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Abstract: In this paper, we present the unit-power half-normal distribution, derived from the power
half-normal distribution, for data analysis in the open unit interval. The statistical properties of the
unit-power half-normal model are described in detail. Simulation studies are carried out to evaluate
the performance of the parameter estimators. Additionally, we implement the quantile regression
for this model, which is applied to two real healthcare data sets. Our findings suggest that the unit
power half-normal distribution provides a robust and flexible alternative for existing models for
proportion data.
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1. Introduction

To study and interpret real events, new statistical models must continuously be built.
In recent times, models limited to the interval (0, 1) have generated a lot of interest. This
type of models is mainly used to study proportion data, such as survival rate data and prod-
uct failure, among others. Different areas, such as health, actuarial and financial sciences,
require this type of distributions. So, recently, several distributions with positive support
have been transformed to distributions with unit support, such as the cases of Jones [1]
in the Kumaraswamy distribution, Gómez-Déniz et al. [2] in the log-Lindley distribution,
Mazucheli et al. [3], in the Lindley distribution, Abd El-Monsef et al. [4], who proposed a
new two-parameter omega unitary distribution, Altun et al. [5], who studied a distribution
called enhanced second-order Lindley distribution modeling data on the interval (0,1), and,
recently, Ahmad et al. [6], who studied the exponential pareto distribution.

One of the distributions that is mainly used for this type of data is the Beta distribution.
Interest in this type of model has been increasing, and many researchers have transformed
known distributions with positive support into distributions with unitary support, an
example of which can be found in articles such as Grassia [7], based on the Gamma distri-
bution, Ghitany et al. [8], based on the Inverse Gamma distribution, Mazucheli et al. [9],
based on the Birnbaum-Saunders distribution, Modi et al. [10], based on Burr distribution
III, Korkmaz and Chesneau [11], based on Burr distribution XII, Haq et al. [12], based
on the modified Burr III distribution, and, more recently, Bakouch et al. [13], based on
half-normal distribution.

The aim of this paper is to introduce a new distribution with a bounded domain on
(0,1). This distribution is originated by modifying the representation of the power half-
normal (PHN) distribution proposed by Gómez et al. [14]. One of the motivations of this
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work is to generate alternatives to well-known distributions used in the statistical analysis
of certain type of data. This work is based on the PHN distribution whose probability
density function f (pdf), cumulative distribution function F (cdf), and quantile function
Q are:

fY(y; σ, α) =
2α

σ
ϕ
( y

σ

)(
2Φ
( y

σ
− 1
))α−1

, y > 0, (1)

FY(y; σ, α) =
(

2Φ
( y

σ

)
− 1
)α

, y > 0, (2)

Q(p; σ, α) = σΦ−1

(
1 + p1/α

2

)
, 0 < p < 1, (3)

where the parameters are σ > 0 and α > 0. ϕ(·) and Φ(·) denote the pdf and cdf of the
standard normal distribution, respectively.

At present, this model continues to be studied. For example, Barrios et al. [15] per-
formed an extension of the distribution using the slash process, resulting in a model with
higher kurtosis, i.e., with heavier tails. In addition, Pallini [16] introduced a discretized
model based on the PHN distribution. The interest in further investigating models with
support on the interval (0,1) is of great importance, since in many areas, such as finance,
actuarial sciences, engineering, and health, databases that belong to this type of interval
are handled. To consider a new model with unit support based on the PHN model is a
promising alternative for more accurate inferential studies.

The rest of the paper is organized as follows. In Section 2, we introduce our proposal,
the unit-power half-normal (UPHN) distribution. Several important properties of this new
model are presented. In Section 3, inference is performed, and maximum likelihood (ML)
estimators are obtained. In Section 4, the reparametrized model in terms of a quantile is
presented. In Section 5, a simulation study is carried out to analyse the performance of
ML estimators in finite samples for the proposed model without and with covariates. In
Section 6, two real data applications are presented, and we are again dealing with cases
without and with covariates. Finally, in Section 7, some concluding comments are presented.

2. Unit Power Half-Normal Distribution

In this section, we will discuss the stochastic representation of the UPHN model,
including its pdf, cdf, and some properties of the model.

2.1. Stochastic Representation

Definition 1. A random variable X follows a UPHN distribution with parameters σ > 0 and
α > 0 if its stochastic representation is given by:

X =
1

1 + Y
(4)

where Y ∼ PHN(σ, α). The notation X ∼ UPHN(σ, α) will be used.

2.2. Pdf, Cdf, Survival, and Hazard Functions

Proposition 1. Let X ∼ UPHN(σ, α). Then, the pdf of X is given by:

fX(x; σ, α) =
2α

σx2 ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)α−1

, 0 < x < 1, σ, α > 0. (5)

Proof. By considering the stochastic representation given in (4), x = g(y) = 1/(1 + y), we
have that

fX(x; σ, α) = fY(g−1(x); σ, α)

∣∣∣∣dg−1(x)
dx

∣∣∣∣ = 2α

σ
ϕ

(
g−1(x)

σ

)(
2Φ
(

g−1(x)
σ

)
− 1
)α−1 1

x2 .
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Taking into account that g−1(x) = (1 − x)/x, (5) follows.

Proposition 2. Let X ∼ UPHN(σ, α). Then, its cdf is given by:

F(x; σ, α) =


0, x ≤ 0,

1 −
(

2Φ
(

1−x
σx

)
− 1
)α

, 0 < x < 1,
1, x ≥ 1.

(6)

Proof.

• If x ≤ 0, then f (x) = 0. Therefore, F(x, σ, α) = 0.
• It follows from the fact that for 0 < x < 1,

F(x; σ, α) =
∫ x

0

2α

σt2 ϕ

(
1 − t

σt

)(
2Φ
(

1 − t
σt

)
− 1
)α−1

dt .

Making u = 2Φ
(

1 − t
σt

)
− 1, we obtain the result.

• If x ≥ 1, then:

F(x; σ, α) =
∫ x

−∞
f (t)dt

=
∫ 0

−∞
0 dt +

∫ 1

0

2α

σt2 ϕ

(
1 − t

σt

)(
2Φ
(

1 − t
σt

)
− 1
)α−1

dt +
∫ x

1
0 dt = 1.

Figure 1 shows the pdf and cdf of the UPHN(σ, α) model of σ = 1 with different
values for α. Figure 2 shows the pdf and cdf of the UPHN(σ, α) model, for different values
of (σ, α).
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Figure 1. Pdf and cdf for UPHN(σ = 1, α) model with different values of α.
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Figure 2. Pdf and cdf for UPHN(σ, α) model for some values of parameters σ and α.

Proposition 3. Let X ∼ UPHN(σ, α). Then, the survival and hazard function of X are given by:

S(x; σ, α) =

(
2Φ
(

1− x
σx

)
− 1
)α

and h(x; σ, α) =
2α

σx2 ϕ

(
1− x

σx

)(
2Φ
(

1− x
σx

)
− 1
)−1

,

for 0 < x < 1.

Proof. Both functions are immediately obtained from their definitions, since S(x) =

1 − F(x) and h(x) = f (x)
1−F(x) .

Figure 3 shows the survival and the hazard function for the UPHN(σ, α) model,
considering several values of σ and α. We highlight that the hazard function is increasing.
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Figure 3. Survival and hazard functions for UPHN(σ, α) model for some values of parameters σ

and α.
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2.3. Moments

Proposition 4. Let X ∼ UPHN(σ, α). Then, the n-th moment of X, where n is a positive integer,
is given by:

µX = αbn(σ, α), (7)

where bn(σ, α) =
∫ 1

0

(
σΦ−1

(
u + 1

2

)
+ 1
)−n

uα−1du, are computed numerically.

Proof. The moments are immediately obtained from their definition.

E[Xn] =
2α

σ

∫ 1

0
xn−2ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)α−1

dx. (8)

Making the change of variable u = 2Φ
(

1 − x
σx

)
− 1, we have that:

E[Xn] = α
∫ 1

0

(
σΦ−1

(
u + 1

2

)
+ 1
)−n

uα+1du,

and defining bn(σ, α) as the integral, the result is obtained.

Corollary 1. Let X ∼ UPHN(σ, α). Then, the skewness
(√

β1
)

and kurtosis (β2) coefficients are

√
β1 =

b3 − 3b1b2 + 2b3
1

(b2 − b2
1)

3/2
and β2 =

b4 − 4b1b3 + 6b2
1b2 − 3b4

1
(b2 − b2

1)
2

,

where bn = bn(σ, α).

Proof. It is immediately obtained from the definition of these coefficients.

Tables 1 and 2 provide us
(√

β1
)

and (β2) for several values of parameters σ and α.
We can observe that for low values of σ and α, the skewness coefficient is negative and for
high values, positive skewness is obtained. As for the kurtosis coefficient, the observed
effect is more dispersed.

Table 1. Skewness coefficient of UPHN(σ, α) model for different values of σ and α.

α

σ 0.3 0.7 1.5 3 5

0.1 −1.7390 −0.9557 −0.5196 −0.3301 −0.2892
0.6 −1.1043 −0.3191 0.1764 0.3817 0.3805
1.4 −0.7097 0.1218 0.7115 0.9300 0.8517
2.5 −0.4381 0.4597 1.1669 1.3915 1.2040
5 −0.1228 0.9035 1.8445 2.0545 1.6279
10 0.1805 1.4033 2.7419 2.8675 2.0197

Table 2. Kurtosis coefficient of UPHN(σ, α) model for different values of σ and α.

α

σ 0.3 0.7 1.5 3 5

0.1 5.8356 3.4239 2.8539 2.8706 2.9599
0.6 3.1896 2.0788 2.3258 2.8454 3.0395
1.4 2.1877 1.8542 2.9189 4.0065 4.1003
2.5 1.7492 2.0303 4.0774 5.8378 5.5157
5 1.4777 2.6956 6.9298 10.0505 8.0999
10 1.4435 4.0179 12.8648 18.3334 11.6586
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2.4. Incomplete Moments

The k-th incomplete moments of the UPHN distribution are given by:

Tk(t) = E
(

Xk|x < t
)

=
2α

σ

∫ t

0
xk−2ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)α−1

dx, k = 0, 1, 2, . . .

This integral cannot be solved analytically. In particular, for k = 0, 1, 2, we have:

T0(t) = F(t; σ, α), T1(t) = αγ1(a(t)), T2(t) = αγ2(a(t)),

where γj(a(t)) =
∫ 1

a(t)

(
αΦ−1

(
u + 1

2

)
+ 1
)−j

uα−1du and a(y) = 2Φ
(

1−y
σy

)
− 1. γj(a(t)),

are computed numerically.

2.5. The Lorenz Curve and the Gini Index

The standard definition of the Lorenz curve [17] is provided in terms of the first
incomplete moment and the expected value of X. Specifically, for the UPHN model, the
following closed form expression is obtained

L(p) =
1

µX

∫ t

0
x f (x)dx =

1
µX

T1(t);

=
α

µX
γ1(a(t)).

The Gini index, also known as the Gini coefficient (see [18,19]), is a statistical dispersion
metric associated with the Lorenz curve, intended to represent income inequality, wealth
inequality, or consumption inequality within a nation or social group. The Gini index is
defined as:

G(σ, α) = 1 − 1
µX

∫ ∞

0
[1 − T0(t)]

2dt.

Proposition 5. Let X ∼ UPHN(σ, α). Then, the Gini index is given by:

G(σ, α) = 1 − 4α

µX

∫ ∞

0

[
Φ
(

1 − t
σt

)]2α

dt.

Proof. By definition, the proof is direct.

Proposition 6. Let X ∼ UPHN(σ, α); the Renyi entropy of order δ for X is given by:

Rδ(x) =
1

1 − δ

(
δ log(α)− log((α − 1)δ + 1) + log

(
1 − (1 − 2Φ(1/σ))(α−1)δ+1

))
,

where δ > 0 and δ ̸= 1.

Proof. The Renyi entropy is defined as Rδ(x) =
1

1 − δ
log
(∫ ∞

0
f (x)δdx

)
. Therefore,

we have:

Rδ(y) =
1

1 − δ
log

∫ ∞

0

(
2α

σx2 ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)α−1

)δ

dx

,
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Making the change of variable u = 2Φ
(

1 − x
σx

)
− 1, the result is obtained.

2.6. Shannon Entropy

The entropy of a random variable X is a measure of its uncertainty. The Shannon
entropy measure is defined by:

JS = −E(log( f (x))).

If follows, after extensive algebraic manipulations, that the Shannon entropy for the UPHN
model is:

JS = log

(
σ
√

2π

2α

)
+ 2m1 +

1
2σ2 (αb2(σ, α)− 2αb1(σ, α) + 1) + (α + 1)m2.

where m1 = E(log(x)), m2 = E(log
(

2Φ
(

1 − x
σx

)
− 1)

)
, and with b1(σ, α) and b2(σ, α) as

given above.

2.7. Quantiles

Proposition 7. Let X ∼ UPHN(σ, α). Then, the quantile function is given by:

Q(p;σ, α) =

[
σΦ−1

(
(1 − p)1/α

2
+

1
2

)
+ 1

]−1

, 0 < p < 1. (9)

Proof. It follows from a direct computation, by applying the definition of quantile function.

Corollary 2. The quartiles for the UPHN distribution are:

1. (First quartile) Q(0.25; σ, α) =

[
σΦ−1

(
0.751/α

2
+

1
2

)
+ 1

]−1

.

2. (Median) Q(0.5; σ, α) =

[
σΦ−1

(
0.51/α

2
+

1
2

)
+ 1

]−1

.

3. (Third quartile) Q(0.75; σ, α) =

[
σΦ−1

(
0.251/α

2
+

1
2

)
+ 1

]−1

.

The quantile function can also be used to study the kurtosis and skewness in the UPHN
model. A classical measurement for skewness was introduced by MacGillivray [20], which
is given by:

ρXi (p) =
QXi (1 − p; σ, α) + QXi (p; σ, α)− 2QXi (0.5; σ, α)

QXi (1 − p; σ, α)− QXi (p; σ, α)
, p ∈ (0, 1). (10)

In particular, the MacGuillevray skewness measurement can efficiently describe the effect
of the parameters (σ, α) on asymmetry. In Figure 4, the behavior of the asymmetry
coefficient is plotted with respect to the values of the parameters.
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Figure 4. Plots of the MacGillivray skewness coefficient in UPHN model.

The kurtosis of the UPHN(σ, α) distribution can also be studied using the Moors
kurtosis coefficient [21], usually given by:

K(σ, α) =
Q(7/8; σ, α)− Q(5/8; σ, α) + Q(3/8; σ, α)− Q(1/8; σ, α)

Q(3/4; σ, α)− Q(1/4; σ, α)
. (11)

It can be seen in [21] that for large values of (11), the distribution has heavy tails and for
small values, the model has lighter tails. Figure 5 shows the behavior of the Moors kurtosis
coefficient for the UPHN distribution.
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Figure 5. Plots of the Moors kurtosis coefficient for the UPHN model.

2.8. Order Statistics

Order statistics have a wide range of applications in physical and life sciences (see,
for instance, Balakrishnan and Cohen [22]). From a statistical perspective, they allow the
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computation of useful functions such as the sample range and the sample median. The
following result states the pdf of k-th order statistic from a UPHN random sample of size n,
which is arranged in a non-decreasing order.

Proposition 8. Let X1, X2, . . . , Xn be independent and identically distributed UPHN(σ, α)
random variables. Then, the pdf of the k-th order statistic, Xk:n, is given by:

fXk:n (x) =
2αn!

(k − 1)!(n − k)!σx2 ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)α(n−k+1)−1[

1 −
(

2Φ
(

1 − x
σx

)
− 1
)α]k−1

.

Corollary 3. Let X1, X2, . . . , Xn be a random sample from a UPHN(σ, α) distribution. Then,

1. The pdf of the minimum, X1:n, is

fX1:n(x) =
2αn
σx2 ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)nα−1

,

2. The pdf of the maximum, Xn:n, is

fXn:n(x) =
2αn
σx2 ϕ

(
1 − x

σx

)(
2Φ
(

1 − x
σx

)
− 1
)α−1[

1 −
(

2Φ
(

1 − x
σx

)
− 1
)α]n−1

.

2.9. Bonferroni Curve

In various disciplines, such as socioeconomics and public health sciences, there is
a need to compare and analyze inequality in distributions. Bonferroni curves are tools
useful to reach this aim. It is worth mentioning that these curves have applications not only
in economics to study income and poverty, but also in medicine or reliability. A detailed
discussion can be seen in Bonferroni [23] or Arcagni and Porro [24]. The expressions of
these curves for the UPHN model are presented below.

Proposition 9. Let X ∼ UPHN(σ, α). Then, for 0 < p < 1, the Bonferroni curve, say B(p), is
given by:

B(p) =
α

µX p

∞

∑
j=0

(−1)jσjγ
j
a(q),

where µX = E(X).

Proof. The expression above is obtained by using the definition of the Bonferroni curve,
that is,

B(p) =
1

µX p

∫ p

0
F−1(t)dt =

1
µX p

∫ q

0
x f (x)dx, 0 < p < 1,

where µX is the expected value of the corresponding non-negative random variable and
q = F−1(p).

3. Inference

In this section, the inference about the parameters in the UPHN distribution is car-
ried out from a classical point of view. Let us consider X1, X2, . . . , Xn a random sample
of X∼UPHN(σ, α). The maximum likelihood (ML) estimation method is discussed be-
low. Given a random sample x1, x2, . . . , xn of size n from UPHN(σ, α), the log-likelihood
function is given by:

ℓ(θ) = n log
(

2α

σ

)
− n

2
log(2π)− 2

n

∑
i=1

log(xi)−
1
2

n

∑
i=1

v2
i + (α − 1)

n

∑
i=1

log(2Φ(vi)− 1), (12)
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where vi =
1 − xi

σxi
. Therefore, the score assumes the form S(θθθ) = (Sσ(θθθ), Sα(θθθ)) where:

Sσ(θθθ) = − n
σ2 +

1
σ

n

∑
i=1

v2
i −

2(α − 1)
σ

n

∑
i=1

ϕ(vi)vi
2Φ(vi)− 1

, (13)

Sα(θθθ) =
n
α
+

n

∑
i=1

log(2Φ(vi)− 1). (14)

The ML estimators (MLEs) can be obtained by solving the likelihood Equations (13)
and (14). Numerical methods, such as the Newton–Raphson procedure, must be used.
Alternative maximization techniques could also be applied, for instance, those proposed
in MacDonald [25].

The asymptotic variance of the MLEs, say θ̂θθ = (σ̂, α̂), can be estimated by the Fisher
information matrix defined as I(θθθ) = −E

[
∂2ℓ(θθθ)/∂θθθ∂θθθ⊤

]
, where ℓ(θθθ) is the log-likelihood

function of the UPHN model given in (12). Recall that, under the regularity conditions,

I(θθθ)−1/2
(

θ̂θθ − θθθ
) D→ N2(0002, III2), as n → +∞,

where D stands for convergence in distribution and N2(0002, III2) denotes the standard bi-
variate normal distribution. The elements of the matrix −∂2ℓ(θθθ)/∂θθθ∂θθθ⊤ are given by
Iσσ = −∂2ℓ(θθθ)/∂σ2, Iσα = −∂2ℓ(θθθ)/∂σ∂α and Iαα = −∂2ℓ(θθθ)/∂α2. Explicitly, we have:

Iσσ = − n
σ2 +

3
σ2

n

∑
i=1

v2
i −

4(α − 1)
σ2

n

∑
i=1

ϕ(vi)vi

2Φ(vi)− 1
+

2(α − 1)
σ2

n

∑
i=1

v2
i ϕ(vi)[vi(2Φ(vi)− 1) + 2ϕ(vi)]

(2ϕ(vi)− 1)2 ,

Iσα = − 2
σ2

n

∑
i=1

viϕ(vi)

2Φ(vi)− 1
,

Iαα =
n
α2 .

In practice, it is not possible to obtain in a closed form the expected value of previous
expressions. However, the covariance matrix of the MLEs, I(θθθ)−1, can be estimated
consistently by I(θ̂θθ)−1, where I(θ̂θθ) denotes the observed information matrix, which is
obtained as

I(θ̂θθ) = −∂2ℓ(θθθ)

∂θθθ∂θθθ⊤

∣∣∣∣∣
θθθ=θ̂θθ

.

The asymptotic variances of σ̂ and α̂ are estimated by the diagonal elements of I(θ̂θθ)−1, and
their standard errors by the square root of asymptotic variances.

4. Quantile Regression

We now introduce a regression study, in which a quantile regression model is proposed
to describe the conditional quantile of the response variable. Given the quantile function of
the UPHN distribution, the pdf of the UPHN distribution can be reparameterized in terms
of its pth quantile, denoted as ρ = Q(p; σ, α).

Let σ =
1 − ρ

ρΦ−1
(

1
2
(
(1 − p)1/α + 1

)) . Then, the reparameterized pdf for the UPHN

model is:

fX(x; ρ, α, p) =
2α

(1 − α)x2 h(α, p)ϕ
(
(1 − x)ρ
(1 − ρ)x

h(α, p)
)(

2Φ
(
(1 − x)ρ
(1 − ρ)x

h(α, p)
)
− 1
)α−1

, (15)

where h(α, p) = Φ−1
(

1
2

(
(1 − p)1/α + 1

))
, 0 < x < 1, 0 < p < 1, 0 < ρ < 1 , and α > 0.
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The cdf of the reparameterized UPHN distribution is:

F(x; ρ, α, p) = 1 −

2Φ

 (1 − x)ρΦ−1
(

1
2 [(1 − p)1/α + 1]

)
(1 − ρ)x

− 1

α

.

4.1. Model Formulation

Let us suppose that 0 < p < 1 is fixed and we have a random sample xi(p)∼UPHN(ρi, α),
i = 1, 2, . . . , n. Here, the parameters ρi and α are unknown. As a result, the suggested
quantile regression model can be defined as:

g(ρi(p)) = z⊤i β(p), (16)

where β⊤(p) = (β0(p), β1(p), . . . , βk(p)) and z⊤i = (1, zi1, . . . , zik) act as the regression
coefficient vector and the ith vector of covariate values, respectively. It is important to note
that g is the link function that associates the covariates with the response variable. We can
obtain a median quantile regression for a unit response variable when p = 0.5. Taking into
account that the UPHN distribution is a probability model with support on (0, 1), we use
and define the logit-link function as:

g(ρi(p)) = log
(

ρi(p)
1 − ρi(p)

)
, i = 1, . . . , n. (17)

4.2. ML Method for the Regression Coefficients

Now, our objective is to estimate the unknown parameters of the UPHN quan-
tile regression model using the ML technique. For this purpose, the logit link function
is considered:

g(ρi(p)) = log
(

ρi(p)
1 − ρi(p)

)
= z⊤i β. (18)

From the above formula, the inverse link function is:

ρi(p) =
exp(z⊤i β(p))

1 + exp(z⊤i β(p))
. (19)

Let us now have a random sample X1, . . . , Xn with Xi ∼ UPHN(ρi(p), α), and observed
values x1, . . . , xn. Then, using the pdf introduced in (15), the associated log-likelihood
function is:

l(Θ(p)) = n[log(2) + log(α)] + n log[h(α, p)] +
n

∑
i=1

log
[

ϕ

(
[1 − xi]ρi
[1 − ρi]xi

h(α, p)
)]

+
n

∑
i=1

log

(
ρi

[1 − ρi]x2
i

)
+ (α − 1)

n

∑
i=1

log
[

2Φ
(
[1 − xi]ρi
[1 − ρi]xi

h(α, p)
)
− 1
]

, (20)

where Θ = (α, β⊤)⊤ denotes the unknown vector of parameters. The ML estimators of Θ,

denoted as Θ̂ = (α̂, β̂
⊤
)⊤ is achieved by maximizing l(Θ) with respect to Θ. The optim

function of the R software, 4.3.1 version, [26] can be used to maximize l(Θ).

4.3. Model Checking

Once we have fitted the model, it is crucial to assess whether the regression model is
appropriate for the data. In this sense, the analysis of residuals is key to check or validate
the fitted model. We focus on the Cox–Snell residuals (Cox and Snell 1968) [27], which are
calculated for the ith observation as:
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η̂i = − log[1 − F(xi; ρi(p), α)], i = 1, . . . , n.

Here, F(xi, ρi(p), α) stands for the estimated cdf of the UPHN distribution reparameterized
in terms of quantiles. If the fitted model provides a good fit for the data, the residual η̂i
will be an observation of a random variable from an exponential distribution with a scale
parameter of one.

5. Simulation

In this section, a simulation study is carried out to evaluate the performance of the ML
estimators. We used R software 4.3.1 version, for our calculations, developing customized
code that integrates the optim function from R package stats [28].

5.1. Simulation 1

Next, an algorithm to generate samples from the UPHN(σ, α) is provided. Algorithm 1
is based on the inverse transformation method, where the inverse of the cdf is used.

Algorithm 1 Simulating values from the UPHN(σ, α) distribution.

1: Simulate U ∼ U(0, 1).

2: Calculate X =
[
σΦ−1

(
(1−U)1/α

2 + 1
2

)
+ 1
]−1

As parameter values in our simulation, we consider σ ∈ {1, 2} and α ∈ {0.8, 1, 2, 3, 5}.
For the sample size, we consider n ∈ {150, 300, 600}. For each sample size and every
combination of σ, α, we perform 1000 repetitions and the corresponding ML estimates
are calculated. The results are given in Table 3. As summaries, we provide the estimated
bias (bias) for the ML estimators of σ and α, standard errors (SE), the root of the estimated
mean square error (RMSE), and the empirical coverage probability (CP) for the asymptotic
intervals based on MLEs to 95%. For the ML estimators of σ and α, it should be noted that,
as the sample size increases, the bias, SE, and RMSE decrease. It should also be noted that
as the sample size increases, the SE and RMSE are closer, which suggests that the standard
errors of the ML estimators are well estimated. As for the CPs, we highlight that they are
close to the nominal level 0.95.

Table 3. Estimated bias, SE, and RMSE for ML estimators in finite samples from the UPHN model.

True Value n = 150 n = 300 n = 600

σ α Estimator Bias se RMSE CP bias se RMSE CP Bias se RMSE CP

1

0.8 σ −0.0075 0.0734 0.0747 0.930 −0.0036 0.0522 0.0520 0.948 −0.0013 0.0370 0.0364 0.947
α 0.0160 0.0774 0.0793 0.953 0.0084 0.0541 0.0549 0.955 0.0037 0.0380 0.0375 0.954

1 σ −0.0084 0.0680 0.0690 0.932 −0.0048 0.0482 0.0479 0.944 −0.0012 0.0343 0.0335 0.956
α 0.0181 0.0993 0.1028 0.946 0.0127 0.0697 0.0724 0.946 0.0017 0.0487 0.0490 0.949

2 σ −0.0027 0.0558 0.0554 0.944 0.0012 0.0397 0.0403 0.948 0.0001 0.0280 0.0293 0.933
α 0.0441 0.2229 0.2312 0.953 0.0083 0.1542 0.1555 0.951 0.0080 0.1090 0.1135 0.944

3 σ −0.0038 0.0507 0.0506 0.951 −0.0022 0.0359 0.0360 0.940 −0.0012 0.0254 0.0263 0.931
α 0.0718 0.3630 0.3601 0.971 0.0230 0.2514 0.2451 0.953 0.0211 0.1776 0.1811 0.942

5 σ −0.0050 0.0459 0.0463 0.945 −0.0020 0.0326 0.0334 0.938 −0.0004 0.0231 0.0240 0.937
α 0.1446 0.6799 0.7206 0.958 0.0678 0.4715 0.4976 0.948 0.0285 0.3300 0.3399 0.948
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Table 3. Cont.

True Value n = 150 n = 300 n = 600

σ α Estimator Bias se RMSE CP bias se RMSE CP Bias se RMSE CP

2

0.8 σ −0.0089 0.1474 0.1461 0.954 −0.0080 0.1044 0.1044 0.948 −0.0029 0.0741 0.0748 0.941
α 0.0124 0.0770 0.0773 0.952 0.0060 0.0539 0.0553 0.952 0.0020 0.0379 0.0367 0.956

1 σ −0.0194 0.1358 0.1320 0.949 −0.0061 0.0967 0.0989 0.946 −0.0011 0.0687 0.0689 0.944
α 0.0169 0.0991 0.1021 0.953 0.0109 0.0696 0.0733 0.947 0.0014 0.0487 0.0491 0.948

2 σ −0.0050 0.1117 0.1097 0.946 −0.0049 0.0789 0.0771 0.953 −0.0022 0.0559 0.0570 0.942
α 0.0335 0.2215 0.2244 0.957 0.0218 0.1554 0.1548 0.951 0.0092 0.1091 0.1121 0.949

3 σ −0.0125 0.1009 0.0997 0.946 −0.0015 0.0719 0.0760 0.934 0.0007 0.0509 0.0511 0.942
α 0.0789 0.3638 0.3705 0.955 0.0238 0.2514 0.2534 0.955 0.0098 0.1767 0.1741 0.949

5 σ −0.0059 0.0921 0.0929 0.949 −0.0022 0.0652 0.0667 0.942 −0.0002 0.0462 0.0467 0.945
α 0.1166 0.6755 0.7079 0.947 0.0580 0.4702 0.4761 0.958 0.0204 0.3293 0.3392 0.943

5.2. Simulation 2

In this section, data are generated from the quantile regression model with sample
sizes n ∈ {100, 200, 300, 400} and quantile levels p ∈ {0.10, 0.25, 0.50, 0.75, 0.90} under two
different scenarios. In the first scenario, three covariates are considered, that is,

logit(ρi(p)) = β0(p) + β1(p)zi1 + β2(p)zi2 + β3(p)zi3, i = 1, 2, . . . , n, (21)

where β0(p) = 0.275, β1(p) = 0.098, β2(p) = 0.015, β3(p) = 0.397, zi1, zi2, zi3
iid∼ N(0, 1),

and α = 1.285, whereas in the second scenario, five covariates are proposed

logit(ρi(p)) = β0(p) + β1(p)zi1 + β2(p)zi2 + β3(p)zi3 + β4(p)zi4 + β5(p)zi5, (22)

where β0(p) = −2.975, β1(p) = 0.005, β2(p) = 0.092, β3(p) = −0.958, β4(p) = −0.122,

β5(p) = −0.289, zi1, zi2, zi3, zi4, zi5
iid∼ N(0, 1), and α = 7.425.

For fixed values of n and p, the response variable is generated as

xi =

[
σiΦ−1

(
(1 − ui)

1/α

2
+

1
2

)
+ 1

]−1

, (23)

where ui is an observation generated from a continuous uniform distribution on (0, 1), that
is, ui ∼ U(0, 1) and σi is calculated as

σi =
1 − ρi

ρiΦ−1
(

1
2 [(1 − p)1/α + 1]

) . (24)

For both scenarios, and fixed (n, p, α), M = 500 Monte Carlo replicates were performed.
Then, the empirical bias, RMSE, and CP are calculated by

Bias(γ̂) =
1
M

M

∑
i=1

(γ̂i − γ),

RMSE(γ̂) =

[
1
M

M

∑
i=1

(γ̂i − γ)2

]1/2

,

CP95% =
1
M

M

∑
i=1

1[γ̂i±1.96×SE(γ̂i)]
(γ),

respectively, where γ = α, β j(p), j = 1, . . . , 5, 1[γ̂i±1.96×SE(γ̂i)]
(γ) is the indicator function

defined by
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1[γ̂i±1.96×SE(γ̂i)]
(γ) =

{
1, γ ∈ (γ̂i ± 1.96 × SE(γ̂i))

0, γ /∈ (γ̂i ± 1.96 × SE(γ̂i))
,

and SE(γ̂i) is the estimated standard error of γ̂i.
These summaries are provided in Tables 4 and 5. In both settings, the good perfor-

mance of our estimators is observed.

Table 4. Empirical bias, RMSE, and CP95% for the true values β0(p) = 0.275, β1(p) = 0.098, β2(p) = 0.015,
β3(p) = 0.397, and α = 1.285 with simulated data.

p n
Bias RMSE CP95%

β0(p) β1(p) β2(p) β3(p) α β0(p) β1(p) β2(p) β3(p) α β0(p) β1(p) β2(p) β3(p) α

0.1

100 0.018 0.000 0.000 −0.005 0.070 0.069 0.072 0.064 0.067 0.184 0.940 0.950 0.956 0.948 0.960
200 0.011 −0.003 0.001 0.002 0.022 0.048 0.046 0.043 0.043 0.116 0.924 0.932 0.942 0.954 0.952
300 0.005 −0.002 0.003 −0.001 0.015 0.037 0.035 0.037 0.039 0.096 0.944 0.964 0.948 0.940 0.958
400 0.005 0.000 0.000 −0.001 0.014 0.034 0.034 0.032 0.034 0.081 0.940 0.950 0.950 0.952 0.958

0.25

100 0.012 −0.003 −0.004 0.000 0.073 0.072 0.060 0.059 0.071 0.190 0.918 0.942 0.936 0.944 0.952
200 0.006 −0.002 0.000 −0.001 0.026 0.046 0.046 0.044 0.044 0.118 0.938 0.946 0.956 0.948 0.956
300 0.005 0.001 −0.001 0.002 0.016 0.037 0.040 0.036 0.039 0.090 0.938 0.956 0.954 0.944 0.962
400 0.001 0.001 −0.001 0.002 0.021 0.032 0.033 0.034 0.031 0.084 0.944 0.942 0.940 0.960 0.956

0.5

100 0.010 −0.006 −0.002 −0.006 0.057 0.079 0.065 0.064 0.075 0.188 0.940 0.944 0.944 0.934 0.950
200 0.004 −0.001 0.001 −0.003 0.038 0.051 0.048 0.048 0.046 0.118 0.956 0.946 0.930 0.940 0.962
300 0.002 0.005 0.001 −0.002 0.019 0.046 0.037 0.035 0.036 0.097 0.926 0.956 0.948 0.956 0.952
400 −0.001 −0.001 0.000 −0.001 0.022 0.035 0.03 0.034 0.031 0.081 0.956 0.960 0.940 0.954 0.954

0.75

100 −0.007 0.001 −0.002 0.002 0.059 0.117 0.068 0.068 0.064 0.183 0.940 0.946 0.942 0.940 0.954
200 0.001 0.002 −0.001 −0.002 0.027 0.082 0.041 0.044 0.047 0.122 0.950 0.944 0.946 0.938 0.958
300 −0.004 −0.001 0.000 −0.002 0.024 0.066 0.036 0.035 0.040 0.094 0.954 0.958 0.966 0.926 0.956
400 0.002 0.001 0.001 0.001 0.014 0.053 0.033 0.032 0.031 0.079 0.966 0.936 0.958 0.950 0.964

0.9

100 −0.031 0.000 0.001 0.004 0.067 0.196 0.070 0.066 0.065 0.198 0.920 0.944 0.952 0.936 0.940
200 −0.020 0.001 0.000 0.004 0.035 0.140 0.050 0.043 0.044 0.123 0.928 0.944 0.942 0.964 0.954
300 −0.008 −0.001 −0.001 0.000 0.019 0.113 0.038 0.039 0.039 0.097 0.942 0.948 0.958 0.936 0.948
400 −0.004 −0.001 0.000 0.002 0.013 0.095 0.034 0.031 0.033 0.083 0.952 0.942 0.944 0.948 0.942

Table 5. Empirical bias, RMSE, and CP95% for the true values β0(p) = −2.975, β1(p) = 0.005,
β2(p) = 0.092, β3(p) = −0.958, β4(p) = −0.122, β5(p) = −0.289, and α = 7.425 with
simulated data.

p n
Bias RMSE CP95%

β0(p) β1(p) β2(p) β3(p) β4(p) β5(p) α β0(p) β1(p) β2(p) β3(p) β4(p) β5(p) α β0(p) β1(p) β2(p) β3(p) β4(p) β5(p) α

0.1

100 0.009 0.001 0.000 −0.003 −0.001 0.001 0.844 0.038 0.034 0.030 0.031 0.029 0.030 1.745 0.928 0.936 0.960 0.946 0.944 0.956 0.964
200 0.006 0.001 0.000 0.001 0.000 0.001 0.344 0.027 0.020 0.021 0.021 0.020 0.022 1.069 0.926 0.944 0.948 0.950 0.968 0.938 0.952
300 0.003 0.000 0.000 0.000 0.000 0.000 0.210 0.020 0.018 0.019 0.018 0.017 0.017 0.829 0.942 0.936 0.924 0.964 0.958 0.954 0.958
400 0.003 0.001 0.001 0.000 −0.001 −0.001 0.187 0.018 0.015 0.015 0.015 0.014 0.017 0.699 0.952 0.952 0.962 0.930 0.960 0.926 0.952

0.25

100 0.006 0.002 0.002 0.002 0.001 0.000 0.851 0.035 0.035 0.032 0.03 0.031 0.032 1.806 0.926 0.930 0.952 0.958 0.938 0.948 0.956
200 0.002 0.000 0.000 0.001 0.001 0.001 0.341 0.023 0.021 0.024 0.024 0.023 0.023 1.053 0.946 0.944 0.926 0.942 0.938 0.942 0.968
300 0.003 0.000 −0.001 −0.001 0.001 0.000 0.239 0.019 0.018 0.017 0.018 0.018 0.017 0.793 0.940 0.948 0.942 0.946 0.942 0.948 0.956
400 0.001 0.000 0.001 0.000 −0.001 0.001 0.223 0.016 0.015 0.016 0.016 0.016 0.015 0.701 0.950 0.95 0.938 0.932 0.950 0.956 0.96

0.5

100 0.003 0.001 0.000 0.000 0.000 −0.002 0.783 0.032 0.031 0.035 0.028 0.033 0.027 1.698 0.936 0.948 0.916 0.954 0.938 0.942 0.974
200 0.001 0.001 −0.001 0.002 0.001 −0.001 0.441 0.022 0.021 0.020 0.020 0.021 0.020 1.065 0.950 0.944 0.940 0.954 0.928 0.950 0.964
300 0.001 0.000 0.000 0.000 −0.001 0.002 0.249 0.018 0.017 0.017 0.018 0.018 0.018 0.84 0.936 0.946 0.952 0.940 0.946 0.940 0.964
400 −0.001 0.000 0.001 0.000 0.000 0.000 0.238 0.015 0.015 0.016 0.015 0.015 0.015 0.688 0.962 0.950 0.962 0.942 0.952 0.948 0.95

0.750

100 −0.003 −0.001 0.001 0.002 0.004 0.000 0.730 0.037 0.030 0.031 0.029 0.033 0.030 1.741 0.930 0.942 0.946 0.956 0.926 0.930 0.956
200 −0.002 0.000 −0.001 −0.001 0.000 0.000 0.415 0.026 0.022 0.022 0.022 0.022 0.021 1.088 0.948 0.954 0.944 0.964 0.942 0.942 0.956
300 −0.002 0.000 −0.002 0.000 0.001 0.001 0.302 0.021 0.017 0.017 0.017 0.017 0.020 0.844 0.946 0.954 0.958 0.960 0.962 0.932 0.948
400 0.000 0.002 −0.001 0.001 0.000 −0.001 0.212 0.017 0.015 0.016 0.016 0.015 0.015 0.695 0.960 0.948 0.930 0.956 0.942 0.952 0.964

0.9

100 −0.017 0.001 0.000 0.000 0.000 0.002 0.919 0.053 0.031 0.029 0.032 0.027 0.031 1.949 0.896 0.948 0.942 0.954 0.930 0.940 0.954
200 −0.006 0.001 0.000 0.000 0.000 −0.001 0.348 0.036 0.023 0.022 0.021 0.024 0.022 1.012 0.944 0.960 0.926 0.950 0.948 0.952 0.968
300 −0.005 −0.001 0.000 −0.001 0.000 0.000 0.250 0.028 0.019 0.016 0.018 0.019 0.018 0.830 0.956 0.936 0.944 0.942 0.940 0.934 0.942
400 −0.003 0.000 0.001 0.000 −0.001 0.000 0.179 0.025 0.015 0.015 0.016 0.017 0.016 0.706 0.938 0.952 0.950 0.944 0.930 0.960 0.948

6. Applications

In this section, the unit-power half-normal quantile regression model is applied to
two real-world health data sets. The first one involves patient health outcomes and the
second one examines survival rates under a specific treatment. We compare the results
with those obtained from the Kumaraswamy (kum), the unit-Birnbaum–Saunders (ubs) [9],
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the unit-generalized half-normal-X (ughnx) [13], the unit-Gompertz (ugompertz) [29], and
the unit-Weibull (uweibull) [30] quantile regression models.

We performed our calculations by using the R software. To fit the unit-power half-
normal quantile regression model, we implemented our own code, combining existing
functions available in R packages. For the Kumaraswamy, the unit-Birnbaum–Saunders,
the unit-generalized half-normal-X, the unit-Gompertz, and the unit-Weibull quantile
regression models, we used the R package unitquantreg [31]. The codes are available
in a public GitHub repository (https://github.com/DarlinSoto/UPHN (accessed on 12
August 2024)).

6.1. Application 1: Body Fat Data Set

This data set was reported and studied in [32] and consists of 298 observations about
the body fat percentage of individuals treated at a public hospital in Curitiba, Paraná, Brazil.
The data set includes the variables: fat percentage of arms, legs, body, android, gynecoid,
the body mass index (kg/m2), age (years), gender (female or male), and level of physical
activity (sedentary, insufficiently active, or active). The goal is to explore the functional
relationship between the covariates gender, age, body mass index, and the level of physical
activity, with the response variable body fat in arms. The assumed regression model for
ρi is

logit(ρi(p)) = β0(p) + β1(p)Agei + β2(p)BodyMassIndexi + β3(p)Gender_Mi

+β4(p)IPAQ_suffactive + β5(p)IPAQ_active, i = 1, . . . , 298,

where

Gender_Mi =

1, if the person i is a male

0, if the person i is a female
(25)

IPAQ_suffactivei =

1, if the physical activity of the person i is insufficiently active

0, if the physical activity of the person i is sedentary or active
(26)

IPAQ_activei =


1, if the physical activity of the person i is active

0, if the physical activity of the person i is sedentary

or insufficiently active.

(27)

To explore the relationship between gender, age, body mass index, and the level of
physical activity with the body fat in arms, the unit-power half-normal, the Kumaraswamy,
the unit-generalized half-normal-X, the unit-Gompertz, and the unit-Weibull quantile
regression models were fitted to the data and the fits were compared by using goodness-of-
fit measurements. Table 6 presents the maximum likelihood estimates and their standard
errors, Table 7 shows their p-values, and Table 8 shows the negative value of the log-
likelihood, Akaike information criterion, Bayesian information criterion, and Hannan and
Quinn information criterion given by

Neg2LogLike = −2 log(L) (28)

AIC = −2 log(L) + 2k (29)

BIC = −2 log(L) + k log(n) (30)

HQIC = −2 log(L) + 2k log[log(n)] (31)

where n is the sample size, k is the number of parameters, and L is the likelihood function
evaluated in the estimated parameters.

According to the results presented in Tables 6 and 7, and for all quantile levels
p, the unit-power half-normal, the unit-generalized half-normal-X, the unit-Gompertz,
and the unit-Weibull quantile regression models show that all covariates are statistically
significant at the 0.05 level. On the other hand, the Kumaraswamy quantile regression

https://github.com/DarlinSoto/UPHN
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model shows that all variables are significant except for the IPAQ_suffactive variable.
Upon analyzing the signs of β̂ j, we observe that an increase in covariates such as Age
and BodyMassIndex corresponds to an increase in arm fat percentage. Moreover, males
exhibit lower arm fat percentages than females, and individuals with a sedentary lifestyle
demonstrate an increase in arm fat percentages compared to those with insufficiently active
or active lifestyles.

Table 6. Maximum likelihood estimates and their standard errors for different distributions (uphn,
kum, ughnx, ugompertz, and uweibull) in body fat data.

p Distribution β̂0(p) SE(β̂0(p)) β̂1(p) SE(β̂1(p)) β̂2(p) SE(β̂2(p)) β̂3(p) SE(β̂3(p)) β̂4(p) SE(β̂4(p)) β̂5(p) SE(β̂5(p)) α̂ SE(α̂) θ̂ SE(θ̂)

0.1

uphn −3.315 0.143 0.005 0.001 0.091 0.006 −0.955 0.035 −0.118 0.052 −0.283 0.050 7.921 0.867
kum −3.070 0.137 0.004 0.001 0.073 0.006 −0.730 0.033 −0.073 0.048 −0.196 0.047 4.705 0.210
ughnx −3.294 0.155 0.004 0.001 0.080 0.006 −0.799 0.035 −0.099 0.049 −0.228 0.050 2.619 0.116
ugompertz −3.436 0.165 0.005 0.001 0.094 0.007 −0.967 0.041 −0.128 0.062 −0.352 0.06 3.657 0.155
uweibull −3.214 0.168 0.006 0.001 0.086 0.007 −0.966 0.042 −0.131 0.055 −0.355 0.055 5.976 0.243

0.25

uphn −3.174 0.147 0.005 0.001 0.092 0.007 −0.958 0.036 −0.122 0.053 −0.289 0.051 7.425 0.789
kum −2.894 0.142 0.004 0.001 0.077 0.006 −0.771 0.035 −0.074 0.050 −0.206 0.050 4.715 0.210
ughnx −2.939 0.149 0.004 0.001 0.080 0.006 −0.799 0.035 −0.099 0.049 −0.228 0.050 2.619 0.116
ugompertz −3.327 0.169 0.006 0.001 0.098 0.007 −1.000 0.042 −0.136 0.064 −0.364 0.062 3.674 0.155
uweibull −2.960 0.159 0.005 0.001 0.082 0.007 −0.919 0.040 −0.127 0.053 −0.339 0.053 5.980 0.243

0.5

uphn −2.975 0.146 0.005 0.001 0.092 0.007 −0.958 0.036 −0.122 0.053 −0.289 0.051 7.425 0.789
kum −2.754 0.149 0.004 0.001 0.082 0.006 −0.820 0.037 −0.076 0.054 −0.216 0.053 4.724 0.210
ughnx −2.653 0.146 0.004 0.001 0.080 0.006 −0.799 0.035 −0.099 0.049 −0.228 0.050 2.619 0.116
ugompertz −3.190 0.178 0.006 0.001 0.104 0.008 −1.057 0.044 −0.148 0.068 −0.385 0.066 3.700 0.155
uweibull −2.640 0.148 0.005 0.001 0.077 0.006 −0.863 0.037 −0.121 0.050 −0.319 0.050 5.985 0.243

0.75

uphn −2.772 0.147 0.005 0.001 0.093 0.007 −0.958 0.036 −0.122 0.053 −0.287 0.051 7.440 0.791
kum −2.658 0.157 0.004 0.001 0.087 0.006 −0.870 0.039 −0.078 0.057 −0.227 0.057 4.731 0.210
ughnx −2.449 0.144 0.004 0.001 0.080 0.006 −0.799 0.034 −0.099 0.049 −0.228 0.050 2.619 0.116
ugompertz −3.040 0.191 0.006 0.002 0.113 0.008 −1.151 0.048 −0.167 0.074 −0.417 0.071 3.737 0.154
uweibull −2.272 0.138 0.005 0.001 0.072 0.006 −0.803 0.035 −0.115 0.047 −0.298 0.046 5.992 0.243

0.9

uphn −2.538 0.148 0.005 0.001 0.091 0.007 −0.957 0.036 −0.121 0.053 −0.285 0.051 7.501 0.799
kum −2.599 0.165 0.005 0.001 0.092 0.007 −0.915 0.042 −0.078 0.06 −0.236 0.060 4.736 0.210
ughnx −2.312 0.143 0.004 0.001 0.08 0.006 −0.800 0.034 −0.099 0.049 −0.228 0.050 2.619 0.116
ugompertz −2.902 0.212 0.007 0.002 0.127 0.009 −1.296 0.054 −0.195 0.083 −0.466 0.079 3.789 0.153
uweibull −1.896 0.130 0.004 0.001 0.067 0.006 −0.746 0.032 −0.109 0.044 −0.278 0.043 6.000 0.243

Table 7. p-values of Wald test for β j(p), j = 0, . . . , 5, coefficients for different distributions (uphn,
kum, ughnx, ugompertz, and uweibull) in body fat data.

p Distribution
p-Value

β0(p) β1(p) β2(p) β3(p) β4(p) β5(p)

0.1

uphn <10−3 <10−3 <10−3 <10−3 0.023 <10−3

kum <10−3 <10−3 <10−3 <10−3 0.127 <10−3

ughnx <10−3 <10−3 <10−3 <10−3 0.046 <10−3

ugompertz <10−3 <10−3 <10−3 <10−3 0.038 <10−3

uweibull <10−3 <10−3 <10−3 <10−3 0.017 <10−3

0.25

uphn <10−3 <10−3 <10−3 <10−3 0.021 <10−3

kum <10−3 <10−3 <10−3 <10−3 0.139 <10−3

ughnx <10−3 <10−3 <10−3 <10−3 0.045 <10−3

ugompertz <10−3 <10−3 <10−3 <10−3 0.034 <10−3

uweibull <10−3 <10−3 <10−3 <10−3 0.016 <10−3

0.5

uphn <10−3 <10−3 <10−3 <10−3 0.021 <10−3

kum <10−3 <10−3 <10−3 <10−3 0.154 <10−3

ughnx <10−3 <10−3 <10−3 <10−3 0.045 <10−3

ugompertz <10−3 <10−3 <10−3 <10−3 0.029 <10−3

uweibull <10−3 <10−3 <10−3 <10−3 0.015 <10−3

0.75

uphn <10−3 <10−3 <10−3 <10−3 0.022 <10−3

kum <10−3 <10−3 <10−3 <10−3 0.173 <10−3

ughnx <10−3 <10−3 <10−3 <10−3 0.045 <10−3

ugompertz <10−3 <10−3 <10−3 <10−3 0.023 <10−3

uweibull <10−3 <10−3 <10−3 <10−3 0.014 <10−3

0.9

uphn <10−3 <10−3 <10−3 <10−3 0.022 <10−3

kum <10−3 <10−3 <10−3 <10−3 0.193 <10−3

ughnx <10−3 <10−3 <10−3 <10−3 0.044 <10−3

ugompertz <10−3 <10−3 <10−3 <10−3 0.019 <10−3

uweibull <10−3 <10−3 <10−3 <10−3 0.012 <10−3

Based on the results given in Table 8, the unit-power half-normal quantile regression
model consistently shows higher log-likelihood values across all quantile levels p compared
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to the Kumaraswamy, the unit-generalized half-normal-X, the unit-Gompertz, and the
unit-Weibull quantile regression models. Consequently, all goodness-of-fit measurements
indicate that the unit-power half-normal quantile regression model provides the best fit to
these data, while the unit-Gompertz model provides the worst one.

Table 8. Model selection criteria for different distributions (uphn, kum, ughnx, ugompertz, and
uweibull) for body fat data.

p Distribution Neg2LogLike AIC BIC HQIC

0.1

uphn −876.795 −862.795 −836.916 −852.436
kum −853.660 −839.660 −813.781 −829.301
ughnx −858.131 −844.131 −818.251 −833.771
ugompertz −763.903 −749.903 −724.023 −739.544
uweibull −852.151 −838.151 −812.271 −827.791

0.25

uphn −877.216 −863.216 −837.336 −852.856
kum −856.224 −842.224 −816.344 −831.865
ughnx −858.131 −844.131 −818.251 −833.771
ugompertz −766.845 −752.845 −726.965 −742.486
uweibull −853.364 −839.364 −813.484 −829.004

0.5

uphn −877.215 −863.215 −837.336 −852.856
kum −859.03 −845.03 −819.151 −834.671
ughnx −858.131 −844.131 −818.251 −833.771
ugompertz −771.300 −757.300 −731.420 −746.941
uweibull −854.932 −840.932 −815.052 −830.573

0.75

uphn −877.222 −863.222 −837.343 −852.863
kum −861.657 −847.657 −821.778 −837.298
ughnx −858.131 −844.131 −818.251 −833.771
ugompertz −777.425 −763.425 −737.546 −753.066
uweibull −856.757 −842.757 −816.877 −832.397

0.9

uphn −877.185 −863.185 −837.306 −852.826
kum −863.813 −849.813 −823.933 −839.454
ughnx −858.131 −844.131 −818.251 −833.771
ugompertz −784.259 −770.259 −744.379 −759.899
uweibull −858.602 −844.602 −818.723 −834.243

To validate these inferences, we conducted a diagnostic analysis for the fitted models.
The Cox–Snell quantile residuals are considered, QQ plots are carried out by using their
simulated envelopes. The Cramér–von Mises test is applied, where the null hypothesis
is that the residuals come from an exponential distribution with a scale parameter of one.
These plots are given in Figure 6. This figure suggests that the unit-power half-normal and
Kumaraswamy quantile regression models provide a more substantial agreement with the
data set compared to the unit-generalized half-normal-X, unit-Gompertz, and unit-Weibull
quantile regression models, mainly because most of the residuals envelopes fail to cover
the grey points, and the null hypothesis that the residuals come from an exponential
distribution is rejected at the 5% significance level.

Therefore, the unit-power half-normal quantile regression model provides the best
fit for the data, as it consistently shows the minimum goodness-of-fit measures, with all
coefficients being statistically significant. The model’s assumptions are validated through
diagnostic analyses, which confirm its reliability to describe the relationships between the
covariates and arm fat percentage.
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Figure 6. QQ plots with envelopes of Cox–Snell residuals for the indicated 100 p-th quantile level
and Cramér-von Mises test p-value for residuals obtained from different distributions (uphn, kum,
ughnx, ugompertz, and uweibull) with body fat data.

6.2. Application 2: Autologous Stem Cell Transplants Data Set

We consider another application linked to autologous peripheral blood stem cell
(PBSC) transplants, which have been extensively utilized to accelerate hematologic recovery
after myeloablative therapy for diverse malignant hematological disorders. The data
set comprises a study involving 239 patients who agreed to undergo autologous PBSC
transplant following myeloablative chemotherapy doses between 2003 and 2008 at the
Edmonton Hematopoietic Stem Cell Lab within the Cross Cancer Institute of Alberta Health
Services. This data set has been studied in [33] and contains information about the patients’
age, gender, and clinical characteristics. We aim to explain the response variable recovery
rates for viable CD34+ cells (rcd) in terms of age, gender, and chemotherapy. The regression
model assumed for ρi is given by

logit(ρi(p)) =β0(p) + β1(p)Sexmale_Mi + β2(p)Agei + β3(p)Chemoi, i = 1, . . . , 239, (32)
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where

Sexmale_Mi =

{
1, if the gender of the patient i is male
0, if the gender of the patient i is female

(33)

Chemoi =

{
1, if a patient i receives a chemotherapy on a 3-day protocol
0, if a patient i receives a chemotherapy on a 1-day protocol.

(34)

We examined the relationship between gender, age, chemotherapy, and the recovery
rate for viable CD34+ cells by fitting the unit-power half-normal, the Kumaraswamy,
the unit-generalized half-normal-X, the unit-Gompertz, and the unit-Birnbaum–Saunders
quantile regression models, and evaluated the fits using goodness-of-fit measures.

Tables 9 and 10 present the maximum likelihood estimates, their standard errors, and
their p-values. For the unit-power half-normal and the unit-Gompertz quantile regression
models, all quantile levels show statistically significant regression coefficients for the
variables age and chemo at the 5% level. On the other hand, for the unit-generalized
half-normal-X and the unit-Birnbaum–Saunders quantile regression models, the variable
chemo is the only one statistically significant at the 5% level, while for the Kumaraswamy
quantile regression, none of the three variables is statistically significant at the 5% level.
Thus, based on the unit-power half-normal and the unit-Gompertz quantile regressions, we
may conclude that the covariates Age and Chemo significantly affect the response variable
recovery rate for viable CD34+ cells. Specifically, as Age increases, the recovery rate for
viable CD34+ cells also increases. Additionally, patients receiving chemotherapy on a
three-day protocol exhibit a higher recovery rate for viable CD34+ cells than those on a
one-day protocol.

Table 9. Maximum likelihood estimates with their standard errors across different distributions
(uphn, kum, ughnx, ugompertz, and ubs) with PBSC data.

p Distribution β̂0 SE(β̂0(p)) β̂1 SE(β̂1(p)) β̂2 SE(β̂2(p)) β̂3 SE(β̂3(p)) α̂ SE(α̂) θ̂ SE(θ̂)

0.1

uphn −0.498 0.211 0.097 0.090 0.015 0.003 0.397 0.094 1.284 0.104
kum 0.281 0.156 0.023 0.055 0.003 0.002 0.085 0.065 6.707 0.454
ughnx −1.122 0.457 −0.152 0.167 0.001 0.007 0.380 0.192 0.645 0.028
ugompertz −0.456 0.231 0.094 0.098 0.014 0.004 0.337 0.106 2.789 0.342
ubs −0.150 0.350 −0.005 0.143 0.008 0.006 0.344 0.155 0.883 0.040

0.25

uphn −0.180 0.210 0.097 0.090 0.015 0.003 0.397 0.094 1.285 0.104
kum 0.653 0.191 0.029 0.071 0.004 0.003 0.113 0.085 6.708 0.454
ughnx 0.320 0.422 −0.152 0.160 0.001 0.007 0.380 0.179 0.645 0.029
ugompertz −0.169 0.252 0.102 0.106 0.015 0.004 0.365 0.115 2.789 0.342
ubs 0.491 0.314 −0.006 0.130 0.007 0.005 0.316 0.140 0.883 0.040

0.5

uphn 0.275 0.211 0.098 0.090 0.015 0.003 0.397 0.094 1.285 0.104
kum 1.053 0.253 0.038 0.096 0.006 0.004 0.159 0.115 6.708 0.454
ughnx 1.482 0.401 −0.152 0.158 0.001 0.006 0.38 0.174 0.645 0.029
ugompertz 0.277 0.285 0.112 0.118 0.017 0.005 0.401 0.126 2.788 0.342
ubs 1.179 0.291 −0.006 0.122 0.007 0.005 0.298 0.131 0.883 0.040

0.75

uphn 0.888 0.218 0.097 0.090 0.015 0.003 0.397 0.094 1.285 0.104
kum 1.443 0.343 0.050 0.132 0.008 0.006 0.226 0.158 6.708 0.454
ughnx 2.309 0.393 −0.152 0.157 0.001 0.006 0.380 0.172 0.645 0.029
ugompertz 0.945 0.323 0.122 0.129 0.019 0.005 0.436 0.138 2.785 0.342
ubs 1.820 0.282 −0.007 0.117 0.007 0.005 0.289 0.126 0.883 0.040

0.9

uphn 1.626 0.238 0.097 0.09 0.015 0.003 0.397 0.094 1.285 0.104
kum 1.786 0.452 0.063 0.175 0.012 0.007 0.313 0.208 6.708 0.454
ughnx 2.864 0.389 −0.152 0.157 0.001 0.006 0.380 0.171 0.645 0.029
ugompertz 1.825 0.350 0.128 0.137 0.020 0.005 0.457 0.146 2.781 0.341
ubs 2.338 0.279 −0.007 0.115 0.007 0.005 0.284 0.123 0.882 0.040

Table 11 displays the model selection criteria for the unit-power half-normal, the
Kumaraswamy, the unit-generalized half-normal-X, the unit-Gompertz, and the unit-
Birnbaum–Saunders quantile regressions. From this table, it can be said that the log-
likelihood values of the unit-power half-normal quantile regression surpass those of the
Kumaraswamy, the unit-generalized half-normal-X, the unit-Gompertz, and the unit-
Birnbaum–Saunders quantile regressions. Therefore, based on these criteria, we may
conclude that the unit-power half-normal model has a superior performance.
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Table 10. p-values of Wald test for coefficients β j(p), j = 0,1, 2, 3, across different distributions (uphn,
kum, ughnx, ugompertz, and ubs) for PBSC data.

p Distribution
p-Value

β0(p) β1(p) β2(p) β3(p)

0.1

uphn 0.018 0.277 <10−3 <10−3

kum 0.071 0.677 0.164 0.189
ughnx 0.014 0.365 0.932 0.048
ugompertz 0.048 0.338 <10−3 0.001
ubs 0.669 0.974 0.165 0.027

0.25

uphn 0.392 0.277 <10−3 <10−3

kum <10−3 0.685 0.157 0.181
ughnx 0.448 0.343 0.928 0.034
ugompertz 0.502 0.338 <10−3 0.001
ubs 0.118 0.965 0.156 0.024

0.5

uphn 0.193 0.276 <10−3 <10−3

kum <10−3 0.695 0.147 0.168
ughnx <10−3 0.337 0.926 0.028
ugompertz 0.331 0.341 <10−3 0.001
ubs <10−3 0.958 0.15 0.023

0.75

uphn <10−3 0.278 <10−3 <10−3

kum <10−3 0.706 0.134 0.151
ughnx <10−3 0.335 0.926 0.027
ugompertz 0.003 0.346 <10−3 0.002
ubs <10−3 0.954 0.146 0.022

0.9

uphn <10−3 0.277 <10−3 <10−3

kum <10−3 0.718 0.119 0.132
ughnx <10−3 0.335 0.925 0.026
ugompertz <10−3 0.350 <10−3 0.002
ubs <10−3 0.951 0.144 0.022

Finally, Figure 7 displays the QQ plots of the Cox–Snell quantile residuals and the
p-value of the Cramér–von Mises test for the null hypothesis that the residuals come from
an exponential distribution with a scale parameter of one. This figure indicates that most
of the Cox–Snell quantile residuals obtained from the unit-power half-normal and the
Kumaraswamy quantile regressions are inside the simulated envelopes. However, this
is not the case for the Cox–Snell quantile residuals obtained from the unit-generalized
half-normal-X, the unit-Gompertz, and the unit-Birnbaum–Saunders quantile regressions.
These facts suggest that the assumption about Cox–Snell quantile residuals may not be
right in those cases. This is validated by the p-value of the Cramér–von Mises test, where
for the unit-generalized half-normal, the unit-Gompertz, and the unit-Birnbaum–Saunders
quantile regressions, the p-value is less than 0.05, rejecting the null hypothesis that residuals
come from an exponential distribution.

Therefore, the unit-power half-normal quantile regression model is the best fit for
the autologous stem cell transplants data. It consistently shows higher log-likelihood
values and better model selection criteria compared to the other models. The significant
coefficients for age and chemotherapy at the 5% level highlight their strong association
with recovery rates for viable CD34+ cells. Furthermore, diagnostic analyses, including
QQ plots and the Cramér–von Mises test, validate the model’s assumptions, confirming its
superior performance.
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Table 11. Model selection criteria for different distributions (uphn, kum, ughnx, ugompertz, and ubs)
for PBSC data.

p Distribution Neg2LogLike AIC BIC HQIC

0.1

uphn −384.643 −374.643 −357.26 −367.638
kum −384.207 −374.207 −356.824 −367.202
ughnx −190.055 −180.055 −162.673 −173.051
ugompertz −369.921 −359.921 −342.539 −352.916
ubs −313.824 −303.824 −286.442 −296.82

0.25

uphn −384.643 −374.643 −357.26 −367.638
kum −384.234 −374.234 −356.851 −367.229
ughnx −190.055 −180.055 −162.673 −173.051
ugompertz −369.908 −359.908 −342.526 −352.904
ubs −313.861 −303.861 −286.479 −296.856

0.5

uphn −384.643 −374.643 −357.26 −367.638
kum −384.271 −374.271 −356.889 −367.267
ughnx −190.055 −180.055 −162.673 −173.051
ugompertz −369.865 −359.865 −342.483 −352.861
ubs −313.889 −303.889 −286.507 −296.885

0.75

uphn −384.643 −374.643 −357.26 −367.638
kum −384.318 −374.318 −356.936 −367.313
ughnx −190.055 −180.055 −162.673 −173.051
ugompertz −369.793 −359.793 −342.41 −352.788
ubs −313.906 −303.906 −286.524 −296.902

0.9

uphn −384.643 −374.643 −357.26 −367.638
kum −384.367 −374.367 −356.985 −367.362
ughnx −190.055 −180.055 −162.673 −173.051
ugompertz −369.728 −359.728 −342.345 −352.723
ubs −313.915 −303.915 −286.532 −296.910
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Figure 7. QQ plots with envelopes of Cox–Snell residuals for the proposed 100 p-th quantile level
and Cramér–von Mises test p-value for residuals obtained from different distributions (uphn, kum,
ughnx, ugompertz, and uweibull) with PBSC data.
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7. Conclusions

In this paper, we have put forth a new quantile regression model. The predictor
covariates were linked to the quantile of the dependent variable through the logit link func-
tion. We examined various aspects such as estimation, inference relying on the maximum
likelihood method, and diagnoses via the quantile residual. We evaluated two real data sets
drawn from medical data using our proposed quantile regression model and the previously
introduced Kumaraswamy quantile regression models. The outcomes showed that our
proposed quantile regression fitted well to the two real-world data sets. In the first one,
the covariates age, body mass index, gender, and level of physical activity are statistically
significant to evaluate the level of physical activity with the body fat in arms. For the second
data set, the covariates age and chemo are statistically significant to explain the response
variable recovery rates for viable CD34+ cells (rcd), using our proposed quantile regression
model as an alternative to other rival models outlined in the related literature. We carried
out a comparison based on different information criteria and the model’s goodness of fit,
showing its suitability.
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