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1. Introduction

Differential equations are essential mathematical tools employed to model and ana-
lyze a diverse array of phenomena across various scientific and engineering disciplines.
Consequently, investigating the existence of solutions to differential equations has become
a significant area of study. To address this, numerous mathematical theories have been ap-
plied, including phase space theories [1–5], smooth theory [6–8], operator methods [9–12],
and critical point theory [13,14].

Let H be a real Hilbert space, where we consider the self-adjoint operator equation:

Ax = G(x), x ∈ D(A) ⊂ H, (1)

where A is a self-adjoint operator with domain D(A) ⊂ H, and F is a potential operator
such that G(x) = Ψ′(x), Ψ ∈ C2(H,R) and Ψ(0) = 0.

Many problems can indeed be represented by the operator Equation (1), such as
Laplace’s equation on bounded domains with a Dirichlet boundary, periodic solutions
of Hamiltonian systems [15,16], the Schrödinger equation [17–19], periodic solutions of
the wave equation [14], resonant elliptic systems [20–22], and others. For these problems,
the calculus of variations indicates that the solutions of Equation (1) correspond to the
critical points of a functional on a Hilbert space ([23], Chapter 1). Thus, finding solutions to
Equation (1) translates into finding the critical points of a functional. Infinite-dimensional
Morse theory is articularly useful for obtaining critical points for the functional [13,24].

However, if the Palais—Smale (PS) condition does not hold, these methods become
significantly more challenging [21,22]. To address this issue, saddle point reduction is a
viable approach. The theory of saddle point reduction (also known as Lyapunov-Schmidt
reduction in some literature) was established by Amann in 1979 [25]. Since then, it has
become an important tool in critical point theory and has been widely used to solve various
boundary value problems [13,26,27]. Therefore, the first step of our study is to perform a
saddle point reduction.

According to operator spectral theory, the Hilbert space H can be decomposed
as follows:

H = H− ⊕ H0 ⊕ H+,
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where ⟨Ax, x⟩ > 0 for x ∈ H+\{0}, ⟨Ax, x⟩ < 0 for x ∈ H−\{0},and H0 = ker A. Let σ(A)
denote the spectrum of A, σd denote the eigenvalues with finite multiplicity, and σe denote
the essential spectrum of A. We introduce two important conditions:

( C1) There is a constant α > 0 such that α /∈ σ(A) and σ(A) ∩ [−α, α] ⊂ σd(A) contain at
most finitely many eigenvalues.

( C2) The operator F is Gâteaux-differentiable in H and satisfies∥∥G′(x)
∥∥ ≤ α, ∀x ∈ H. (2)

We define the following functional:

g(x) =
1
2
⟨Ax, x⟩ − Φ(x), x ∈ D(A) ⊂ H (3)

It is clear that x is a critical point of g(x) if and only if x is a solution of Equation (1). Let
x be a critical point of g. We denote the Morse index of x by m−(g′′(x)), which is the
dimension of the largest negative space of g′′(x). Similarly, we denote the positive Morse
index of x by m+(g′′(x)), which is the dimension of the largest positive space of g′′(x).

Let P0 : H → ker A be a projection operator, and we define an operator on D(A)
as follows:

A0x = Ax + P0x, x ∈ D(A).

Then A0 is a self-adjoint invertible Fredholm operator.
Without loss of generality, we fix a constant C such that

C /∈ σ(A). (4)

Let {Eλ} be the spectral family associated with A0. Here are three projections on the space
H defined as follows:

P− =
∫ −C

−∞
dEλ, P =

∫ C

−C
dEλ, P+ =

∫ ∞

C
dEλ.

Then, we can decompose the space H as follows.

H = H− ⊕ H0 ⊕ H+, (5)

where H± = P±H, and H0 = PH.
Using ([13], Chapter IV, Theorem 2.1), we reduce the Equation (1) to the finite

dimensional case.

Proposition 1. Given assumptions ( C1) and ( C2), there exist a functional a ∈ C2(H0,R) and
an injective map u ∈ C1(H0, D(A)) such that the following conditions are satisfied:

1. The map u can be expressed as u(z) = w(z) + z, where Pw(z) = 0.
2. The functional a adheres to the following:

a(z) = g(u(z)) =
1
2
⟨Au(z), u(z)⟩ − Ψ(u(z)),

a′(z) = Az − PF(u(z)) = Au(z)− G(u(z)),

a′′(z) = AP − PdG(u(z))u′(z) = [A − dG(u(z))]u′(z).

(6)

3. z is a critical point of a if and only if u(z) is a critical point of g, which is equivalent to u(z)
being a solution to the operator Equation (1).
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Let Hq(A, B) represent the qth singular relative homology group of the topological
pair (A, B) with coefficients in a field F . Consider x as an isolated critical point of the
function g with g(x) = c. The group defined by

Cq(g, x) := Hq(gc, gc \ {x}), q ∈ Z,

which is known as the qth critical group of g at the point x, where gc = {x ∈ H | g(x) ≤ c}.
Let us consider the following condition:

( C′
1) The spectrum of A consists solely of eigenvalues, meaning it is a point spectrum, and

dim H− < ∞.

It is straightforward to deduce that condition ( C1) follows from ( C′
1). Therefore,

under conditions ( C′
1) and ( C2), Proposition 1 remains valid. Additionally, with condi-

tion ( C′
1) in place, we can define the Morse index and critical groups for the functional

Equation (3).
This leads to a natural question: what is the relationship between the Morse index and

the critical groups before and after applying the saddle point reduction? Our main result
addresses this question as follows.

Theorem 1. Consider a real Hilbert space H, and let g ∈ C2(H,R) be the functional defined as in
Equation (3). If the conditions ( C′

1) and ( C2) are satisfied, and z ∈ H0 is an isolated critical point
of the reduced functional a, then the following results hold:

1. The Morse index of g′′(u(z)), denoted by m−(g′′(u(z))), is equal to the Morse index of a′′(z),
denoted by m−(a′′(z)), i.e., m−(g′′(u(z))) = m−(a′′(z)) + d, where d = dim P−H.

2. The critical group Cq(g, u(z)) at u(z) is related to the critical group of a′′(z) by Cq(g, u(z)) =
Cq−d(a′′(z)) for all q = 0, 1, 2, . . ..

Our exploration of the connection between the Morse index and the critical groups
before and after saddle point reduction is driven by the study of multiple solutions in
second-order Hamiltonian systems. In the third section of this paper, we apply our abstract
results to asymptotically linear second-order Hamiltonian systems. These types of problems
have garnered significant attention in recent years, as noted in [28–31].

Specifically, we focus on the following boundary value problem for second-order
Hamiltonian systems: {

−ẍ(t) = Vx(t, x(t)), t ∈ [0, τ],
x(0) = x(τ), ẋ(0) = ẋ(τ),

(7)

where V ∈ C2(R×Rn,R) satisfies V(t + τ, x) = V(t, x) for some τ > 0, and it adheres to
the linear growth condition:

|Vx(t, x)| ≤ C1(1 + |x|), (t, x) ∈ Sτ ×Rn, (8)

where C1 > 0 is a constant, and Sτ = R/(τZ). We can assume without loss of generality
that V(t, 0) = 0. Additionally, we assume Vx(t, 0) = 0, so x = 0 is a trivial solution of
Equation (7). Our goal is to find nontrivial τ-periodic solutions to the system Equation (7).

Consider A(t), a continuous symmetric matrix function that is τ-periodic. We focus
on the following eigenvalue problem:

−ẍ − A(t)x = λx (9)

subject to τ-periodic boundary conditions. It is well established that there exists a complete
sequence of distinct eigenvalues

−∞ < λ1(A) < λ2(A) < · · · (10)



Axioms 2024, 13, 603 4 of 16

such that λn(A) → +∞ as n → ∞.
Next, we outline several key assumptions regarding the nonlinearity V(t, x):

(V1) There exists a τ-periodic continuous symmetric positive definite matrix function A(t)
with eigenvalue λm(A) = 0 for some m ∈ N such that

Vx(t, x) = A(t)x + Kx(t, x), (11)

where Kx(t, x) = o(|x|) as |x| → 0.

(V±
2 ) There exists δ > 0 such that ±K(t, x) > 0 for all t ∈ R, and 0 < |x| < δ.

(V3) There exists a τ-periodic continuous symmetric matrix function B(t) with eigenvalue
λm(B) = 0 for some m ∈ N such that

Vx(t, x) = B(t)x + Lx(t, x), (12)

where Lx(t, x) = o(|x|) as |x| → +∞.

(V4) There exists a constant C(B) > 0 such that C(B) ̸= λi(B) for any i ∈ N, and

|Lxx(t, x)| < C(B) for all (t, x) ∈ R×Rn. (13)

(V5) There exists a constant l < 0 such that

L(t, x) < l|x| for all (t, x) ∈ R×Rn,

and l < λ(B) for all λ(B) ∈ (−C(B), C(B)).

Define

dm :=
m

∑
i=1

dim ker
(
− d2

dt2 − A(t)− λm(A)

)
. (14)

With this notation, our second main result can be stated as follows:

Theorem 2. Suppose V ∈ C2(R×Rn,R) satisfies V(t + τ, x) = V(t, x) for some τ > 0 and the
condition Equation (8). If assumptions (V1), (V3), (V4), and (V5) are satisfied and if dm ̸= d, then
the system of Equation (7) has at least two nontrivial solutions in the following cases:

(i) (V+
2 ) holds with dm ̸= d;

(ii) (V−
2 ) holds with dm−1 ̸= d.

2. Preliminaries

In this section, we provide the proof of Theorem 1. As a preliminary, we introduce
several key definitions and lemmas, all of which are referenced from [13].

First, we state a technical assumption—the Palais–Smale condition, which is frequently
encountered in critical point theory. Consider H as a separable Hilbert space.

Definition 1. Let g be a functional defined on H. The functional g is said to be Fréchet-differentiable
at u ∈ H if there exists a continuous linear map L = L(u) : H → R such that for any ε > 0, there
exists δ = δ(ε, u) > 0 such that

|g(u + v)− g(u)− Lv| ≤ ε∥v∥

for all ∥v∥ ≤ δ. The mapping L is typically denoted by g′(u).

A critical point u of g is a point where g′(u) = 0, that is,

g′(u)φ = 0
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for all φ ∈ H. The value of g at u is then referred to as a critical value of g.
Let C1(H,R) represent the set of functionals that are Fréchet-differentiable and whose

Fréchet derivatives are continuous on H.

Definition 2. We say that a functional g ∈ C1(H,R) satisfies the Palais–Smale condition (denoted
as (PS)) if any sequence (um) ⊂ H for which g(um) is bounded, and g′(um) → 0 as m → ∞ has a
convergent subsequence.

Remark 1. The (PS) condition is a useful way to introduce some “compactness” into the functional
g. Specifically, observe that (PS) implies that

Kc ≡
{

u ∈ H | g(u) = c and g′(u) = 0
}

meaning that the set of critical points with critical value c is compact for any c ∈ R.

The first lemma describes the critical group in terms of the Morse index.

Lemma 1 ([13]). Consider g ∈ C2(H,R), and let u be a nondegenerate critical point of g with
Morse index j. Then, Cq(g, u) = δq,jF .

For a critical point, which may be degenerate, the following significant result
is established:

Proposition 2 ([32], Corollary 8.4). Let g ∈ C2(E,R) and u0 be an isolated critical point with
finite Morse index µ and nullity ν. If g′′(u0) is a Fredholm operator, then Cq(g, u0) ∼= 0 for
q /∈ [µ, µ + ν]. Moreover, we have the following:

1. If Cµ(g, u) ̸= 0, then Cq(g, u) ∼= δq,µG.
2. If Cµ+ν(g, u) ̸= 0, then Cq(g, u) ∼= δq,µ+νG.

The following lemma is known as the splitting theorem:

Lemma 2 ([13,33]). Let U be a neighborhood of θ in a Hilbert space H, and let g ∈ C2(U,R1).
Suppose θ is the only critical point of f , and denote by L = d2g(θ) the Hessian at θ, with kernel
N. If 0 is either an isolated point in the spectrum σ(L) or not in σ(L), then there exist a ball Bδ

(δ > 0) centered at θ, an origin-preserving local homeomorphism ϕ defined on Bδ, and a C1 mapping
h : Bδ ∩ N → N⊥ such that

g ◦ ϕ(z + y) =
1
2
(Lz, z) + g(h(y) + y), ∀x ∈ Bδ, (15)

where y = PN x, z = PN⊥x, and PN define the orthogonal projection onto the subspace N.

Definition 3 ([13]). Consider a Banach space X and a connected Hausdorff space M. We define M
as a Banach Cr manifold, for r ⩾ 1 (integer) and modeled on X, if the following conditions hold:

1. There exists a family of open coverings {Ui | i ∈ Λ};
2. There exists a family of coordinate charts {ϕi |: Ui → ϕi(Ui) ⊂ X , where ϕi is a homeomor-

phism for each i ∈ Λ;
3. The transition maps ϕi ◦ ϕ−1

i′ : ϕi′(Ui ∩ Ui′) → ϕi(Ui ∩ Ui′) are Cr diffeomorphisms for all
i, i′ ∈ Λ.

Each pair (ϕi, Ui) is called a chart, and the collection {(ϕi, Ui) | i ∈ Λ} is referred to as
an atlas.

Similarly, we can define Cr (or Cr−0) maps between two Cr Banach manifolds, as well
as vector bundles over Banach manifolds. In particular, this includes the tangent bundle
T(M) and the cotangent bundle T∗(M).
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Given a vector bundle Ξ = (E, π, M), a section ξ : M → E is a map such that
π ◦ ξ = idM. A section ξ is said to be Cr- (or Cr−0) -continuous if it is a Cr (or Cr−0) map
from M to E.

A Riemannian manifold (M, g) is metrizable, with the metric d defined by the arc
length of geodesics, which is in turn determined by the Riemannian metric g:

d(x, y) = inf
{∫ 1

0
g(σ̇(t), σ̇(t))

1
2 dt | σ ∈ C1([0, 1], M), σ(0) = x, σ(1) = y

}
.

As a metric space (M, d), the topology coincides with (or is equivalent to) the topology
of the manifold.

Since the Riemannian metric is globally defined on T(M), we shall introduce a Finsler
structure on a Banach manifold in a similar manner.

Definition 4 ([13]). Let π : E → M be a Banach vector bundle. A Finsler structure is a function
∥ · ∥ : E → R1

+ that satisfies the following conditions:

1. ∥ · ∥ is continuous;
2. For every p ∈ M, the restriction ∥ · ∥p := ∥ · ∥

∣∣
Ep

is an equivalent norm on the fiber

Ep := π−1(p);
3. For any point p0 ∈ M and any neighborhood U of p0 that trivializes the vector bundle E (i.e.,

E | U = π−1(U) ≈ U × Ep0), there exists a neighborhood V of M with V ⊃ U such that
for all k > 1,

1
k
∥ · ∥p ≤ ∥ · ∥p0 ≤ k∥ · ∥p ∀p ∈ V.

Below is the definition of a characteristic submanifold and a theorem known as the
Shifting Theorem:

Definition 5 ([13]). Let M be a C2 Finsler manifold, and let g ∈ C1(M,R) be a functional.
Consider a local parametrization Φ of M defined in an open neighborhood U of θ in Tp(M) ∼= H,
with Φ(θ) = p. Suppose g ◦ Φ(z, y) = 1

2 (Lz, z) + g0(y), where L = g′′(p), and 0 is either an
isolated point in the spectrum σ(L) or not in σ(L). Here, g0 is a function defined on N—the null
space of L. We refer to N = Φ(U ∩ N) as the characteristic submanifold of M for g at p with
respect to the parametrization Φ.

The following theorem relates the critical groups of f to those of f̃ := f |N . This is
known as the Shifting Theorem:

Lemma 3 (Shifting Theorem, [13,33]). Assume that the Morse index of g at p is j. Then,

Cq(g, p) = Cq−j( g|N , p), q = 0, 1, . . .

The following lemma addresses the relationship between isolated critical points and
characteristic manifolds:

Lemma 4 ([33]). Let p be an isolated critical point of g, and let M̂ be a closed Hilbert submanifold
of M such that M̂p contains the null space of the Hessian of g. Assume that ∇g|q ∈ M̂q for all
q ∈ M̂. If N ⊂ M̂ is sufficiently small and characteristic for ĝ := g | M̂ at p, then N is also
characteristic for g. In particular, we have the following:

Cq(g, p) = Cq(ĝ, p).

We are now ready to provide the proof of Theorem 1.
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Proof of Theorem 1. We divide our proof into two parts. First, we address part (i) of
Theorem 1.

Let x = u(z). According to Proposition 1, x is a critical point of g, meaning that
g′(x) = 0. Let I denote the identity map on H. It follows that g′(x) = 0 if and only if

Az = PG(z + w(z)) and Aw = (I − P)G(z + w(z)). (16)

Thus, in the decomposition Equation (5), the matrix representation of A can be written as

A =

(
A11 0
0 A22

)
, (17)

where A11 = A|H0 , and A22 = A|H−⊕H+ . According to the definition of P, A22 is invertible,
and we have ∥∥∥A−1

22

∥∥∥ <
1
C

. (18)

The formal expression for G′(x) is

G′(x) =
(

B11(x) B12(x)
B21(x) B22(x)

)
. (19)

The second equation in Equation (16) is satisfied if and only if

w(z) = A−1
22 (I − P)G(z + w(z)). (20)

Differentiating both sides of Equation (20) yields

w′(z) = A−1
22 (I − P)G′(z + w(z))

(
IV

w′(z)

)
, (21)

where IV denotes the identity map on V. Based on Equation (19), we obtain

(I − P)G′(u(z)) = (B21(u(z)), B22(u(z))). (22)

Combining Equations (21) and (22), we obtain

w′(z) = A−1
22

[
B21(u(z)) + B22(u(z))w′(z)

]
. (23)

Simple computations show that

w′(z) = [A22 − B22(u(z))]
−1B21(u(z)), (24)

since A22 − B22(u(z)) is invertible by the choice of C. Therefore, based on Equation (24),
we obtain

a′′(z) = AP − PdG(u(z))u′(z) = A11 − (B11, B12)

(
IV

w′(z)

)
= A11 − B11(u(z))− B12(u(z))[A22 − B22(u(z))]

−1B21(u(z)).
(25)

In the decomposition Equation (5), we have

g′′(u(z)) =
(

A11 − B11(u(z)) −B12(u(z))
−B21(u(z)) A22 − B22(u(z))

)
. (26)
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By direct computation, we find(
I B12(u(z))[A22 − B22(u(z))]

−1

0 I

)
g′′(u(z))

(
I 0

[A22 − B22(u(z))]
−1B21(u(z)) I

)
=

(
a′′(z) 0

0 A22 − B22(u(z))

)
.

(27)

Since A22 − B22(u(z)) is invertible, we have

dim ker g′′(u(z)) = dim ker a′′(z), m−(g′′(u(z))) = m−(a′′(z)) + d, (28)

where d = dim P−H.
Lastly, we address part (ii) of Theorem 1. We split our proof into two cases.
Case 1. If z is a nondegenerate critical point of a, then according to (3◦) of

Proposition 1, u(z) is a nondegenerate critical point of g, and m−(g′′(u(z))) = m−(a′′(z)) +
d = j. Consequently, according to Lemma 1, we have

Cq(g, u(z)) = δq,jF = Cq−d(a, z).

Case 2. If z is a degenerate critical point of a with a(z) = c, then from (3◦) of
Proposition 1, u(z) is a degenerate critical point of f , and m−(g′′(u(z))) = m−(a′′(z)) +
d = j. According to Lemma 2, there exists a ball Bδ centered at 0 with radius δ > 0 and a
local homeomorphism ϕ defined on Bδ with ϕ(0) = z such that

a ◦ Φ(ξ, η) =
1
2
(Lξ, ξ) + a0(η), (29)

where (ξ, η) ∈ Z = (ker(a′′(z)))⊥ ⊕ ker(a′′(z)), L = a′′(z), and a0 constitute a function
defined on ker(a′′(z)).

Let N be the characteristic submanifold for a at z with respect to ϕ. According to
Lemma 3, we have

Cq(a, z) = Cq−j+d(a|N , z), q = 0, 1, 2, · · · . (30)

Now, consider the critical point u(z) of f . According to Lemma 2, there exists a local
homeomorphism ψ. Let N̂ be the characteristic submanifold for g at u(z) with respect to ψ.
Then, according to Lemma 3, we have

Cq(g, u(z)) = Cq−j(g|N̂ , u(z)), q = 0, 1, 2, · · · . (31)

Since the map u defined in Proposition 1 is an injection, u(Z) is a closed Hilbert submanifold
of H. Thus, in accordance with the (3◦) of Proposition 1, we have

ker g′′(u(z)) ⊂ Tu(z)u(Z) and g′(x) ∈ Txu(Z) for all x ∈ u(Z).

Define ĝ = g|u(Z), and let Ñ be a characteristic manifold for ĝ. According to Lemma 4,
we obtain

Cq(g|N̂ , u(z)) = Cq(ĝ|Ñ , u(z)), q = 0, 1, 2, · · · . (32)

From Equation (27), we obtain

m−(g̃′′(u(z))) = m−(a′′(z)) = j − d. (33)

Thus, according to Lemma 3, we have

Cq(g̃, u(z)) = Cq−j+d(ĝ|Ñ , u(z)), q = 0, 1, 2, · · · . (34)
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We then have the following map between the topological pairs:

(ac, ac\{z}) u−→ (g̃u(z), g̃u(z)\{u(z)}). (35)

Clearly, u is a homeomorphism with inverse u−1(z + w(z)) = z. Therefore, we have

Cq(a, z) = Cq(g̃, u(z)), q = 0, 1, 2, · · · . (36)

Combining Equations (30), (31), (33) and (36), we obtain

Cq(g, u(z)) = Cq−d(a, z), q = 0, 1, 2, · · · . (37)

This concludes the proof.

3. Applications to Second-Order Hamiltonian Systems

In this section, we will utilize Morse theory and a critical point theorem to establish the
existence of two nontrivial solutions for the second-order Hamiltonian system (Theorem 2).

Let L = L2(Sτ ,Rn) be the Hilbert space equipped with the norm

∥x∥2 =

(∫ τ

0
|x(t)|2 dt

)1/2
, ∀x ∈ L. (38)

The corresponding inner product in L is denoted by ⟨·, ·⟩2. Now, consider the space
W = W1,2(Sτ ,Rn), which consists of vector functions from Sτ to Rn with square-integrable
first-order derivatives. The norm on W is defined as

∥x∥W =

(∫ τ

0

(
|ẋ(t)|2 + |x(t)|2

)
dt
)1/2

, ∀x ∈ W. (39)

This norm turns W into a Hilbert space, known as the Sobolev space of τ-periodic functions,
which is a dense subspace of L.

Within the Hilbert space L, we define the linear operator T : W ⊂ L → L as

⟨Tx, y⟩ :=
∫ τ

0
ẋ · ẏ dt, ∀x, y ∈ W. (40)

The operator T has a closed range, and its resolvent is compact. The spectrum of T under

the L norm is given by σ(T) =

{(
2kπ

τ

)2
| k ∈ Z+

}
, consisting only of eigenvalues and

indicating that it is a point spectrum.
We continue to denote by A the self-adjoint operator on L induced by A, which is

defined as
⟨Ax, y⟩L =

∫ τ

0
A(t)x(t) · y(t)dt, ∀x, y ∈ L. (41)

Similarly, the operator B, self-adjoint on L, is defined by

⟨Bx, y⟩L =
∫ τ

0
B(t)x(t) · y(t)dt, ∀x, y ∈ L. (42)

Now, define T̃ := T − B. The eigenvalue problem

T̃x = λx (43)

is equivalent to the eigenvalue problem{
−ẍ − B(t)x = λx,
x(0) = x(τ), ẋ(0) = ẋ(τ).

(44)
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Consequently, the spectrum of the operator T̃ is also a point spectrum.
Given the conditions (V3) and (V4), we define a functional on the space L as follows:

k(x) =
∫ τ

0

(
V(t, x(t))− 1

2
B(t)x(t) · x(t)

)
dt. (45)

This functional satisfies k ∈ C1(L,R), and we have

k′(x) = Vx(t, x(t))− B(t)x(t) = Lx(t, x). (46)

It is important to note that k′(x) is Gâteaux-differentiable, and its Gâteaux derivative is
given by

k′′(x)y = (Vxx(t, x(t))− B(t))y = Lxx(t, x)y. (47)

Furthermore, we have the estimate ∥∥k′′(x)
∥∥

L ≤ C(B),

where C(B) is the constant defined in condition (V4).
We then introduce a new functional h on W defined by

h(x) =
1
2

∫ τ

0
|ẋ(t)|2 dt −

∫ τ

0
V(t, x(t))dt =

1
2
⟨T̃x, x⟩2 − k(x).

Condition (V3) ensures that h ∈ C2(W,R) and that h′ is Gâteaux-differentiable. Consider
the following equation in the space L:

T̃x = k′(x), for x ∈ W. (48)

This Equation (48) is the Euler equation of the functional h on the space L, which can be
expressed as follows:

⟨h′(x), y⟩2 = ⟨T̃x − k′(x), y⟩2, ∀y ∈ W. (49)

Therefore, the critical points of h are solutions to the Equation (48). Moreover, this
Equation (48) is equivalent to the τ-periodic boundary value problem of the Hamilto-
nian system Equation (7). Consequently, finding τ-periodic solutions of the Hamiltonian
system Equation (48) is equivalent to finding the critical points of the functional h in the
space W.

Remark 2. In this context, the operator T̃ corresponds to the operator A in the abstract operator
Equation (1).

Consider the projection operator P0 : H → ker T̃, and define an operator on W
as follows:

T̃0x = T̃x + P0x, x ∈ W.

This operator T̃0 is a self-adjoint, invertible Fredholm operator. Let {Eλ} denote the spectral
family associated with T̃0. We define the projections on the space L by

P =
∫ C(B)

−C(B)
dEλ, P+ =

∫ +∞

C(B)
dEλ, P− =

∫ −C(B)

−∞
dEλ. (50)

With these projections, the Hilbert space L can be orthogonally decomposed as

L = L− ⊕ L0 ⊕ L+, (51)
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where L0 = PL, L− = P−L, and L+ = P+L.
By applying the saddle point reduction, Theorem 1, the Equation (48) is reduced to

a′(z) = 0, ∀z ∈ L0, (52)

where a(z) = 1
2 ⟨T̃u(z), u(z)⟩2 − k(u(z)).

It is evident that 0 is a critical point for both h(x) and a(z). According to Theorem 1,
we have

m−(h′′(0)) = m−(a′′(0)) + d, (53)

where d = dim L−.
To prove Theorem 2, we first introduce a key critical point theorem:

Proposition 3 ([34], Theorem 2.1). Let X be a Banach space, and let f ∈ C1(X,R) satisfy the
Palais–Smale (PS) condition. Assume that f is bounded from below. If Cℓ( f , 0) ̸= 0 for some ℓ ̸= 0,
then f has at least three critical points.

In the following section, we will verify that the second-order Hamiltonian system
Equation (7) meets the conditions of Proposition 3.

Lemma 5. Assuming conditions (V3) and (V4) are satisfied, the functional a(z) is bounded from
below and meets the (PS) condition.

Proof. Consider x = x+ + x− + z ∈ L+ ⊕ L− ⊕ L0. We define w±(z) := P±T̃−1
0 g(x).

For any p ∈ L−, we introduce the function

Φ(t) =
1
2
⟨T̃0(w−(z) + w+(z) + z + tp), w−(z) + w+(z) + z + tp⟩2 − k(x + tp), t ∈ R. (54)

A straightforward computation yields

Φ′(t) = −⟨w−(z), p⟩ − t∥p∥2
2 − ⟨k′(0), p⟩2, (55)

Φ′′(t) = −∥p∥2
2 − ⟨k′′(x + tp)p, p⟩2. (56)

It is evident that
Φ′(t) = 0.

Since C(B) /∈ σ(T̃), there exists a constant µ > C(B) such that

∥T̃0|−1
L−

∥ ≤ 1
µ

. (57)

According to condition (V4), we have

Φ′′(t) ≤
(
−1 +

C(B)
µ

)
∥p∥2

2 < 0, ∀ p ∈ L− \ {0}, t ∈ R. (58)

Thus, for any z ∈ L0, the functional h(w+(z) + x− + z) is concave along any line passing
through w−(z) and thus achieves a global maximum at w−(z). Specifically,

h(w+(z) + w−(z) + z) ⩾ h(w+(z) + w− + z), ∀ x− + z ∈ L− ⊕ L0. (59)
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By (V5) and the definition of a(z), we have

a(z) = h(w+(z) + w−(z) + z) ⩾ h(w+(z) + z) = h(w+(z) + z)

=
1
2
⟨T̃(w+(z) + z) + z, w+(z) + z⟩ − k(w+(z) + z)

⩾ λ̂∥w+(z) + z∥2 − l∥w+(z) + z∥2

= (λ̂ − l)∥w+(z) + z∥2 → +∞ as ∥z∥ → +∞,

(60)

where λ̂ is the minimum eigenvalue of Equation (44) within (−C(B), C(B)). Therefore, a(z)
is bounded from below and satisfies the (PS) condition.

Consider a Hilbert space W and p ∈ [1, ∞]. By the Sobolev inequality, there exists a
constant Dp such that

∥x∥p :=
(∫ τ

0
|x|p dt

)1/p
≤ Dp∥x∥. (61)

This inequality implies that the embedding W ↪→ Lp is both continuous and compact.
Consequently, to establish the existence of nontrivial critical points, it suffices to verify that
the corresponding critical group is nontrivial.

Recall the condition (V1), which states that there exists an eigenvalue
µm(A) = 0. Given that A(t) is positive definite for all t ∈ R, consider the following
weighted eigenvalue problem:{

−d2x(t)
dt2 = µi(A)A(t)x(t),

x(0) = x(τ),
(62)

According to the spectral theory of compact self-adjoint operators, it is well established
that there exists a complete sequence of distinct eigenvalues

−∞ < µ1(A) < µ2(A) < · · · (63)

such that µn(A) → +∞ as n → ∞.
Define the subspaces as follows:

W− =
m−1⊕
i=1

ker
(
− d2

dt2 − µi(A)A(t)
)

,

W0 = ker
(
− d2

dt2 − A(t)
)

,

W+ =
∞⊕

i=m+1

ker
(
− d2

dt2 − µi(A)A(t)
)

.

We can derive the following result through a straightforward calculation:

dm :=
m

∑
i=1

dim ker
(
− d2

dt2 − µi(A)A
)

. (64)
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Lemma 6.

(i) If condition (V+
2 ) is satisfied, then Cdm(h, 0) ̸= 0;

(ii) If condition (V−
2 ) is satisfied, then Cdm−1(h, 0) ̸= 0.

Proof. We provide a complete proof for case (i) here; the proof for the other case follows a
very similar argument.

According to ([35], Theorem 2.1), it is sufficient to verify that h has a local linking with
respect to the decomposition W = W− ⊕ (W0 ⊕ W+) under condition (V+

2 ). Specifically,
there must exist a ρ > 0 such that{

h(x) ≤ 0 for x ∈ W− ⊕ W0, ∥x∥ ≤ ρ,
h(x) > 0 for x ∈ W+, 0 < ∥x∥ ≤ ρ.

(65)

The argument for Equation (65) is similar to that presented in [36] (p. 24) and
([21], Lemma 4.1).

Since µm(B) = 1 is an isolated eigenvalue, it is well known that there exists a positive
number κ > 0 such that

±1
2
⟨Tx − Bx, x⟩2 ⩾ κ∥x∥2, x ∈ W±. (66)

Based on Equations (8) and (11), there exists a constant C3 > 0 such that

|G(t, x)| < κ

16D2
2
|x|2 + C3|x|3, (t, x) ∈ R×Rn. (67)

For x ∈ W− ⊕ W0 with ∥x∥ ≤ δ
2C5

, we can write that x = v + w, where w ∈ W−, and
v ∈ W0. Define

S1
τ =

{
t ∈ Sτ | |w(t)| ≤ δ

2

}
, S2

τ = Sτ\S1
τ . (68)

Since dim W0 < ∞, there exists C5 > 0 such that ∥v∥C ≤ C5∥v∥ for all v ∈ W0.
For every t ∈ S2

τ , we have

|x(t)| ≤ |v(t)|+ |w(t)| ≤ ∥v∥C + |w(t)| ≤ C5∥v∥+ |w(t)|

≤ C5∥x∥+ |w(t)| ≤ δ

2
+ |w(t)| ≤ 2|w(t)|.

(69)

According to Equation (67), for t ∈ S2
τ , we obtain

G(t, x) ⩾ − κ

16D2
2
|x|2 − C3|x|3 ⩾ − κ

4D2
2
|w|2 − C6|w|3.

This result also applies to t ∈ S1
τ because, in this case,

|x(t)| ≤ |v(t)|+ |w(t)| ≤ ∥v∥C +
δ

2
≤ C5∥v∥+ δ

2
≤ C5∥x∥+ δ

2
≤ δ.

Hence, G(t, x) ⩾ 0 by our assumption (V+
2 ).
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According to Equation (61), we obtain

h(x) =
1
2
⟨Tx − Bx, x⟩2 −

∫ τ

0
K(t, x)dt

≤ −κ∥w∥2 +
κ

4D2
2
∥w∥2

2 + C6∥w∥3
3

≤ −κ

2
∥w∥2 + C7∥w∥3, x = w + v ∈ W− ⊕ W0.

(70)

Now, let x ∈ W− ⊕ W0 such that

0 < ∥x∥ ≤ ρ1 = min
{

δ

2C5
,

κ

2C7

}
.

If w ̸= 0, from Equation (70) we can deduce that h(x) < 0, since ∥w∥ ≤ ∥x∥. If w = 0, then
x ∈ W0, and ∥x∥C ≤ C5∥x∥ ≤ δ. By condition (V+

2 ) again, we also have that

h(x) = −
∫ τ

0
K(t, x)dt < 0.

For x ∈ W+, according to Equation (67), we obtain

h(x) =
1
2
⟨Tx − Bx, x⟩2 −

∫ τ

0
K(t, x)dt

⩾ κ∥x∥2 − κ

16D2
2
∥x∥2

2 − C3∥x∥3
3

⩾
κ

2
∥x∥2 − C4∥x∥3 ⩾ 0

(71)

provided that ∥x∥ ≤ ρ2 = κ
2C4

.
Combining these results, we conclude that Equation (65) holds with ρ = min{ρ1, ρ2}.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. We will provide the full proof for the case where condition (V+
2 ) is

met. The proof for the other case follows similarly.
According to Lemma 5, the functional a(z) satisfies the (PS) condition and is bounded

below. Given that 0 is a critical point of h, it is also a critical point of a(z), and it holds that
m−(h′′(0)) = m−(a′′(0)) + d. According to Lemma 6 and Theorem 1, we obtain

Cdm−d(a(z), 0) ̸= 0.

Consequently, according to Lemma 3, if dm ̸= d, there exist two additional critical points of
a(z). Therefore, h must have at least two nonzero critical points. This, in turn, implies the
existence of at least two solutions to the Hamiltonian system Equation (7). This completes
the proof.

4. Conclusions

Infinite dimensional Morse theory is a highly effective tool for analyzing multiple
solution problems in nonlinear differential equations. One of its key concepts is the critical
group Cq( f , x) for a C1 functional f at an isolated critical point x. This critical group
captures the local behavior of f near x. In many applications, critical groups help in
distinguishing between critical points and, furthermore, can be used to identify new critical
points through the Morse inequality. Consequently, studying the critical group is crucial.

On the other hand, the saddle point reduction (also known as the Lyapunov–Schmidt
Reduction) is a powerful technique for finding the critical points of some C1 functionals.
Essentially, under certain conditions, this reduction yields a reduced functional on a sub-



Axioms 2024, 13, 603 15 of 16

space that is closely related to the study of the original functional, particularly concerning
the relationship between critical points.

In this paper, we first establish the relationship between the Morse index and the
critical group before and after the saddle point reduction. We then apply our abstract results
to examine the existence of two nontrivial solutions for the second-order Hamiltonian
system. This approach offers a new perspective for identifying nontrivial solutions in other
boundary value problems.
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