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Abstract: This paper is devoted to the study of a multi-parameter subsequential version of the
“Wiener–Wintner” ergodic theorem for the noncommutative Dunford–Schwartz system. We establish
a structure to prove “Wiener–Wintner”-type convergence over a multi-parameter subsequence class
∆ instead of the weight class case. In our subsequence class, every term of k ∈ ∆ is one of the three
kinds of nonzero density subsequences we consider. As key ingredients, we give the maximal ergodic
inequalities of multi-parameter subsequential averages and obtain a noncommutative subsequential
analogue of the Banach principle. Then, by combining the critical result of the uniform convergence
for a dense subset of the noncommutative Lp(M) space and the noncommutative Orlicz space, we
immediately obtain the main theorem.
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1. Introduction

Analyzing the limit process of Cesàro averages along certain subsequences is a typical
way of accessing the ergodic theory. Over the decades, many relevant works have appeared
in this direction, gradually forming a fruitful branch. By a dynamical system (X,F , µ, T),
we mean that (X,F , µ) is a measured space and T is a certain linear operator acting on
Lp(µ) (1 ≤ p ≤ ∞). Let k = {ki}∞

i=1 be a strictly increasing sequence of non-negative
integers, i.e., a subsequence of {0, 1, 2, · · · }. Denote N as all positive integers; then, a series
of discussions of the (strong, weak, or almost everywhere) convergence of

An(k, T) f =
1
n

n

∑
i=1

Tki f , n ∈ N

leads to various developments, such as the early work of Blum and Hanson [1], Baxter
and Olsen [2], Bellow and Losert [3,4], Bourgain [5–8], Jones [9], Jones and Olsen [10],
Wierdl [11], as well as others.

Two factors that are often introduced at the start of the discussion are the type of
subsequence and the type of action in the dynamical system; either one can be fixed so
that an ample argument can be made out of the other. The type of subsequence is of more
interest in this paper. One way to classify the subsequences is to consider their densities.
E ⊂ N0 = N∪ {0} is said to have a higher (respectively, lower) density δ if

lim
n→∞

card({0, . . . , n} ∩ E)
n + 1

= δ (respectively, lim inf
n→∞

card({0, . . . , n} ∩ E)
n + 1

= δ).

Accordingly, the above sequence k = {ki}∞
i=1 has a higher (respectively, lower) density δ if the

set {kn : n ∈ N} has a higher (respectively, lower) density δ. We have a quick connection
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to the weighted ergodic theory if {kn : n ∈ N} has nonzero density (Proposition 1.7 [4]),
which is why weighted and subsequential ergodic theorems have sometimes been studied
together in the past. In this paper, we follow this line and restrict the system to only
consider sequences with a density of one, uniform sequences, and block sequences; we
introduce the specific descriptions later.

On the other hand, since the 1970s, noncommutative ergodic theory has been de-
veloped step-by-step based on the rapid growth of noncommutative harmonic analysis.
A constructive notion of almost-uniform convergence in noncommutative Lp space was
invented by Lance [12], who substituted exactly the classical almost-everywhere conver-
gence in individual ergodic theorems. Since our discussion concerns the multi-parameter
setting, we extend the concept accordingly. Fix d to be any positive integer and denote
n = (n1, n2, · · · , nd) ∈ Nd as the d-parameter index. Let xn, x ∈ B(M), where M is a von
Neumann algebra with a normal semifinite faithful trace τ and B(M) is any Banach space
of measurable operators associated with M (the category will be specified in Section 2).
Then by limn xn = x, we mean that, given any ε > 0, there is an N ∈ Nd such that for
all n > N (nj > Nj, j = 1, 2, · · · , d), ∥xn − x∥ < ε, and we say xn converges to x. A
multi-parameter sequence {xn} is said to converge bilaterally almost uniformly (respectively,
almost uniformly) to x if for any ε > 0, there exists e ∈ P(M) (the lattice of projections in
M) such that

τ(e⊥) ≤ ε and {e(xn − x)e} (respectively, {(xn − x)e})

converges to 0 in M. Usually, we denote it as b.a.u. (respectively, a.u.) convergence.
Since 2007, Junge and Xu’s [13] real interpolation method to obtain the strong-type non-
commutative Dunford–Schwartz maximal ergodic theorem after Yeadon’s [14] weak-type
(1, 1) inequality has been seen as a closed answer to the main problem of establishing a
noncommutative individual ergodic theorem. Based on the structure, noncommutative
ergodic theory has been going forward in some sophisticated directions. Generalizing a
dynamical system’s transformation to Lamperty operators [15] and to group actions [16]
and changing the forms of Cesàro averages to obtain the weighted (even Wiener–Wintner)
ergodic theorem [17–19] and the subsequential case [20,21] are some representative achieve-
ments. Inspired by [22], in this paper, we intend to give the structure of the multi-parameter
subsequential ergodic theorem for a noncommutative Dunford–Schwartz system.

Let T = (T1, · · · , Td) be a vector of d Dunford–Schwartz operators (defined in
Section 2.3). As L1(M) +M → L1(M) +M (the action can be uniquely extended to
any noncommutative Banach space), then T is also called a Dunford–Schwartz function,
and a noncommutative multi-parameter Dunford–Schwartz system (M, τ, T) is given.
Meanwhile, let k = (k(1), · · · , k(d)) ⊂ Nd

0 be a vector of d sequences of strictly increas-

ing non-negative integers, i.e., every k(j) = {k(j)
i }∞

i=1 is a subsequence of {0, 1, 2, · · · },
j = 1, 2, · · · , d. Naturally, we can give the density δ of k as the product of the densities
of each k(j), denoted simply as δ = δ(1)δ(2) · · · δ(d). On the other hand, we will need the
notation Mk = supn≥1

kn+1
n , which is finite for every positive lower density sequence k,

and we denote this as Mk = Mk(1) · · · Mk(d) hereafter.
Similar to the classical notion, we let

An(k(j), Tj) =
1
n

n

∑
i=1

T
k(j)

i
j , n ∈ N, j = 1, · · · , d

be the associated subsequential averaging actions and

An(k, T) = An1(k
(1), T1) · · · And(k

(d), Td), n ∈ Nd

for the multi-parameter case.
Corresponding to the classical theory, we can talk about the “goodness” of the multi-

parameter subsequence.
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Definition 1. Let B(M) be a Banach space constructed from M, and let S be a vector of d linear
actions as B(M) → B(M). We say k is a bilaterally good (respectively, good) subsequence
in B(M) for S if for every x ∈ B(M), {An(k, S)(x)}n converges b.a.u. (respectively, a.u.).
Moreover, k is a bilaterally good universal (respectively, good universal) subsequence in B(M) if it
is bilaterally good (respectively, good) for any Dunford–Schwartz operator T on B(M).

Consequently, given B(M), it is natural to ask: What kind of subsequences are
bilaterally good universal (respectively, good universal)? In this paper, we focus on a type
of subsequence that we denote as ∆. We say that k ∈ ∆ if every element k(j) (j = 1, 2, · · · , d)
of k is one of the following:

(1) A sequence with a density of one;
(2) A recurring uniform sequence;

(3) A block sequence with a positive lower density such that lim
n→∞

NI (n)
n → 0.

It will be shown as a corollary of our main result that every k ∈ ∆ is bilaterally good
universal in Lp(M) if 1 < p < ∞ and good universal in Lp(M) if 2 < p < ∞; moreover,
if (M, τ) is a noncommutative probability space, then k is bilaterally good universal in
L1 log2(d−1) L(M) and good universal in L2 log2(d−1) L(M).

The single-parameter case of the above question was firstly studied by Litvinov and
Mukhamedov in [20], and their result has been recently extended by O’Brien in [21], while
the original motive comes from commutative works by Brunel and Keane [23] and Sato
[24,25]. In Litvinov and O’Brien’s works, they mainly apply the language of “uniform and
bilaterally uniform equicontinuity in measure (in short, u.e.m. and b.u.e.m.) at zero” to treat
the a.u. and b.a.u. convergence problem in Lp(M) (p takes values in [1,+∞] accordingly).
However, in this paper, we seek a more “Littlewood–Paley” path, as in [13], and establish a
“maximal” to “individual” procedure that can be expanded in future developments.

Actually, we push the question to a relatively blank region for the subsequential
theory, and thus, the above solution can be naturally included. The idea is to consider a
“Wiener–Wintner”-type convergence for a certain set of subsequences as follows.

Definition 2. A set K of bilaterally good universal (respectively, good universal) subsequences
of B(M) is said to be of B bilaterally subsequential Wiener–Wintner-type (respectively, B sub-
sequential Wiener–Wintner-type)—in short, of B-bsWW (respectively, B-sWW) type—if for any
x ∈ B(M) and any ε > 0, there exists e ∈ P(M) such that τ(e⊥) ≤ ε and{

e
(

An(k, T)(x)
)
e
}

n ( respectively,
{(

An(k, T)(x)
)
e
}

n ) converges for all k ∈ K.

In fact, if every k ∈ K has a density δ > 0, by a characteristic function argument

1k(n) = 1
{(k(1)i1

,k(2)i2
,··· ,k(d)id

):i1,i2,...,id∈N}
(n1, n2, · · · , nd) = 1k(1)(n1)1k(2)(n2) · · · 1k(d)(nd), n ∈ Nd

0,

and we have a transfer

An(k, T)(x) =An1(k
(1), T1) · · · And(k

(d), Td)(x) =
1
n1

n1

∑
i1=1

T
k(1)i1
1

1
n2

n2

∑
i2=1

T
k(2)i2
2 · · · 1

nd

nd

∑
id=1

T
k(d)id
d (x)

=
k(1)n1 + 1

n1

1

k(1)n1 + 1

k(1)n1

∑
i1=0

1k(1)(i1)T
i1
1 · · ·

k(d)nd + 1
nd

1

k(d)nd + 1

k(d)nd

∑
id=0

1k(d)(id)T
id
d (x)

∼ 1
δ(1)

· · · 1
δ(d)

1

k(1)n1 + 1
· · · 1

k(d)nd + 1

k(1)n1

∑
i1=0

· · ·
k(d)nd

∑
id=0

1k(i1, · · · , id)T
i1
1 · · · Tid

d (x)

=
1
δ

M
(k(1)n1 ,··· ,k(d)nd

)
(x, 1k(·)).
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The last term of the above equality is a multi-parameter weighted ergodic average. It
shows that whether K is of B-bsWW type is closely relevant to the question of whether
the weight function set {1k(·) : k ∈ K} is of B-NCbWW (B-noncommutative bilateral
Wiener–Wintner) type, which concerns the topic in [17].

In addition, we give an independent construction and prove that ∆ is of Lp-bsWW
type for 1 < p < ∞ and Lp-sWW type for 2 < p < ∞. Moreover, if τ is finite, ∆ is of
L1 log2(d−1) L-bsWW type and L2 log2(d−1) L-sWW type.

Nevertheless, for the bigger sets of nonzero density subsequences or even zero density
subsequences, the question seems quite sensible and needs more investigation in the future.

2. Preliminaries
2.1. Noncommutative Vector-Valued Lp Spaces

We use standard notions from the theory of noncommutative Lp spaces. Our main
references are [26]. Let M be a von Neumann algebra equipped with a normal semifinite
faithful trace τ. Let L0(M) be the space of measurable operators associated with (M, τ).
For a measurable operator x, its generalized singular number is defined as

µt(x) = inf{λ > 0 : τ
(
1(λ,∞)(|x|)

)
≤ t}, t > 0.

The trace τ can be extended to the positive cone L+
0 (M) of L0(M), still denoted by τ,

by setting

τ(x) =
∫ ∞

0
µt(x)dt, x ∈ L+

0 (M).

Given 0 < p < ∞, let

Lp(M) = {x ∈ L0(M) : τ(|x|p) < ∞},

and for x ∈ Lp(M),

∥x∥p =
(
τ(|x|p)

) 1
p =

( ∫ ∞

0
(µt(x))pdt

) 1
p .

Then (Lp(M), ∥ · ∥p) is a Banach space (or quasi-Banach space when p < 1). This is the
noncommutative Lp space associated with (M, τ), denoted by Lp(M, τ) or simply by
Lp(M). As usual, we set L∞(M, τ) = M equipped with the operator norm.

Noncommutative Orlicz spaces are defined similarly to commutative ones. Given an
Orlicz function Φ, the Orlicz space LΦ(M) is defined as the set of all measurable operators
x such that Φ( |x|λ ) ∈ L1(M) for some λ > 0. Equipped with the norm

∥x∥Φ = inf
{

λ > 0 : τ

[
Φ
(
|x|
λ

)]
≤ 1

}
,

LΦ(M) is a Banach space. When Φ(t) = tp, with 1 ≤ p < ∞, the space LΦ(M) coincides
with Lp(M). If Φ(t) = tp(1 + log+ t)r for 1 ≤ p < ∞ and r > 0, we have the space
Lp logr L(M). From the definition, if, moreover, the trace τ is finite, i.e., (M, τ) is a
noncommutative probability space, it is easy to check that

Lq(M) ⊂ Lp logr L(M) ⊂ Ls(M)

for q > p ≥ s ≥ 1.
The spaces Lp(M; ℓ∞) and Lp(M; ℓc

∞) are important in the formulation of noncom-
mutative maximal inequalities. In the following, we give a more general description of
such spaces in the multi-parameter case. A d parameter sequence {xn}n ⊂ Lp(M) belongs
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to Lp(M; ℓ∞(Nd)) if and only if it can be factored as xn = aynb with a, b ∈ L2p(M) and
{yn}n ⊂ L∞(M) is a bounded sequence. We then define

∥{xn}n∥Lp(ℓ∞(Nd)) = inf
xn=aynb

{
∥a∥2p sup

n
∥yn∥∞ ∥b∥2p

}
.

Following [13], this norm is symbolically denoted by ∥supn
+xn∥p, and for a positive

sequence {xn}n, it is equivalent to write

∥sup
n

+xn∥p = inf
{
∥a∥p : a ∈ L+

p (M) s.t. xn ≤ a, ∀ n ∈ Nd}.

Here and in the rest of the paper, L+
p (M) denotes the positive cone of Lp(M). The space

Lp(M; ℓc
∞(Nd)) is defined as the set of sequences {xn}n for which {|xn|2}n belongs to

Lp/2(M; ℓ∞(Nd)) equipped with the (quasi) norm

∥{xn}n∥Lp(ℓc
∞(Nd)) = ∥{|xn|2}n∥

1
2
L p

2
(ℓ∞(Nd))

.

We refer to [13,27,28] for more information on these spaces and for facts related to the
one-parameter case.

Vector-valued Orlicz spaces Lp logr L(M; ℓ∞) (1 ≤ p < ∞, r > 0) were first introduced
by Bekjan et al. in [29]. It is observed that the Lp(ℓ∞)-norm has an equivalent formulation:

∥{xn}n∥Lp(ℓ∞) = inf
{1

2
(∥a∥2

2p + ∥b∥2
2p) sup

n
∥yn∥∞

}
,

where the infimum is taken over the same parameter. Given an Orlicz function Φ, let {xn}n
be a multi-parameter sequence of operators in LΦ(M). We define

τ
(
Φ(sup

n

+xn)
)
= inf

{1
2
(
τ(Φ(|a|2)) + τ(Φ(|b|2))

)
sup

n
∥yn∥∞

}
,

where the infimum is taken over all the decompositions xn = aynb for a, b ∈ L0(M) and
yn ∈ L∞(M), with |a|2, |b|2 ∈ LΦ(M) and supn ∥yn∥∞ ≤ 1. Then LΦ(M; ℓ∞(Nd)) is de-
fined to be the set of sequences {xn}n ⊂ LΦ(M) such that there exists one λ > 0 satisfying

τ
(
Φ(sup

n

+ xn

λ
)
)
< ∞

equipped with the norm

∥{xn}n∥LΦ(ℓ∞(Nd)) = inf
{

λ > 0 : τ
(
Φ(sup

n

+ xn

λ
)
)
< 1

}
.

Then (LΦ(M; ℓ∞(Nd)), ∥ · ∥LΦ(ℓ∞(Nd))) is a Banach space. A similar characterization holds
for sequences of positive operators:

τ
(
Φ(sup

n

+xn)
)
≈ inf

{
τ(Φ(a)) : a ∈ L+

Φ(M) s.t. xn ≤ a, ∀ n ∈ Nd},

which implies a similar characterization for the norm

∥{xn}n∥LΦ(ℓ∞(Nd)) ≈ inf
{
∥a∥Φ : a ∈ L+

Φ(M) s.t. xn ≤ a, ∀ n ∈ Nd}.

For the same reason, whenever (M, τ) is a probability space, we have

Lq(M; ℓ∞(Nd)) ⊂ Lp logr L(M; ℓ∞(Nd)) ⊂ Ls(M; ℓ∞(Nd))
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for q > p ≥ s ≥ 1. We refer the reader to [29] for more information on vector-valued
Orlicz spaces.

Furthermore, we denote by Lp(M; c0(Nd)) the closure of finite sequences in Lp(M; ℓ∞(Nd))

for 1 ≤ p < ∞, and we define Lp(M; cc
0(Nd)) as the closure of finite sequences in

Lp(M; ℓc
∞(Nd)). Similarly, we have denotations LΦ(M; c0(Nd)) and LΦ(M; cc

0(Nd)).
The following complex interpolation theorem of these noncommutative vector-valued

Lp spaces is useful later; it originated from Proposition 2.5 of [13].

Proposition 1. Let 1 ≤ p0 < p1 ≤ ∞ and 0 < θ < 1. Then, we have isometrically

Lp(M; ℓ∞) = (Lp0(M; ℓ∞), Lp1(M; ℓ∞))θ ,

where 1
p = 1−θ

p0
+ θ

p1
. If additionally p0 ≥ 2, then we have isometrically

Lp(M; ℓc
∞) = (Lp0(M; ℓc

∞), Lp1(M; ℓc
∞))θ ,

where 1
p = 1−θ

p0
+ θ

p1
.

2.2. Nonzero Density Subsequences

For the main result of this paper, we restrain the discussion within three kinds of
nonzero density subsequences: the first kind is simply those with a density of one, the
second and third kinds are uniform sequences and block sequences, respectively.

We give a brief review of the uniform sequences in the following; they were originally
generalized in the work of Brunel and Kean [23] and were first introduced by Sato [25].

Let Ω be a compact Hausdorff space, and let φ be a continuous map of Ω into itself
such that the family {φn}n≥0 is equicontinuous. The system (Ω, φ) is called strictly ergodic
if there exists a unique φ-invariant measure µ on (Ω,B), with supp(µ) = Ω, where B
stands for the σ algebra of all Borel subsets of Ω, such that for any ω ∈ Ω and f ∈ C(Ω),

∫
Ω

f dµ = lim
n→∞

1
n

n−1

∑
k=0

f (φkω)

with respect to the uniform norm in C(Ω).

Definition 3. A sequence k = {ki}∞
i=1 of non-negative integers is said to be uniform if there exist

(i) A strictly ergodic system (Ω,B, µ, φ);
(ii) A set Y ∈ B with µ(Y) > 0 = µ(∂Y), where ∂Y denotes the boundary of Y;
(iii) A point ω0 ∈ Ω such that

k1 = min{k ⩾ 0 : φkω0 ∈ Y};

kn = min{k > kn−1 : φkω0 ∈ Y}, n ⩾ 2

so that k is a strictly increasing sequence of non-negative integers.

The triplet (Ω,B, µ, φ), Y, and ω0 will be called the apparatus for k. The following two
lemmas can be found in [25].

Lemma 1. If k is a uniform sequence as above, then

lim
n→∞

n/kn = µ(Y),

so that k has positive density.

Lemma 2. If k is a uniform sequence as above, then for any ϵ > 0, there exist open subsets Y1, Y2
and W of Ω such that
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(i) Y1 ⊂ Y ⊂ Y2, µ(Y2 − Y1) ≤ ϵ and µ(∂Y1) = 0 = µ(∂Y2);
(ii) ω0 ∈ W, and for every ω ∈ W and all k ⩾ 0,

χY1(φkω) ≤ χY(φkω0) ≤ χY2(φkω),

where χE(ω) is the characteristic function of a set E.

Restricted by the technique and the final target we are trying to reach, it is still difficult
to handle the uniform sequence in the general case. However, we can make progress in
a special case that we call the recurring uniform sequence. It is in a way inspired by the
Poincaré recurrence theorem and is defined as follows.

Definition 4. Let k be a uniform sequence as above. If for any neighborhood W of ω0 there exists a
point ω1 ∈ W and a non-negative integer i0 ∈ N such that

φi0 ω1 ∈ W and φi0+1ω1 ∈ W,

then k is called a recurring uniform sequence.

Next, we introduce block sequences with positive lower densities.
Let I = {In = [an, bn]}∞

n = 1 be a sequence of intervals in [0, ∞) whose endpoints are
in N0 such that bn < an+1 for every n ≥ 1.

Definition 5. A sequence k = {kn}∞
n=1 is called a block sequence if it is determined by a strictly

increasing enumeration of
⋃

n In ∩N0. Denote the function NI : N0 → N0 to be such that

kn ∈ [aNI (n), bNI (n)].

It is easily seen that NI (n) stands for the number of intervals one has to skip before finding the
interval that kn belongs to.

2.3. Dunford–Schwartz Operators

The concept of absolute contraction in the noncommutative setting was first considered
in [14]. It is a positive linear map T : L1(M) → L1(M) satisfying T(I) ≤ I and τ(T(x)) ≤
τ(x) for every x ≥ 0. In general, it was pointed out in [18] that there exists a unique
extension such that for x ∈ Lp(M) (1 ≤ p ≤ ∞) and k ∈ N, we have ∥Tk(x)∥p ≤ 2∥x∥p.
Specifically, according to the well-known classical narrative, a linear map T : L1 +M →
L1 +M satisfying

∥T(x)∥1 ≤ ∥x∥1 ∀ x ∈ L1 and ∥T(x)∥∞ ≤ ∥x∥∞ ∀ x ∈ M

is called a Dunford–Schwartz operator. Moreover, if T(x) ≥ 0 whenever x ≥ 0, then T is
called a positive Dunford–Schwartz operator, and we write T ∈ DS+(M, τ) or just T ∈ DS+.
It was practically shown in Proposition 1.1 of [30] that absolute contractions can be uniquely
extended to positive Dunford–Schwartz operators. Also, it was shown in Lemma 1.1 of [13]
that any T ∈ DS+ can be extended uniquely to a positive linear contraction on Lp for each
1 < p < ∞. Thus, denoting these extensions by T, we have ∥T(x)∥p ≤ ∥x∥p for all x ∈ Lp.

Each T ∈ DS+ induces canonical splitting of Lp(M) for 1 < p < ∞:

Lp(M) = Fp(T)⊕Fp(T)⊥,

where Fp(T) = {x ∈ Lp(M) : T(x) = x} and Fp(T)⊥ is the closure of the image
(I − T)(Lp(M)). Usually, F is denoted as the projection from Lp(M) onto Fp(T).

The following result by Yeadon [14] plays a fundamental role in this paper. P(M)
denotes the lattice of projections in M. Given e ∈ P(M), we set e⊥ = 1 − e.
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Lemma 3. Let T ∈ DS+ and x ∈ L+
1 (M). Denote An(T)(x) = 1

n+1 ∑n
k=0 Tk(x). Then for any

ł > 0, there is e ∈ P(M) such that

τ(e⊥) ≤ ∥x∥1

ł
and sup

n≥0
∥e An(T)(x) e∥∞ ≤ ł.

3. Noncommutative Maximal Ergodic Inequalities

Usually when proving individual ergodic theorems, e.g., in [13,17], maximal inequali-
ties are established as a primary part. In the following, similar to several preparatory works,
we give one-parameter estimates of ergodic averages along nonzero density subsequences;
then, by a routine iteration argument, multi-parameter maximal ergodic inequalities are
obtained. In the process, we also see some close connections between our subsequential
case and the weighted case.

Proposition 2. Given 1 ≤ p ≤ ∞, let xn, yn, z ∈ L+
p (M) and suppose xn ≤ yn ≤ z for every

n ∈ N0; then ∥ sup+
n xn∥p ≤ ∥ sup+

n yn∥p.

Proof. By the given condition, we know that{
∥a∥p : a ∈ L+

p (M) s.t. yn ≤ a, ∀ n ≥ 0
}
⊂
{
∥a∥p : a ∈ L+

p (M) s.t. xn ≤ a, ∀ n ≥ 0
}

;

thus, we know

inf
{
∥a∥p : a ∈ L+

p (M) s.t. xn ≤ a, ∀ n ≥ 0
}
≤ inf

{
∥a∥p : a ∈ L+

p (M) s.t. yn ≤ a, ∀ n ≥ 0
}

,

which completes the proof.

We extract the following maximal inequality from the proof of Theorem 3.5 in [17],
and the same argument is valid when T extends to Dunford–Schwartz operators.

Lemma 4. Let T ∈ DS+ be associated with a noncommutative probability space (M, τ), and
denote An(T) = 1

n+1 ∑n
k=0 Tk; then for any s ≥ 0, there is a constant C such that

∥{An(T)(x)}n∥L1 logs L(ℓ∞) ≤ C∥x∥L1 logs+2 L

holds for any x ∈ L1 logs+2 L(M).

Lemma 5. Let T ∈ DS+ and β = {βk}∞
k=0 be a bounded sequence of complex numbers, i.e.,

β ∈ ℓ∞(N0) and |βk| ≤ ∥β∥∞ < ∞ for every k.
Denote

Aβ,n =
1

n + 1

n

∑
k=0

βkTk;

then for every 1 < p ≤ ∞, there exists a constant Cp such that∥∥sup
n

+Aβ,n(x)
∥∥

p ≤ Cp∥β∥∞∥x∥p, ∀x ∈ Lp(M);

for any x ∈ L1(M) and any λ > 0, there is a projection e ∈ P(M) such that

τ(e⊥) ≤ 32
∥x∥1

λ
and sup

n

∥∥e(Aβ,n(x))e
∥∥

∞ ≤ ∥β∥∞λ.

Proof. (i) For every x ∈ Lp(M), it has a linear decomposition x = (x1 − x2) + i(x3 − x4),
where xj ∈ L+

p (M), j = 1, 2, 3, 4. By the triangle inequality and with ∥xj∥p ≤ ∥x∥p for
each j, we know that there is no loss of generality if we add a restriction by considering
x ∈ L+

p (M). We decompose the mean Aβ,n as follows:
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Aβ,n =
1

n + 1

n

∑
k=0

βkTk

=
1

n + 1

n

∑
k=0

(Re[βk] + ∥β∥∞)Tk + i
1

n + 1

n

∑
k=0

(Im[βk] + ∥β∥∞)Tk − ∥β∥∞(1 + i)
1

n + 1

n

∑
k=0

Tk,

where 0 ≤ Re[βk] + ∥β∥∞ ≤ 2∥β∥∞ and 0 ≤ Im[βk] + ∥β∥∞ ≤ 2∥β∥∞. Hence, we have

0 ≤ 1
n + 1

n

∑
k=0

(Re[βk] + ∥β∥∞)Tk(x) ≤ 2∥β∥∞
1

n + 1

n

∑
k=0

Tk(x), for x ∈ L+
p (M).

By Proposition 2, we have∥∥∥sup
n

+ 1
n + 1

n

∑
k=0

(Re[βk] + ∥β∥∞)Tk(x)
∥∥∥

p
≤ 2∥β∥∞

∥∥∥sup
n

+ 1
n + 1

n

∑
k=0

Tk(x)
∥∥∥

p
, ∀x ∈ L+

p (M).

Similarly, we have∥∥∥sup
n

+ 1
n + 1

n

∑
k=0

(Im[βk] + ∥β∥∞)Tk(x)
∥∥∥

p
≤ 2∥β∥∞

∥∥∥sup
n

+ 1
n + 1

n

∑
k=0

Tk(x)
∥∥∥

p
, ∀x ∈ L+

p (M).

From Theorem 4.1 in [13], we know there exists a constant C′
p such that

∥∥∥sup
n

+ 1
n + 1

n

∑
k=0

Tk(x)
∥∥∥

p
≤ C′

p∥x∥p, ∀x ∈ Lp(M).

Then, by applying the triangle inequality to the norm several times, we obtain∥∥sup
n

+Aβ,n(x)
∥∥

p ≤ Cp∥β∥∞∥x∥p,

where Cp = 6C′
p.

(ii) Firstly we take the decomposition x = (x1 − x2) + i(x3 − x4), where xj ∈ L+
1 (M)

and ∥xj∥1 ≤ ∥x∥1, j = 1, 2, 3, 4. Applying Lemma 3 to each xj, we know there is ej ∈ P(M)
such that

τ(e⊥j ) ≤ 8
∥xj∥1

λ
and sup

n

∥∥ej(An(T)(xj))ej
∥∥

∞ ≤ λ

8
.

Taking e = ∧4
j=1ej, we have

τ(e⊥) ≤ 32
∥x∥1

λ

and

sup
n

∥∥e(Aβ,n(xj))e
∥∥

∞ = sup
n

∥∥∥∥∥e

(
1

n + 1

n

∑
k=0

βkTk(xj)

)
e

∥∥∥∥∥
∞

= sup
n

∥∥∥∥∥e

(
1

n + 1

n

∑
k=0

Re[βk]Tk(xj)

)
e + e

(
1

n + 1

n

∑
k=0

iIm[βk]Tk(xj)

)
e

∥∥∥∥∥
∞

≤ sup
n

{∥∥∥∥∥e

(
1

n + 1

n

∑
k=0

Re[βk]Tk(xj)

)
e

∥∥∥∥∥
∞

+

∥∥∥∥∥e

(
1

n + 1

n+1

∑
k=0

iIm[βk]Tk(xj)

)
e

∥∥∥∥∥
∞

}

≤ sup
n

sup
0≤k≤n

∣∣βk
∣∣{∥∥∥∥∥e

(
1

n + 1

n

∑
k=0

Tk(xj)

)
e

∥∥∥∥∥
∞

+

∥∥∥∥∥e

(
1

n + 1

n

∑
k=0

Tk(xj)

)
e

∥∥∥∥∥
∞

}

≤ sup
n

2∥β∥∞

∥∥∥∥∥e

(
1

n + 1

n

∑
k=0

Tk(xj)

)
e

∥∥∥∥∥
∞

≤ ∥β∥∞
λ

4
.
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Thus, by using the triangle inequality again,

sup
n

∥e(Aβ,n(x))e∥∞

= sup
n

∥e(Aβ,n(x1)− Aβ,n(x2) + iAβ,n(x3)− iAβ,n(x4)e∥∞ ≤ ∥β∥∞λ.

Theorem 1. Let T ∈ DS+, and suppose that the subsequence k = {ki}∞
i=1 has a positive lower density.

Then for any 1 < p ≤ ∞, there exists a constant Cp such that∥∥ sup
n

+An(k, T)(x)
∥∥

p ≤ Cp Mk ∥x∥p , ∀ x ∈ Lp(M).

Also, for any x ∈ L1(M) and any λ > 0, there exists a projection e ∈ P(M) such that

τ(e⊥) ≤ 32
∥x∥1

λ
and sup

n

∥∥e(An(k, T)(x))e
∥∥

∞ ≤ Mkλ.

Moreover, if the trace τ is finite, i.e., (M, τ) is a noncommutative probability space, then for any
s ≥ 0, there exists a constant C such that∥∥{An(k, T)(x)}n

∥∥
L1 logs L(ℓ∞)

≤ CMk ∥x∥L1 logs+2 L , ∀ x ∈ L1 logs+2 L(M).

Proof. (i) For every x ∈ Lp(M), it has a linear decomposition x = (x1 − x2) + i(x3 − x4),
where xi ∈ L+

p (M), i = 1, 2, 3, 4. Hence, we consider only x ∈ L+
p (M). Since

An(k, T)(x) =
1
n

n

∑
i=1

Tki (x)

=
1
n

kn

∑
i=0

1k(i)Ti(x)

=
kn + 1

n
· 1

kn + 1

kn

∑
i=0

1k(i)Ti(x);

then, we have

∥∥sup
n

+An(k, T)(x)
∥∥

p ≤ Mk

∥∥∥sup
n

+ 1
kn + 1

kn

∑
i=0

1k(i)Ti(x)
∥∥∥

p
.

By the definition of the norm of Lp(M; ℓ∞), we know

∥∥∥sup
n

+ 1
kn + 1

kn

∑
i=0

1k(i)Ti(x)
∥∥∥

p
≤
∥∥∥sup

n

+ 1
n + 1

n

∑
i=0

1k(i)Ti(x)
∥∥∥

p
.

Since 1k(i) ≤ 1 for all i, by Lemma 5, we have

∥∥∥sup
n

+ 1
n + 1

n

∑
i=0

1k(i)Ti(x)
∥∥∥

p
≤ Cp∥x∥p,

and then, ∥∥sup
n

+An(k, T)(x)
∥∥

p ≤ Cp Mk∥x∥p.
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(ii) Since we have

sup
n

∥∥e(An(k, T)(x))e
∥∥

∞ = sup
n

∥∥∥∥∥e

(
kn + 1

n
· 1

kn + 1

kn

∑
i=0

1k(i)Ti(x)

)
e

∥∥∥∥∥
∞

≤ Mk sup
n

∥∥∥∥∥e

(
1

kn + 1

kn

∑
i=0

1k(i)Ti(x)

)
e

∥∥∥∥∥
∞

,

we can apply the weak-type result in Lemma 5, and we have the weak-type inequality for
the subsequential case.

(iii) For the τ finite noncommutative Orlicz space case, a similar argument applies
(with a minor change in notation in the proof of Lemma 5 and part (i) above); then, by
Lemma 4, we finish the proof.

Theorem 2. Let T = (T1, · · · , Td) be a vector of d Dunford–Schwartz operators, and let
k = (k(1), · · · , k(d)) ⊂ Nd

0 be a vector of d sequences of strictly increasing non-negative inte-
gers, with every k(j) having a positive lower density, where j = 1, 2, · · · , d.
Then, for any 1 < p ≤ ∞, there exists a constant Cp (inherited from Theorem 1) such that∥∥ sup

n

+An(k, T)(x)
∥∥

p ≤ Cd
p Mk ∥x∥p , ∀ x ∈ Lp(M);

if 2 < p ≤ ∞, we have∥∥{An(k, T)(x)}n
∥∥

Lp(M;ℓc
∞(Nd))

≤
√

Cp/2Mk∥x∥p , ∀ x ∈ Lp(M).

Moreover, if the trace τ is finite, i.e., (M, τ) is a noncommutative probability space, given
x ∈ L1 log2(d−1) L(M), for any λ > 0, there are a positive constant C and a projection e ∈ P(M)
such that

τ(e⊥) ≤ C
∥x∥L1 log2(d−1) L

λ
and sup

n
∥e(An(k, T)(x))e∥∞ ≤ Mkλ;

for x ∈ L2 log2(d−1) L(M), we have the following estimates:

τ(e⊥) ≤
(

C
∥x∥L2 log2(d−1) L

λ

)2

and sup
n

∥(An(k, T)(x))e∥∞ ≤ Mkλ.

Proof. For the same reason, we can restrict our consideration to x ∈ L+
p (M) and apply

Theorem 1 with its equivalent formulations, e.g.,∥∥ sup
n

+An(k, T)(x)
∥∥

p ≤ Cp Mk ∥x∥p

is equivalent to saying there is a ∈ L+
p (M) satisfying

∥a∥p ≤ Cp Mk ∥x∥p and An(k, T)(x) ≤ a, ∀ n ≥ 0.

Thus, the multi-parameter maximal inequalities can be obtained from iterations of the single-
parameter case, and the “p = 2” cases are similar to Corollary 4.4 [13] and Theorem 3.5 [17];
this can be proved using the same arguments.
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Theorem 3. Let 1 ≤ p < ∞ and T ∈ DS+, and let k = {ki}∞
i=1 be a sequence of strictly

increasing non-negative integers: k has a positive lower density. Then for any x ∈ Lp(M) and any
λ > 0, there is a projection e ∈ P(M) such that

τ(e⊥) ≤ 4
(∥x∥p

λ

)p

and sup
n

∥∥e(An(k, T)(x))e
∥∥

∞ ≤ 8Mkλ.

Proof. Since a weighted-version weak-type (p, p) inequality is obtained in Theorem 2.1 [30],
by the same argument,

sup
n

∥∥e(An(k, T)(x))e
∥∥

∞ = sup
n

∥∥∥∥∥e

(
kn + 1

n
· 1

kn + 1

kn

∑
i=0

1k(i)Ti(x)

)
e

∥∥∥∥∥
∞

≤ Mk sup
n

∥∥∥∥∥e

(
1

kn + 1

kn

∑
i=0

1k(i)Ti(x)

)
e

∥∥∥∥∥
∞

,

and we immediately obtain the result.

Remark 1. We point out here that this subsequential version weak-type (p, p) inequality is a mere
induction from Yeadon’s weak-type (1, 1) inequality (check the proof of Theorem 2.1 [30]) plus
a “subsequential” argument; thus, it is independent of our “strong-type” result and has a better
universal constant. Moreover, it is implied in the proof of Theorem 2.1 [30] that for x ∈ L+

p (M)
and any λ > 0, there is a projection e ∈ P(M) such that

τ(e⊥) ≤
(∥x∥p

λ

)p

and sup
n

∥∥e(An(k, T)(x))e
∥∥

∞ ≤ 2Mkλ.

Theorem 4. Let 1 < p < ∞, let T = (T1, · · · , Td) be a vector of d Dunford–Schwartz operators,
and let k = (k(1), · · · , k(d)) ⊂ Nd

0 be a vector of d sequences of strictly increasing non-negative
integers: every k(j) has a positive lower density, where j = 1, 2, · · · , d. There exists a positive
constant Cp (inherited from Theorem 1) such that for any x ∈ Lp(M) and any λ > 0, there is a
projection e ∈ P(M) such that

τ(e⊥) ≤ 4
(

Cd−1
p

∥x∥p

λ

)p

and sup
n

∥∥e(An(k, T)(x))e
∥∥

∞ ≤ 8Mkλ.

Moreover, for 2 < p < ∞, we have the following estimates:

τ(e⊥) ≤ 2
(

C
d−1

2
p
2

∥x∥p

λ

)p

and sup
n

∥∥(An(k, T)(x))e
∥∥

∞ ≤ 2
√

2Mkλ.

Proof. Let 1 < p < ∞. By Theorem 1, we have∥∥sup
n

+An(k, T)(x)
∥∥

p ≤ Cp Mk∥x∥p, for x ∈ L+
p (M).

We use an equivalent formulation: there exists an operator a ∈ L+
p (M) such that

An(k, T)(x) ≤ a, ∀n and ∥a∥p ≤ Cp Mk∥x∥p.

Applying the previous formulation d − 1 times, there exists an operator xd−1 ∈ L+
p (M)

such that

An2(k
(2), T2) · · · And(k

(d), Td)(x) ≤ xd−1, ∀(n2, · · · , nd) and ∥xd−1∥p ≤ Cd−1
p Mk(2) · · · Mk(d)∥x∥p.



Axioms 2024, 13, 595 13 of 20

Then by the previous theorem and Remark 1, this implies that for x ∈ L+
p (M) and any

λ > 0, there is a projection e ∈ P(M) such that

τ(e⊥) ≤ (Cd−1
p Mk(2) · · · Mk(d)

∥x∥p

λ
)p and sup

n
∥e(An(k, T)(x))e∥∞ ≤ 2Mk(1)λ.

It is equivalent to say that for any λ > 0 there is a projection e ∈ P(M) such that

τ(e⊥) ≤ (Cd−1
p

∥x∥p

λ
)p and sup

n
∥e(An(k, T)(x))e∥∞ ≤ 2Mk(1) Mk(2) · · · Mk(d)λ.

Given x ∈ Lp(M), we have x = (x1 − x2) + i(x3 − x4), where xj ∈ L+
p (M) and ∥xj∥p ≤

∥x∥p for each j = 1, 2, 3, 4. Hence, we have that for any λ > 0, there are ej ∈ P(M), j =
1, 2, 3, 4, satisfying

τ(e⊥j ) ≤ (Cd−1
p

∥xj∥p

λ
)p and sup

n
∥ej(An(k, T)(xj))ej∥∞ ≤ 2Mk(1) Mk(2) · · · Mk(d)λ.

Taking e = ∧4
j=1ej, we have

τ(e⊥) ≤ 4(Cd−1
p

∥x∥p

λ
)p and sup

n
∥e(An(k, T)(x))e∥∞ ≤ 8Mkλ.

For 2 < p < ∞ and x ∈ Lh
p(M) (all self-adjoint operators in Lp), we apply the previous

estimate to |x|2 ∈ L+
p
2
(M). That is, for any η > 0, there is a projection e ∈ P(M) such that

τ(e⊥) ≤ (Cd−1
p
2

∥|x|2∥ p
2

η
)

p
2 and sup

n
∥e(An(k, T)(|x|2))e∥∞ ≤ 2Mkη.

Then for any λ > 0, taking η = λ2, by the Kadison–Schwarz inequality

∥(An(k, T)(x))e∥2
∞ ≤ ∥e(An(k, T)(|x|2))e∥∞ ≤ 2Mkλ2,

we obtain

τ(e⊥) ≤ (C
d−1

2
p
2

∥x∥p

λ
)p and sup

n
∥(An(k, T)(x))e∥∞ ≤

√
2Mkλ.

Now, given x ∈ Lp(M), x = x1 + ix2, where xj ∈ Lh
p(M) and ∥xj∥p ≤ ∥x∥p, j = 1, 2.

Hence, for any λ > 0, there are ej ∈ P(M) such that

τ(e⊥j ) ≤ (C
d−1

2
p
2

∥xj∥p

λ
)p and sup

n
∥(An(k, T)(xj))ej∥∞ ≤

√
2Mkλ, j = 1, 2.

By taking e = e1 ∧ e2, we obtain the final result.

4. Noncommutative Wiener–Wintner-Type Subsequential Ergodic Theorems

We give in the following a result that acts as the Banach principle in the theory.

Lemma 6. Let T = (T1, · · · , Td) be a vector of d Dunford–Schwartz operators, and let K be a
family of multi-parameter subsequences satisfying that each k = (k(1), · · · , k(d)) ∈ K is a vector of
d sequences of strictly increasing non-negative integers and every k(j) has a positive lower density,
where j = 1, 2, · · · , d.
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Let 1 < p < ∞. If for a dense subset X of Lp(M) we have ∀x ∈ X and ∀ε > 0, there exists a
projection e ∈ P(M) such that

τ(e⊥) ≤ ε and {(An(k, T)(x))e}

converges in M for all k ∈ K, then K is of Lp-bsWW type. If 2 < p < ∞, K is of Lp-sWW type.
Moreover, if the trace τ is finite, i.e., (M, τ) is a noncommutative probability space, and X

with the above property is dense in L1 log2(d−1) L(M), then K is of L1 log2(d−1) L-bsWW type
and of L2 log2(d−1) L-sWW type.

Proof. For 1 < p < ∞, taking any x ∈ Lp(M), any ε > 0, and any λ > 0, since X is dense

in Lp(M), we can always find one y ∈ X such that ∥x − y∥p ≤ λ( ε
8 )

1
p

Cd−1
p

, where Cd−1
p comes

from the application of the first maximal inequality in Theorem 4 to the element x − y:
there is a projection e1 ∈ P(M) such that

τ(e⊥1 ) ≤ 4(Cd−1
p

∥x − y∥p

λ
)p ≤ ε

2
and sup

n
∥e1(An(k, T)(x − y))e1∥∞ ≤ 8Mkλ, k ∈ K.

On the other hand, by the assumption, there is a projection e2 ∈ P(M) such that

τ(e⊥2 ) ≤ ε

2
and {e2(An(k, T)(y))e2} converges in M,

which means that there exists N ∈ Nd
0 so that whenever m, n ≥ N, we have

∥e2(Am(k, T)(y))e2 − e2(An(k, T)(y))e2∥ ≤ λ.

Now, take e = e1 ∧ e2. Then we have τ(e⊥) ≤ ε and

∥e(Am(k, T)(x))e − e(An(k, T)(x))e∥∞

≤ ∥e(Am(k, T)(x − y))e∥∞ + ∥e(Am(k, T)(y))e − e(An(k, T)(y))e∥∞ + ∥e(An(k, T)(y − x))e∥∞

≤ (16Mk + 1)λ.

This means that {e(An(k, T)(x))e} is a Cauchy sequence and thus converges in M for all
k ∈ K. Therefore, we conclude that K is of Lp-bsWW type.

The rest can be shown by similar arguments with the use of the corresponding maximal
inequalities in Theorem 4 and Theorem 2.

As the main result of this paper, we give here the subsequential Wiener–Wintner-type
ergodic theorem.

Theorem 5. The subsequence class ∆ is of Lp-bsWW type for 1 < p < ∞ and Lp-sWW type
for 2 < p < ∞. Moreover, if τ is finite, ∆ is of L1 log2(d−1) L-bsWW type and L2 log2(d−1) L-
sWW type.

Proof. We know that

∆ ={k = (k(1), · · · , k(d)) : k(j) has a density of one, a recurring uniform sequence, or a block

sequence with positive lower density such that lim
n→∞

NI (n)
n

→ 0, j = 1, 2, · · · , d}.

Let 1 < p < ∞. Tj(j = 1, · · · , d) induces a canonical splitting on Lp(M); that is,
Lp(M) = Fp(Tj)⊕Fp(Tj)

⊥ = {x ∈ Lp(M) : Tj(x) = x} ⊕ (I − Tj)(Lp(M)). According
to the decomposition, it is sufficient that we discuss x in each subset separately.
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For x ∈ Fp(Td), here we consider only the typical case d = 2; then x ∈ Fp(T1)∩Fp(T2)

or x ∈ Fp(T1)
⊥ ∩ Fp(T2).

When x ∈ Fp(T1) ∩ Fp(T2), the average An(k, T)(x) = x; hence, there is a projection
e1 ∈ P(M) such that

τ(e⊥1 ) ≤ ε and ∥e1(An(k, T)(x)− x)e1∥∞ → 0 for all k ∈ ∆.

When x ∈ Fp(T1)
⊥ ∩ Fp(T2), the average An(k, T)(x) = An1(k

(1), T1)(x). Then it
turns into the following problem.

For x ∈ Fp(Td)
⊥, we consider its dense subset (I − Td)(L1(M) ∩M) instead.

In the following, we describe the ordinary situation. Let y ∈ L1(M) ∩ M and
z = y − T(y) ∈ (I − T)(L1(M) ∩M), T ∈ DS+, k be a subsequence of {0, 1, 2, · · · }.

(i) When k has a density of one, by denoting {0, 1, 2, · · · , kn} simply as [0, kn], we have

∥∥An(k, T)(z)
∥∥

∞ =
∥∥∥ 1

n

n

∑
i=1

Tki (z)
∥∥∥

∞

=
∥∥∥ 1

n

( kn

∑
i=0

Ti(y)−
n

∑
i=1

Tki (Ty)
)
− 1

n ∑
[0,kn ]−{ki}n

i=1

Ti(y)
∥∥∥

∞

≤
∥∥∥ 1

n

( kn

∑
i=0

Ti(y)−
n

∑
i=1

Tki (Ty)
)∥∥∥

∞
+
∥∥∥ 1

n ∑
[0,kn ]−{ki}n

i=1

Ti(y)
∥∥∥

∞

=
∥∥∥ 1

n ∑
[0,kn ]−{ki+1}n−1

i=1

Ti(y)− 1
n

Tkn+1(y)
∥∥∥

∞
+
∥∥∥ 1

n ∑
[0,kn ]−{ki}n

i=1

Ti(y)
∥∥∥

∞

≤ kn + 2 − (n − 1)
n

∥y∥∞ +
kn + 1 − n

n
∥y∥∞

=
4 + 2(kn − n)

n
∥y∥∞.

Since lim
n→∞

kn
n = 1, we have

∥An(k, T)(z)∥∞ → 0 as n → ∞.

(ii) When k is a uniform sequence, we discuss it as follows.
Let (Ω,B, µ, φ) and ω0, Y be the apparatus connected with the sequence k. Firstly, by

the definition of a uniform subsequence, we have

1
n

n

∑
i=1

Tki (y − Ty) =
kn + 1

n
1

kn + 1

n

∑
i=1

Tki (y − Ty)

=
kn + 1

n
1

kn + 1

kn

∑
i=0

Ti(y − Ty)χY(φiω0).

Since limn
kn
n = 1

µ(Y) , Mk = supn≥1
kn+1

n is finite and positive. Next, we just need to

estimate 1
n ∑n−1

i=0 Ti(y − Ty)χY(φiω0). By Lemma 2, for any ε > 0, there exist open sets Y1
and W such that for each point ω ∈ W, there exists a non-negative integer n0 such that

0 ≤ 1
n

n−1

∑
i=0

[χY(φiω0)− χY1(φiω)] < ε for n ≥ n0. (1)
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By the definition of a recurring uniform sequence k, for the neighborhood W of ω0 as above,
there are ω1 ∈ W and i0 ∈ N such that φi0 ω1 ∈ W and φi0+1ω1 ∈ W. It is obvious that

1
n

n−1

∑
i=0

|χY1(φi(φi0 ω1))− χY1(φi(φi0+1ω1))|

=
1
n

n−1

∑
i=0

|χY1(φi(φi0 ω1))− χY(φiω0) + χY(φiω0)− χY1(φi(φi0+1ω1))|

≤ 1
n

n−1

∑
i=0

|χY1(φi(φi0 ω1))− χY(φiω0)|+
1
n

n−1

∑
i=0

|χY(φiω0)− χY1(φi(φi0+1ω1))|.

Then applying again the result as in Equation (1), there is n′
0 such that for n ≥ n′

0, we have

1
n

n−1

∑
i=0

|χY1(φi+i0 ω1)− χY1(φi+i0+1ω1)| < 2ε.

Then it follows that for any ε > 0, there is a non-negative integer n′′
0 such that for n ≥ n′′

0 ,

∥∥∥ 1
n

n−1

∑
i=0

Ti(y − Ty)χY(φiω0)
∥∥∥

∞

=
∥∥∥ 1

n

n−1

∑
i=0

Ti(y − Ty)[χY(φiω0)− χY1(φi(φi0 ω1)) + χY1(φi(φi0 ω1))]
∥∥∥

∞

≤
∥∥∥ 1

n

n−1

∑
i=0

Ti(y − Ty)[χY(φiω0)− χY1(φi(φi0 ω1))]
∥∥∥

∞

+
∥∥∥ 1

n

n−1

∑
i=0

Ti(y − Ty)χY1(φi(φi0 ω1))
∥∥∥

∞

<2∥y∥∞ε +
∥∥∥ 1

n

n−1

∑
i=0

Ti(y)χY1(φi(φi0 ω1))−
1
n

n−1

∑
i=0

Ti+1(y)χY1(φi(φi0 ω1))
∥∥∥

∞

=2∥y∥∞ε +
∥∥∥ 1

n

n−1

∑
i=0

Ti(y)χY1(φi(φi0 ω1))−
1
n

n−1

∑
i=0

Ti+1(y)[χY1(φi(φi0 ω1))

− χY1(φi+1(φi0 ω1)) + χY1(φi+1(φi0 ω1))]
∥∥∥

∞

=2∥y∥∞ε +
∥∥∥ 1

n

n−1

∑
i=0

Ti(y)χY1(φi(φi0 ω1))−
1
n

n−1

∑
i=0

Ti+1(y)χY1(φi+1(φi0 ω1))

− 1
n

n−1

∑
i=0

Ti+1(y)[χY1(φi(φi0 ω1))− χY1(φi+1(φi0 ω1))]
∥∥∥

∞

≤2∥y∥∞ε +
2
n
∥y∥∞ +

∥∥∥ 1
n

n−1

∑
i=0

Ti+1(y)[χY1(φi(φi0 ω1))− χY1(φi+1(φi0 ω1))]
∥∥∥

∞

≤∥y∥∞(2ε + ε + 2ε)

=5∥y∥∞ε.

So finally, we have that for any ε > 0, there is n′′
0 ≥ 0 such that

∥ 1
n

n

∑
i=1

Tki (y − Ty)∥∞ ≤ 5Mk∥y∥∞ε for n ≥ n′′
0 .

This also implies that
∥An(k, T)(z)∥∞ → 0 as n → ∞.
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(iii) When k is a block sequence with a positive lower density such that lim
n→∞

NI (n)
n → 0,

An(k, T)(z) =
1
n

n

∑
j=1

Tkj(y − T(y)) =
1
n

n

∑
j=1

(
Tkj(y)− Tkj+1(y)

)

=
1
n

(
(TaNI (n)(y)− Tkn+1(y)) +

NI (n)−1

∑
i=1

bi

∑
j=ai

(
T j(y)− T j+1(y)

))

=
1
n

(
(TaNI (n)(y)− Tkn+1(y)) +

NI (n)−1

∑
i=1

(
Tai (y)− Tbi+1(y)

))

and since T is a contraction on M, we obtain

∥An(k, T)(z)∥∞ ≤ 2∥y∥∞
NI (n) + 1

n
.

By lim
n→∞

NI (n)
n → 0, we have

∥An(k, T)(z)∥∞ → 0 as n → ∞.

Since Dunford–Schwarz operators are contractions on M, we come to a conclusion
summing up the above results: Let z ∈ (I − Td)(L1(M) ∩M) and k ∈ ∆; we have∥∥An(k, T)(z)

∥∥
∞ ≤

∥∥And(k
(d), Td)(z)

∥∥
∞ → 0 as n → ∞.

This implies that we have the unit operator I ∈ P(M) such that

τ(I⊥) ≤ ε and ∥An(k, T)(z)I∥∞ → 0 for all k ∈ ∆.

Then, as Fp(Td)⊕ (I − Td)(L1(M) ∩M) is dense in Lp(M), from Theorem 6, we know ∆
is of Lp-bsWW type.

For the 2 < p < ∞ and τ finite Orlicz spaces case, these are the corresponding
consequences of applying Theorem 6.

Corollary 1. Let T = (T1, · · · , Td), and let Fj be the projection onto the fixed-point subspace for
Tj ∈ DS+, j = 1, · · · , d. Let 1 < p < ∞ and x ∈ Lp(M); then, for any ε > 0, there exists
e ∈ P(M) such that τ(e⊥) ≤ ε and

lim
n

∥∥e
(

An(k, T)(x)− F1 · · · Fd(x)
)
e
∥∥

∞ = 0 for all k ∈ ∆,

and if p > 2, there exists ẽ ∈ P(M) such that τ(ẽ⊥) ≤ ε and

lim
n

∥∥(An(k, T)(x)− F1 · · · Fd(x)
)
ẽ
∥∥

∞ = 0 for all k ∈ ∆.

Consequently, every k ∈ ∆ is bilaterally good universal in Lp(M) if 1 < p < ∞ and good
universal if p > 2.
Moreover, if the trace τ is finite, let x ∈ L1 log2(d−1) L(M); then for any ε > 0, there exists
e ∈ P(M) such that τ(e⊥) ≤ ε and

lim
n

∥∥e
(

An(k, T)(x)− F1 · · · Fd(x)
)
e
∥∥

∞ = 0 for all k ∈ ∆,

and for x ∈ L2 log2(d−1) L(M), there exists ẽ ∈ P(M) such that τ(ẽ⊥) ≤ ε and

lim
n

∥∥(An(k, T)(x)− F1 · · · Fd(x)
)
ẽ
∥∥

∞ = 0 for all k ∈ ∆;
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thus, every k ∈ ∆ is bilaterally good universal in L1 log2(d−1)(M) and good universal in
L2 log2(d−1)(M).

Proof. We consider only the typical case d = 2. Note that

An(k, T) = An1(k
(1), T1)An2(k

(2), T2).

For 1 < p < ∞, fix x ∈ Lp(M) and decompose x as x = F2(x) + yk + uk with

yk ∈ (I − T2)(L1(M) ∩M), uk ∈ Lp(M), ∥uk∥p ≤ 1
k

, k ∈ N.

Similarly, we decompose F2(x) with respect to T1 : F2(x) = F1(F2(x)) + zk + vk, with

zk ∈ (I − T1)(L1(M) ∩M), vk ∈ Lp(M), ∥vk∥p ≤ 1
k

, k ∈ N.

Applying An2(k
(2), T2) to x and An1(k

(1), T1) to F2(x), we obtain

An(k, T)(x)− F1F2(x) = An(k, T)(yk) + An(k, T)(uk) + An1(k
(1), T1)(zk) + An1(k

(1), T1)(vk).

By the multi-parameter maximal inequality (Theorem 2),

∥sup
n

+An(k, T)(uk)∥p ≤ C2
p Mk(1) Mk(2)∥uk∥p ≤

C2
p Mk(1) Mk(2)

k
→ 0 as k → ∞.

Similarly,
lim
k→∞

∥sup
n1

+An1(k
(1), T1)(vk)∥p = 0.

Thus,

lim
k→∞

(An(k, T)(yk) + An1(k
(1), T1)(zk)) = An(k, T)(x)− F1(x)F2(x) in Lp(M; ℓ∞(N2)).

Since Lp(M; c0(N2)) is closed in Lp(M; ℓ∞(N2)), it remains to be shown that

{An(k, T)(yk)}n ∈ Lp(M; c0(N2) and {An1(k
(1), T1)(zk)}n1 ∈ Lp(M; c0).

Firstly, we consider the one-parameter case. In general, let z = y − T1(y) ∈ (I −
T1)(L1(M) ∩M). From the arguments related to the three classes of sequences in the
proof of Theorem 5, we obtain the following results, respectively:

(i) supm1≤j1≤n1
∥Aj1(k

(1), T1)(z)∥∞ ≤ supm1≤j1≤n1

4+2(kj1
−j1)

j1
∥y∥∞;

(ii) supn′′
0≤m1≤j1≤n1

∥Aj1(k
(1), T1)(z)∥∞ ≤ supn′′

0≤m1≤j1≤n1
5Mk∥y∥∞ε;

(iii) supm1≤j1≤n1
∥Aj1(k

(1), T1)(z)∥∞ ≤ 2∥y∥∞ supm1≤j1≤n1

NI (j1)+1
j1

.

In the following, we focus on class (i); the other classes are similar.
Since z ∈ Lq(M) for any 1 < q < ∞, we deduce from Theorem 1 that {An1(k

(1), T1)(z)}n1

belongs to Lq(M; ℓ∞). Choose a q ∈ (1, p). Then by Proposition 1, for any m1 < n1,∥∥∥∥ sup
m1≤j1≤n1

+Aj1(k
(1), T1)(z)

∥∥∥∥
p
≤ sup

m1≤j1≤n1

∥∥Aj1(k
(1), T1)(z)

∥∥1− q
p

∞

∥∥∥∥ sup
m1≤j1≤n1

+Aj1(k
(1), T1)(z)

∥∥∥∥
q
p

q

≤
[

sup
m1≤j1≤n1

4 + 2(k j1 − j1)
j1

∥y∥∞

]1− q
p
∥∥∥∥sup

j1≥1

+Aj1(k
(1), T1)(z)

∥∥∥∥
q
p

q
.
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As lim
j1→∞

kj1
j1

= 1, the finite sequence (A1(k(1), T1)(z), · · · , Al(k
(1), T1)(z), 0, · · · ) converges

to {An1(k
(1), T1)(z)}n1 in Lp(M; ℓ∞) as l → ∞. Combining with Lp(M; c0) and being

closed in Lp(M; ℓ∞), we have {An1(k
(1), T1)(z)}n1 ∈ Lp(M; c0). That is to say, {An1(k

(1), T1)
(zk)}n1 ∈ Lp(M; c0), k ∈ N.

For the two-parameter case, let z = y − T2(y) ∈ (I − T2)(L1(M) ∩ M). Since
z ∈ Lq(M) for any 1 < q < ∞, we deduce from Theorem 2 that {An(k, T)(z)}n ∈
Lq(M; ℓ∞(N2)). Then by the interpolation theorem and with T1 being a contraction, for
any m < n,∥∥∥∥ sup

m≤j≤n

+Aj(k, T)(z)
∥∥∥∥

p
≤ sup

m≤j≤n

∥∥Aj(k, T)(z)
∥∥1− q

p
∞

∥∥∥∥ sup
m≤j≤n

+Aj(k, T)(z)
∥∥∥∥

q
p

q

≤ sup
m2≤j2≤n2

∥∥Aj2(k
(2), T2)(z)

∥∥1− q
p

∞

∥∥∥∥ sup
m≤j≤n

+Aj(k, T)(z)
∥∥∥∥

q
p

q

≤
[

sup
m2≤j2≤n2

4 + 2(k j2 − j2)
j2

∥y∥∞

]1− q
p
∥∥∥∥sup

j≥1

+Aj(k, T)(z)
∥∥∥∥

q
p

q
.

By a similar argument as above, we have that {An(k, T)(z)}n ∈ Lp(M; c0(N2). That is to
say, {An(k, T)(yk)}n ∈ Lp(M; c0(N2).

Thus, by Lemma 6.2 [13], let x ∈ Lp(M); we have that for any ε > 0 and any k ∈ ∆,
there exists e ∈ P(M) such that τ(e⊥) ≤ ε and

lim
n

∥∥e
(

An(k, T)(x)− F1 · · · Fd(x)
)
e
∥∥

∞ = 0.

Combining with Theorem 5, i.e., ∆ is of Lp-bsWW type, we have that for any ε > 0, there
exists a projection e ∈ P(M) such that τ(e⊥) ≤ ε and

lim
n

∥∥e
(

An(k, T)(x)− F1 · · · Fd(x)
)
e
∥∥

∞ = 0 for all k ∈ ∆.

For 2 < p < ∞, we also need only to show

{An(k, T)(yk)}n ∈ Lp(M; cc
0(N2)) and {An1(k

(1), T1)(zk)}n1 ∈ Lp(M; cc
0).

Applying the second part of Theorem 2 and the interpolation theorem for Lp(M; cc
0), we

can prove this with a similar argument. Combined with the fact that ∆ is of Lp-sWW type,
there exists a projection ẽ ∈ P(M) such that τ(ẽ⊥) ≤ ε and

lim
n

∥∥(An(k, T)(x)− F1 · · · Fd(x)
)
ẽ
∥∥

∞ = 0 for all k ∈ ∆.

In the end, the Orlicz space case can be reasoned analogously.
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