boundary conditions

p(x, t) = p(x + (b − a), t), q(x, t) = q(x + (b − a), t).

Then, from Theorem 2.1 in [27], by defining the fractional Hamiltonian mass and
energy equations as

M =
∫

D
(p2 + q2)dx,

E =
1
4

∫
D

[(
(−∆)

α
4 p
)2

+
(
(−∆)

α
4 q
)2

+ ρ(p2 + q2)2
]

dx,
(5)

where D = [a, b] is the one-dimensional interval, the system (4) with the periodic boundary
conditions obeys the fractional Hamiltonian energy and mass conservation laws, i.e.,

d
dt
M = 0,

d
dt
E = 0.

Lemma 3 ([27]). The system (4) is an infinite-dimensional canonical Hamiltonian system(
pt
qt

)
=

(
0 −1
1 0

)(
δE/δp
δE/δq

)
,

where the energy functional, E , is given in (5).

2.2. Reformulation of the F-NLS Equation

Now, we consider a scalar variable as follows, with the idea of the SAV approach

r = r(p, q, t)
△
=
√
⟨ f (p, q), 1⟩+ C0, ∀t ∈ [0, T], (6)

where f (p, q) = ρ
4
(

p2 + q2)2, ⟨·, ·⟩ denotes the inner product, and C0 is a sufficiently large
constant that ensures r is well-posed. Hence, we obtain the equivalent system

pt = −1
2
(−∆)

α
2 q − B1(p, q)r,

qt =
1
2
(−∆)

α
2 p + B2(p, q)r,

rt =
⟨ f1(p, q), pt⟩+ ⟨ f2(p, q), qt⟩

2
√
⟨ f (p, q), 1⟩+ C0

,

(7)

where
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f1 = ρ
(

p2 + q2
)

p, f2 = ρ
(

p2 + q2
)

q,

B1(p, q) =
f1(p, q)√

⟨ f (p, q), 1⟩+ C0
, B2(p, q) =

f2(p, q)√
⟨ f (p, q), 1⟩+ C0

,

and with the initial condition

p0 = p0(x, 0) = Re(u0(x)),

q0 = q0(x, 0) = Im(u0(x)),

r0 =
√
⟨ f (p0, q0), 1⟩+ C0.

Particularly, the SAV method ensures the unconditional stability of energy and high
efficiency in numerical schemes, requiring solving only decoupled equations with constant
coefficients at each time step [25]. For the equivalent system (7), it exhibits both energy and
mass conservation properties by defining the modified energy and mass as

E =
1
4

∫
D

[(
(−∆)

α
4 p
)2

+
(
(−∆)

α
4 q
)2
]

dx + r2,

M =
∫

D

(
p2 + q2

)
dx.

(8)

Theorem 1. The equivalent system (7) satisfies the modified conservation law.

Proof. By taking the inner products of the first two equations in (7) with qt, pt, respectively,
and adding them together, we can deduce

E =
1
4

d
dt

∫
D

[(
(−∆)

α
4 p
)2

+
(
(−∆)

α
4 q
)2
]

dx +
⟨ f1(p, q)r, qt⟩+ ⟨ f2(p, q)r, pt⟩√

⟨ f (p, q), 1⟩+ C0
= 0. (9)

then multiplying the third equation of (7) by 2r, we obtain

d
dt

r2 =
⟨ f1(p, q)r, qt⟩+ ⟨ f2(p, q)r, pt⟩√

⟨ f (p, q), 1⟩+ C0
, (10)

by computing with (9) and (10), the modified energy conservation law can be deduced as

d
dt

[
1
4

∫
D

((
(−∆)

α
4 p
)2

+
(
(−∆)

α
4 q
)2
)

dx + r2
]
= 0.

Similarly, by computing the inner product of the first two equations in (7) with p and q, the
conservation of mass

d
dt

∫
D

(
p2 + q2

)
dx = 0,

can be proofed.

3. Spatial Discretization Scheme

In this section, we construct a high-order energy-preserving discrete scheme in space
for solving the equivalent system (7). The fractional Laplacian (−△)α/2 has become one
of the most extensively investigated nonlocal operators in recent research [7]. For a finite
interval in the 1D problem, the fraction Laplacian (−△)α is equivalent to the following
Riesz fractional derivative

(−△)αu(x) =
∂2αu(x)
∂|x|2α

, (11)
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where the Riesz fractional derivative in terms of order β is defined as

∂βu(x)

∂|x|β
= −kβ

(
LDβ

x + xDβ
R

)
u(x),

and kβ = −1/2 cos(βπ/2). Furthermore, the left and right Riemann–Liouville fractional

derivatives of order β, denoted as LDβ
x and xDβ

R, respectively, are defined as follows

LDβ
x u(x) =

1
Γ(2 − β)

d2

dx2

∫ x

L
(x − ξ)1−βu(ξ)dξ,

xDβ
Ru(x) =

1
Γ(2 − β)

d2

dx2

∫ R

x
(ξ − x)1−βu(ξ)dξ.

Here, u(x) defined on the interval [L, R] and Γ(·) denotes the fractional Gamma function.
Nowadays, discrete formats for second-order spatial fractional derivatives can be

divided into two main types: one approach combines the central difference scheme with
piecewise linear polynomial approximation, while the other involves assembling Grünwald
difference operators with different weights and displacements [28]. Additionally, ref. [29]
introduces the WSLD operator and its specific explanation is as follows.

According to the Lubich operator [30], we obtain L-order approximations for the
α derivative (α ≥ 0) or integral (α < 0) with the relevant coefficients of the generating
function δα(ξ), defined in [30],

δα(ξ) =

(
L

∑
i=1

1
i
(1 − ξ)i

)α

. (12)

However, this scheme is unstable in the temporal direction. In order to address this
issue, taking L = 2 in (12), for all |ξ| ≤ 1, we have(

3
2
− 2ξ +

1
2

ξ2
)α

=

(
2
3

)α ∞

∑
n=0

[
∞

∑
m=0

(−1)n
(

α

n

)(
−1

3

)m(α

m

)]
ξn+m =

∞

∑
k=0

qα
k ξk.

Letting k = n + m, then

qα
k =

(
3
2

)α k

∑
m=0

3−mgα
mgα

k−m.

According to the following recurrence formula, defined in [31]

gk
0 = 1, gα

k =

(
1 − α + 1

k

)
gα

k−1, k ≥ 1,

the approximate solution δα(ξ) can be obtained, which is evidently effective in solving
fractional partial differential equations [29].

Remark 1. The coefficient gα
k = (−1)k(α

k) is for the power series expansion of the generating
function (1 − ξ)α.

Now, let us set xi = a + ih, −m ≤ i ≤ m + Nx, where Nx > 0 is an integer, and
h = (b − a)/Nx is the spatial step size. Here, we introduce the following parameters
d, d̄, e, ē, r, r̄, s, s̄, which will be described below, then the parameter m is defined as

m = max
{
|d|,
∣∣d̄∣∣, |e|, |ē|, |r|, |r̄|, |s|, |s̄|}.

Assuming that µ(xi, t) = 0 if i = −m,−m + 1, . . . 0 and i = Nx, Nx + 1, . . . , Nx + m, then
the fourth-order WSLD approximation of the Riesz fractional derivative can be given by
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δ
(α)
x µ(xi, t) = − 1

hα

x−1

∑
k=1

wα
i−kµ(xi, t), i = 1, 2, · · · , Nx − 1. (13)

Here, we introduce the coefficient

φθ
k = wderswdewdlθ

k+d−m + wderswdewelθ
k+e−m + wderswrswrlθ

k+r−m

+ wderswrswslθ
k+s−m + wd̄ēr̄s̄wd̄ēwd̄lθ

k+d̄−m + wd̄ēr̄s̄wd̄ēwēlθ
k+ē−m

+ wd̄ēr̄s̄wr̄s̄wr̄lθ
k+r̄−m + wd̄ēr̄s̄wr̄s̄ws̄lθ

k+s̄−m,

(14)

where
wd =

e
e − d

, we =
d

d − e
, d ̸= e,

wr =
s

s − r
, ws =

s
s − r

, r ̸= s,

wde =
3rs + 2α

3(rs − de)
, wrs =

3de + 2α

3(de − rs)
, de ̸= rs,

wders =
ιz̄

ιz̄ − ῑz
, wῑēr̄s̄ =

ῑz
ῑz − ιz̄

, ῑz ̸= ιz̄,

where ι = rs − pq, ῑ = r̄s̄ − d̄ē, and d, e, r, s, d̄, ē, s̄, r̄ are integers, and

z = 6ders(r + s − d − e) + 4α[rs(r + s)− de(d + e)] + 9α(rs − de),

z̄ = 6d̄ēr̄s̄
(
r̄ + s̄ − d̄ − e

)
+ 4α

[
r̄s̄(r̄ + s̄)− d̄ē

(
d̄ + ē

)]
+ 9α

(
r̄s̄ − d̄ē

)
.

Then, the coefficient ϖα
l = (φα

m+l + φα
m−l)/2 cos(απ/2).

Theorem 2 (Fourth order approximations [32]). Let 1 < α < 2, if the fractional derivatives
aDα

xµ(xi, t) and xDα
b µ(xi, t) of µ(xi, t) together with their Fourier transform belong to L([a, b]),

then it holds that
∂αu(xi, t)

∂|xi|α
= δ

(α)
x µ(xi, t) + o

(
h4
)

, (15)

for any xi, 1 ≤ i ≤ Nx − 1.

Let Ui(t) = u(xi, t) and U(t) = (U1(t), U2(t), · · · , UNx−1(t))
⊤, the approximation (15)

can be reformulated as
δ
(α)
x U(t) = −DαU(t), (16)

where Dα = D̃/hα, where matrix D̃ is a Toeplitz matrix of order Nx − 1, defined as

D̃ =



ωα
0 ωα

−1 · · · ωα
1−Nx

ωα
2−Nx

ωα
1 ωα

0 ωα
−1 · · · ωα

1−Nx
... ωα

1 ωα
0

. . .
...

ωα
Nx−1 · · · . . . . . . ωα

−1
ωα

Nx−2 ωα
Nx−1 · · · ωα

1 ωα
0


. (17)

Remark 2. To ensure the effectiveness of the approximation (15) for space-fractional derivatives, we
select the parameters p, p̄, q, q̄, r, r̄, s, s̄, and m, as specified in Lemma 2.2 in [31] or Theorem 1.12
in [29,32] so that all eigenvalues of matrix D̃ possess positive real parts.

Now, by denoting P(t) = (p1(t), p2(t), · · · , pNx−1(t))
T, where pi(t) = p(xi, t),

qi(t) = q(xi, t), and defining Q, R as the same, the spatial semi-discrete form of the F-
NLS Equation (7) can be formulated as follows
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Pt =
1
2

DαQ − B1(P, Q)R,

Vt = −1
2

DαQ + B2(P, Q)R,

Rt =
1
2
(⟨B1(P, Q), Pt⟩+ ⟨B2(P, Q), Qt⟩).

(18)

4. Conservative Explicit SAV-RRK Method

Since we have rewritten the high-order energy function as a quadratic function by
using the newly developed SAV approach, and expressed the F-NLS equation as an equiv-
alent form of energy as a quadratic function [22], we will employ the RRK methods for
time integration while using the quadratic invariance of the RRK methods to maintain the
energy and mass conservation laws.

Firstly, we review the RRK methods [31,33,34] and discuss their structure-preserving
characteristics. We introduce that y = (P, Q, R)T, y0 = (P0, Q0, R0)T, and then the system
described by (18) can be transformed as

yt = f (y), t ∈ (0, T], (19)

y(0) = y0,

where, for convenience, we introduce the symbols

f = ( f 1, f 2, f 3)

△
=

(
1
2

DαQ − B1(P, Q)R,−1
2

DαQ + B2(P, Q)R,
1
2
(⟨B1(P, Q), Pt⟩+ ⟨B2(P, Q), Qt⟩)

)
.

Let M be a positive integer and 0 = t0 < t1 < t2 < · · · < tM = T with the step
size τ = T/M, and let ym be the approximate value of y(tm), then the s-stage explicit RK
methods adopt the following form

Ymi = ym + τ
i−1
∑

j=1
aij fmj, i = 1, · · · , s,

ym+1 = ym + τ
s
∑

i=1
bi fmi,

where fmj = f (Ymj), j = 1, · · · , s.
Unfortunately, it is a well-established fact that only specific implicit Runge–Kutta

methods can exhibit symplectic or algebraically stable properties, while no explicit Runge–
Kutta methods possess these attributes. Thus, we consider the explicit RRK methods. For
the one-step method in the interval [t̂m, t̂m+1], m ≥ 0, the s-stage RRK methods for (4),
defined as 

Ymi = ym
γ + τ

i−1
∑

j=1
aij fmj, i = 1, · · · , s,

ym+1
γ = ym

γ + γmτ
s
∑

i=1
bi fmi,

(20)

where ym
γ = (Pm

γ , Qm
γ , Rm

γ )
T ≈ y(t̂m) and γm ̸= 0, satisfy

Em+1
γ = Em

γ , i f
s
∑

i=1
bi fmi ̸= 0,

γm = 1, i f
s
∑

i=1
bi fmi = 0,

(21)

with Em
γ defined as
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Em
γ =

1
4

∥∥∥D
α
2 Pm

γ

∥∥∥2
+

1
4

∥∥∥D
α
2 Qm

γ

∥∥∥2
+
(

Rm
γ

)2
. (22)

Like the RK methods, the RRK methods can also be expressed by using the Butcher
tableau as follows

c1
c2
...

cs

0 0 · · · 0
a21 0 · · · 0
...

...
. . .

...
as1 as2 · · · 0

γmb1 γmb2 · · · γmbs

The RRK methods are explicit, from which we can compute the relaxation parameter
γm explicitly, and this is the advantage of using explicit methods.

Then, from the definition in (22) and scheme in (20), we can obtain that the discrete
energy satisfies

Em+1
γ =

1
4

∥∥∥D
α
2 Pm+1

γ

∥∥∥2
+

1
4

∥∥∥D
α
2 Qm+1

γ

∥∥∥2
+
(

Rm+1
γ

)2

= −1
4

(
Pm

γ + γmτ
s

∑
i=1

bi f 1
mi, Dα

(
Pm

γ + γmτ
s

∑
i=1

bi f 1
mi

))

− 1
4

(
Qm

γ + γmτ
s

∑
i=1

bi f 2
mi, Dα

(
Qm

γ + γmτ
s

∑
i=1

bi f 2
mi

))
+

(
Rm

γ + γmτ
s

∑
i=1

bi f 3
mi

)2

with continuous calculation, we obtain

Em+1
γ =

1
4

∥∥∥D
α
2 Pm

γ

∥∥∥2
+

1
4

∥∥∥D
α
2 Qm

γ

∥∥∥2
+
(

Rm
γ

)2

− 1
4

[(
Pm

γ , Dαγmτ
s

∑
i=1

bi f 1
mi

)
+

(
Qm

γ , Dαγmτ
s

∑
i=1

bi f 2
mi

)
+

(
γmτ

s

∑
i=1

bi f 1
mi, DαPm

γ

)

+

(
γmτ

s

∑
i=1

bi f 2
mi, DαQm

γ

)
+

(
Dα

(
s

∑
i=1

bi f 1
mi

)
, Pm

γ

)
+

(
Dα

(
s

∑
i=1

bi f 2
mi

)
, Qm

γ

)

− 8Rm
γ γmτ

s

∑
i=1

bi f 3
mi

]
+

(
γmτ

s

∑
i=1

bi f 3
mi

)2

+
1
4

∥∥∥∥∥D
α
2

(
γmτ

s

∑
i=1

bi f 1
mi

)∥∥∥∥∥
2

+
1
4

∥∥∥∥∥D
α
2

(
γmτ

s

∑
i=1

bi f 2
mi

)∥∥∥∥∥
2

= Em
γ − 1

4
γmτ

[(
Pm

γ , Dα
s

∑
i=1

bi f 1
mi

)
+

(
Qm

γ , Dα
s

∑
i=1

bi f 2
mi

)
+

(
s

∑
i=1

bi f 1
mi, DαPm

γ

)

+

(
s

∑
i=1

bi f 2
mi, DαQm

γ

)
− 8Rm

γ

s

∑
i=1

bi f 3
mi

]

+
1
4

γ2
mτ2

[
4

∥∥∥∥∥ s

∑
i=1

bi f 3
mi

∥∥∥∥∥
2

+

∥∥∥∥∥D
α
2

(
s

∑
i=1

bi f 1
mi

)∥∥∥∥∥
2

+

∥∥∥∥∥D
α
2

(
s

∑
i=1

bi f 2
mi

)∥∥∥∥∥
2]

.

Then, in order to ensure Em
γ = Em+1

γ , we have that γm satisfies

γm =

[(
Pm

γ , Dα
s
∑

i=1
bi f 1

mi

)
+

(
Qm

γ , Dα
s
∑

i=1
bi f 2

mi

)
+

(
Dα

s
∑

i=1
bi f 1

mi, Pm
γ

)
+

(
Dα

s
∑

i=1
bi f 2

mi, Qm
γ

)
−8Rm

γ

(
s
∑

i=1
bi fmi

)]
τ

[
4
∥∥∥∥ s

∑
i=1

bi f 3
mi

∥∥∥∥2
+

∥∥∥∥D
α
2

s
∑

i=1
bi f 1

mi

∥∥∥∥2
+

∥∥∥∥D
α
2

s
∑

i=1
bi f 2

mi)

∥∥∥∥2
] (23)
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This implies that the value of γm can be explicitly calculated by the above formula.
Since lim

τ→0
γm = 1, the explicit SAV-RRK methods (20) are valid. Since the relaxation

coefficient, γm, varies with each step, it can be estimated similarly at different steps. As
τ → 0, the relaxation coefficient approaches 1, indicating that the relaxation methods can
be viewed as a small perturbation of the standard methods. For simplicity, we assume that
the relaxation coefficient, γm, is computed exactly below. In [22], the implications of the
estimates of the relaxation coefficient for the accuracy of the explicit RRK methods were
investigated, and similar conclusions can be drawn for the present method.

What is more, it can be demonstrated that the explicit SAV-RRK methods have relative
energy-conservation properties.

Theorem 3 (Energy conservation). The fully discrete scheme obtained by using fourth-order
WSLD approximation and SAV-RRK methods whose order is at least two satisfies the relative energy
conservation, i.e., E0

γ = Em
γ for m = 0, 1, · · · , M, where Em

γ is defined in (22).

Proof. When
s
∑

i=1
bi fmi =0 , the second equation in (20) implies ym+1

γ = ym
γ , satisfying this

theorem naturally. In the case where
s
∑

i=1
bi fmi ̸= 0, we also deduce it from the corresponding

condition (21).

Remark 3. Actually, the energy conservation property of the WSLD-SAV-RRK method described
in Theorem 3 should be relatively energy conservative, which indicates that the proposed schemes
can preserve the original energy with high precision at the discrete level. The precision of energy
conservation is correlated with the convergence order of the RRK method chosen in the present
method and the round-off error generated by computing the relaxation coefficient, γm.

For the convergence of the WSLD-SAV-RRK methods, due to the properties of the
WSLD difference operator, it can be inferred that the WSLD-SAV-RRK methods can reach
the fourth-order accuracy in the spatial direction, and the convergence order in the temporal
direction is the same as that of RRK methods applied to ordinary differential equations. For
the stability of the SAV-RRK method, we give the following theorem, which can be simply
obtained by the properties of the RRK method without proof.

Theorem 4. (Stability) For any SAV-WSLD-RRK methods, it is satisfies that ∥pm∥ ≤ C, ∥qm∥ ≤
C for any m = 0, 1, · · · , M, where C is a positive constant independent of τ and h.

5. Numerical Experiments and Discussions

In this context, we will primarily demonstrate the algorithmic process, convergence,
and energy conservation. We utilize the WSLD method for spatial discretization and
combine it with the high-order approximation scheme of SAV-RRK. This approach is used
to solve a certain class of one-dimensional and two-dimensional F-NLS equations through
the following numerical examples.

5.1. One-Dimensional F-NLS Equation Problem

Firstly, we consider the 1D fractional problem

i
∂u(x, t)

∂t
+

1
2
(−△)

α
2 u(x, t) + ρ|u(x, t)|2u(x, t) = 0, x ∈ D, (24)

with the initial value
u(x, 0) = sech(x) · exp(2ix), (25)

with the parameters ρ = 2. If we take α = 2 and set the space interval D = (−∞, ∞), the
exact solution of Equation (24) is
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u(x, t) = sech(x − 4t) · exp(i(2x − 3t)).

Because the initial value given in the scheme in (25) tends to decay to zero exponen-
tially as x moves away from the origin, the wave function can be identified as negligible
when x outside [−8π, 8π]. Consequently, let u(a, t) = u(b, t) = 0 for a ≪ 0 and b ≫ 0.

In Figure 1, the surfaces of the numerical solution |u(x, t)| computed by SAV-WSLD-
RRK methods with τ = 1/29 and h = π/210 are depicted for different values of order α.
We observe from Figure 1 that the values of order α affect the shape of the soliton. What
is more, in Figure 2, we plot the numerical solutions |u(x, t)| for Equation (24) for time
t = 1, 3, 5 for α = 1.5, 1.8 with τ = 1/29 and h = π/210.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Surfaces of the numerical solutions |u| of Equation (24) for different α with τ = 1/29 and
h = π/210. (a) Numerical solution for α = 1.1; (b) numerical solution for α = 1.2; (c) numerical
solution for α = 1.3; (d) numerical solution for α = 1.5; (e) numerical solution for α = 1.7;
(f) numerical solution for α = 2.

(a) (b)

Figure 2. Numerical solutions for Equation (24) for time t = 1, 3, 5 for different α with τ = 1/29 and
h = π/210. (a) Numerical solution for time t = 1, 3, 5 for α = 1.5; (b) numerical solution for time
t = 1, 3, 5 for α = 1.8.



Axioms 2024, 13, 591 12 of 16

It can be seen that there are two turning points. From Figures 1 and 2, it can be observed
that the shape of the soliton changes more rapidly as α decreases. As α approaches 2, the
numerical solutions of the F-NLS Equation (24) converge to the exact solutions of the
Integer-order Schrödinger equation.

To estimate the error and verify the convergence of the new methods, we define the
discrete L2-norm error of the numerical solution for the 1D problem as follows

Errorτ
h =

√√√√Nx−1

∑
j=0

h
∣∣∣UM

j − u(xj, T)
∣∣∣2,

where
{

UM
j

∣∣∣0 ≤ j ≤ Nx − 1
}

is the numerical solution with time grid τ = T/M and

space grid h = (b − a)/Nx at time T, and u(xj, T) is the analytical solution for the F-NLS
equations. However, most of the exact solutions of fractional differential equations are hard
to obtain. For this reason, as in [35–37], the errors in the temporal and spatial directions
can be computed by

Errorτ =

√√√√Nx−1

∑
j=0

h
∣∣∣UM

j − U2M
j

∣∣∣2, Errorh =

√√√√Nx−1

∑
j=0

h
∣∣∣UM

j − UM
2j

∣∣∣2,

with sufficiently small h and τ, respectively.
Then, the experimental order of convergence (EOC) can be calculated by

EOCτ =
log2(Errorτ1 /Errorτ2)

log2(τ1/τ2)
, EOCh =

log2(Errorh1 /Errorh2)

log2(h1/h2)
,

if h and τ are sufficiently small, respectively.
In Table 1, we verify the convergence orders in the temporal and spatial directions

for the present method. Table 1 shows the errors at T = 1 and the EOCs in temporal and
spatial directions of Equation (24) with α = 1.5 and 2. We find that the present method,
when using the second-order RRK method, exhibits an approximate second-order EOC in
the temporal direction and is close to fourth-order in the spatial direction.

Table 1. The errors in the temporal and spatial directions and convergence orders of Equation (24)
using the proposed method.

α τ h Errorh EOCh h τ Errorτ EOCτ

1.5 1/210

π/26 1.1991× 10−1 –

π/29

1/25 5.2266× 10−2 –
π/27 7.9256× 10−3 3.9192 1/26 1.2603× 10−2 2.0521
π/28 8.5764× 10−4 3.2081 1/27 5.8514× 10−3 1.1069
π/29 5.3900× 10−5 3.9920 1/28 1.8240× 10−3 1.6817

2 1/103

π/26 4.0759× 10−2 –

π/210

1/25 2.2878× 10−2 –
π/27 3.2603× 10−3 3.6440 1/26 7.3454× 10−3 1.6390
π/28 1.6732× 10−4 4.2843 1/27 2.9819× 10−3 1.3006
π/29 1.0642× 10−5 3.9748 1/28 1.0803× 10−3 1.4648

Next, we verify the energy conservation property. To this end, we define the discrete
energy error, ErrorE(tj)

=
∣∣∣Ej

γ − E0
γ

∣∣∣/∣∣∣E0
γ

∣∣∣, where Ej
γ is defined in (22).

Figure 3 displays the discrete energy errors for Equation (24) with different fractional
orders, α, for time t ∈ [0, 6]. It can be seen from Figure 3 that the proposed scheme preserves
the energy at a discrete level, which coincides with Theorem 3 and Remark 3, and the
energy error reaches the order of 10−3, which has a good conservation performance.
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(a) (b) (c)

Figure 3. Energy errors for Equation (24) for time t ∈ [0, 6] for different α with τ = 1/29 and
h = π/210. (a) Energy error for α = 1.3; (b) energy error for α = 1.5; (c) energy error for α = 2.

5.2. Two-Dimensional F-NLS Equation Problems

Firstly, we consider the following two-dimensional F-NLS equation problem [38]

iut +
1
2

[
(−△x)

α
2 u +

(
−△y

) α
2 u
]
+ ρ|u|2u = 0, (x, y) ∈ D = [−20, 20]2, t ∈ (0, T]

u(x, y, t) = 0, (x, y) ∈ ∂D, t ∈ [0, T], (26)

u(x, y, 0) =
2√
π

exp
[
−
(

x2 + y2
)]

, (x, y) ∈ D ∪ ∂D.

The numerical solutions |u| of problem (26) with α = 1.3, 1.7, 1.9 and ρ = 2 at time
t = 0.3 and t = 0.8 obtained by the present numerical method are shown in Figure 4. It
can be seen from Figure 4 that the wave peak lies at the origin of the coordinate plane, and
that the amplitude of the wave will diminish with the extension of time. Moreover, from
Figure 4, it also can be seen that the wave disperses faster for α = 1.7, 1.9, than that for
α = 1.3, i.e., the larger α is, the greater is the dispersion effect on the shape of the wave.

(a) α = 1.3, t = 0.5. (b) α = 1.7, t = 0.3. (c) α = 1.9, t = 0.3.

(d) α = 1.3, t = 0.8. (e) α = 1.7, t = 0.8. (f) α = 1.9, t = 0.8.

Figure 4. Numerical solutions |u| of Equation (26) for different α at t = 0.3 and t = 0.8 using the
present method with τ = 1/100 and h = 1/25.

Secondly, we consider the following two-dimensional problem [39]

iut +
1
2

[
(−△x)

α
2 u +

(
−△y

) α
2 u
]
+ ρ|u|2u = 0, (x, y) ∈ D = [0, 2π]2, t ∈ (0, T], (27)

u(x, y, 0) = (1 + sin x)(2 + sin y), (x, y) ∈ D ∪ ∂D,
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with periodic boundary conditions on ∂D.
The numerical solutions |u| of problem (27) with α = 1.3, 1.4, 1.5, 1.8, 1.9 and ρ = 2 at

time t = 0.108 obtained by the present numerical method are shown in Figure 5. It can
be seen from Figure 5 that there is a singularity near the boundary occurring at t = 0.108.
Moreover, from Figure 5, it also can be seen that the singularity becomes weaker as α
becomes smaller.

(a) t = 0. (b) α = 1.3.

(c) α = 1.4. (d) α = 1.5.

(e) α = 1.8. (f) α = 1.9.

Figure 5. Numerical solutions |u| of (27) for different α at t = 0.108 using the present method with
τ = 1/100 and h = 1/25.

6. Conclusions

This paper presented an energy-preserving method for space F-NLS equations based
on the SAV approach and RRK methods, in which the spatial direction is discretized by
a fourth-order approximation. The energy conservation of the novel method is proven.
Finally, the effectiveness and the conservation of the numerical method are verified by
several numerical experiments in both one- and two-dimensional cases.
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