
Citation: Mu, J.; Komatsu, T.

p-Numerical Semigroups of Triples

from the Three-Term Recurrence

Relations. Axioms 2024, 13, 608.

https://doi.org/10.3390/

axioms13090608

Academic Editor: Hashem Bordbar

Received: 22 July 2024

Revised: 4 September 2024

Accepted: 5 September 2024

Published: 7 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

p-Numerical Semigroups of Triples from the Three-Term
Recurrence Relations
Jiaxin Mu 1 and Takao Komatsu 2,*

1 Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University,
Hangzhou 310018, China

2 Faculty of Education, Nagasaki University, Nagasaki 852-8521, Japan
* Correspondence: komatsu@nagasaki-u.ac.jp

Abstract: Many people, including Horadam, have studied the numbers Wn, satisfying the recurrence
relation Wn = uWn−1 + vWn−2 (n ≥ 2) with W0 = 0 and W1 = 1. In this paper, we study the p-
numerical semigroups of the triple (Wi, Wi+2, Wi+k) for integers i, k(≥ 3). For a nonnegative integer
p, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear
combinations of given positive integers a1, a2, . . . , aκ with gcd(a1, a2, . . . , aκ) = 1 are expressed in
more than p ways. When p = 0, S = S0 is the original numerical semigroup. The largest element and
the cardinality of N0\Sp are called the p-Frobenius number and the p-genus, respectively.
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1. Introduction

We consider the sequence {Wn}∞
n=0, satisfying:

Wn = uWn−1 + vWn−2 (n ≥ 2) W0 = 0, W1 = 1 , (1)

where u and v are positive integers with gcd(u, v) = 1. The values of Wn = Wn(u, v)
depend on the values of u and v. If u = v = 1, Fn = Wn(1, 1) is the n-th Fibonacci
number [1]. If u = 1 and v = 2, Jn = Wn(1, 2) is the n-th Jacobsthal number [2,3]. If u = 2
and v = 1, Pn = Wn(2, 1) is the n-th Pell number [4]. However, for simplicity, if we do not
specify the values of u or v, we will simply write Wn for Wn(u, v).

This type of number sequence has been well known to many people by Horadam’s
series of studies ([5–9]) in the 1960s. Because of this fact, this sequence is sometimes called
the Horadam sequence. Horadam himself used the recurrence relation Wn = uWn−1 −
vWn−2. However, recently more people (see, e.g., [10,11]) have used the recurrence relation
Wn = uWn−1 + vWn−2 and such works are still due to Horadam. In general, the initial
values are arbitrary, but because of some simplifications, we set W0 = 0 and W1 = 1.
According to [6], this sequence has long exercised interest, as seen in, for instance, Bessel-
Hagen [12], Lucas [13], and Tagiuri [14], and, for historical details, Dickson [15]. However, it
is deplorable that quite a few papers are publishing results that have already been obtained
by these authors as new results, either because they are unaware of their or the following
important results, or even if they are ignoring them.

Given the set of positive integers A := {a1, a2, . . . , aκ} (κ ≥ 2), for a nonnegative
integer p, let Sp be the set of integers whose nonnegative integral linear combinations
of given positive integers a1, a2, . . . , aκ are expressed in more than p ways. For a set of
nonnegative integers N0, the set N0\Sp is finite if and only if gcd(a1, a2, . . . , aκ) = 1. Then,
there exists the largest integer gp(A) := g(Sp) in N0\Sp, called the p-Frobenius number.
The cardinality of N0\Sp is called the p-genus and is denoted by np(A) := n(Sp). The sum
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of the elements in N0\Sp is called the p-Sylvester sum and is denoted by sp(A) := s(Sp).
This kind of concept is a generalization of the famous Diophantine problem of Frobenius
since p = 0 is the case when the original Frobenius number g(A) = g0(A), the genus
n(A) = n0(A) and the Sylvester sum s(A) = s0(A) are recovered. We can call Sp the
p-numerical semigroup. Strictly speaking, when p ≥ 1, Sp does not include 0 since the
integer 0 has only one representation, so it satisfies simple additivity, and the set Sp ∪ {0}
becomes a numerical semigroup. For numerical semigroups, we refer to [16–18]. For the
p-numerical semigroup, we refer to [19]. The recent study of the number of representation
(denumerant), denoted by p in this paper, can be seen in [20–22]. In particular, in [23],
an algorithm that computes the denumerant is shown. In [24], three simple reduction
formulas for the denumerant are obtaine using the Bernoulli–Barnes polynomials. In [25],
this algorithm is shown to avoid plenty of repeated computations and is, hence, faster.

We are interested in finding any closed or explicit form of the p-Frobenius number,
which is even more difficult when p > 0. For three or more variables, no concrete example
had been found. Most recently, we have finally succeeded in giving the p-Frobenius number
as closed-form expressions for the triangular number triplet ([26]), for repunits ([27,28]).

In this paper, we study the p-numerical semigroups of the triple (Wi, Wi+2, Wi+k) for
integers i, k(≥3). We give explicit closed formulas of p-Frobenius numbers and p-genus of
this triple. Note that the special cases for Fibonacci [1], Pell [4], and Jacobsthal triples [2,3]
have already been studied.

The outline of this paper is as follows. In the next section, we introduce the concept of
the p-Apéry set and show how it is used to obtain the p-Frobenius number, the p-genus and
the p-Sylvester sum. In Section 3, we show the result for p = 0. The structure is different for
odd k and even k. In Section 4, we show the result for p ≥ 1, which is yielded from that for
p = 0. In Section 5, we give an explicit form of the p-genus. The figures in Sections 3 and 4
are helpful to find the calculation of the p-genus. In Section 6, we hint at some comments
on a simple modification of the recurrence relation.

2. Preliminaries

We introduce the Apéry set (see [29]) below in order to obtain the formulas for gp(A),
np(A), and sp(A) technically. Without loss of generality, we assume that a1 = min(A).

Definition 1. Let p be a nonnegative integer. For a set of positive integers A = {a1, a2, . . . , aκ}
with gcd(A) = 1 and a1 = min(A) we denote by:

App(A) = App(a1, a2, . . . , aκ) = {m(p)
0 , m(p)

1 , . . . , m(p)
a1−1} ,

the p-Apéry set of A, where each positive integer m(p)
i (0 ≤ i ≤ a1 − 1) satisfies the conditions:

(i)m(p)
i ≡ i (mod a1), (ii)m(p)

i ∈ Sp(A), (iii)m(p)
i − a1 ̸∈ Sp(A) .

Note that m(0)
0 is defined to be 0.

It follows that for each p:

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1) .

Even though it is hard to find any explicit form of gp(A) as well as np(A) and sp(A)
k ≥ 3, by using convenient formulas established in [30,31], we can obtain such values
for some special sequences (a1, a2, . . . , aκ) after finding any regular structure of m(p)

j . One
convenient formula is on the power sum:
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s(µ)p (A) := ∑
n∈N0\Sp(A)

nµ

by using Bernoulli numbers Bn defined by the generating function:

x
ex − 1

=
∞

∑
n=0

Bn
xn

n!
,

and another convenient formula is on the weighted power sum ([32,33]):

s(µ)λ,p(A) := ∑
n∈N0\Sp(A)

λnnµ

by using Eulerian numbers
〈 n

m
〉

appearing in the generating function:

∞

∑
k=0

knxk =
1

(1 − x)n+1

n−1

∑
m=0

〈 n
m

〉
xm+1 (n ≥ 1)

with 00 = 1 and
〈

0
0

〉
= 1. Here, µ is a nonnegative integer and λ ̸= 1. Some generaliza-

tion of Bernulli numbers in connection with summation are devied in [34]. From these
convenient formulas, many useful expressions are yielded as special cases. Some useful
ones are given as follows. The Formulas (3) and (4) are entailed from s(0)λ,p(A) and s(1)λ,p(A),
respectively. The proof of this lemma is given in [31] as a more general case.

Lemma 1. Let κ, p, and µ be integers with κ ≥ 2 and p ≥ 0. Assume that gcd(a1, a2, . . . , aκ) = 1.
We have:

gp(a1, a2, . . . , aκ) =

(
max

0≤j≤a1−1
m(p)

j

)
− a1 , (2)

np(a1, a2, . . . , aκ) =
1
a1

a1−1

∑
j=0

m(p)
j − a1 − 1

2
, (3)

sp(a1, a2, . . . , aκ) =
1

2a1

a1−1

∑
j=0

(
m(p)

j
)2 − 1

2

a1−1

∑
j=0

m(p)
j +

a2
1 − 1
12

. (4)

Remark 1. When p = 0, the Formulas (2)–(4) reduce to the formulas by Brauer and Shockley [35]
[Lemma 3], Selmer [36] [Theorem], and Tripathi [37] [Lemma 1] (the latter reference contained a
typo, which was corrected in [38]), respectively:

g(a1, a2, . . . , aκ) =

(
max

0≤j≤a1−1
mj

)
− a1 ,

n(a1, a2, . . . , aκ) =
1
a1

a1−1

∑
j=0

mj −
a1 − 1

2
,

s(a1, a2, . . . , aκ) =
1

2a1

a1−1

∑
j=0

(mj)
2 − 1

2

a1−1

∑
j=0

mj +
a2

1 − 1
12

,

where mj = m(0)
j (1 ≤ j ≤ a1 − 1) with m0 = m(0)

0 = 0.

3. The Case Where p = 0

We use the following properties repeatedly. The proof is trivial and omitted.
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Lemma 2. For i, k ≥ 1, we have:

Wk|Wi ⇔ k|i , (5)

gcd(Wi, Wi+2) =

{
u if i is even;
1 if i is odd,

(6)

Wi+k = Wi+1Wk + vWiWk−1 , (7)

Wn ≡
{

0 (mod u) if n is even;

v
n−1

2 (mod u) if n is odd .
(8)

First of all, if i is odd and 3 ≤ i ≤ k − 1, then by (1) and (7):

Wi+k − g0(Wi, Wi+2) ≥ W2i+1 − WiWi+2 + Wi + Wi+2

= Wi+1Wi−1 + Wi+2 + Wi > 0 .

Hence, g0(Wi, Wi+2, Wi+k) = g0(Wi, Wi+2). Therefore, from now on, we consider the case
only when i is even and k is odd, or when i is odd, with i ≥ k ≥ 3.

3.1. The Case Where k Is Odd

When k is odd, we choose nonnegative integers q and r as:

Wi = qWk + ru, 0 ≤ r < Wk , (9)

where q = Wi/Wk if k|i due to (5); otherwise q is the largest integer, satisfying:

q ≤ Wi
Wk

and q ≡
{

0 (mod u) if i is even;

v
i−k

2 (mod u) if i is odd.
(10)

More directly, when i is even (and k is odd):

q = u
⌊

1
u

⌊
Wi
Wk

⌋⌋
. (11)

When i is odd (and k is odd):

q = u
⌊

1
u

(⌊
Wi
Wk

⌋
− v

i−k
2

)⌋
+ v

i−k
2 . (12)

Note that if u = 1 ([2]), then always q = ⌊Wi/Wk⌋.
In particular, if i is even and:

u >
Wi
Wk

, then q = 0, so r = Wi/u .

If k|i, then by (5) Wk|Wi. So, when i is even, by (8) u|Wi. Thus, we get:

q =
Wi
Wk

, so r = 0 .

When k|i and i is odd, by Wi ≡ v
i−1

2 and Wk ≡ v
k−1

2 , there exists an integer h such that
v

i−1
2 ≡ hv

k−1
2 (mod u). By gcd(u, v) = 1, h ≡ v

i−k
2 (mod u). Thus:

u
∣∣∣∣( Wi

Wk
− v

i−k
2

)
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Thus, we get:

q =
Wi
Wk

, so r = 0 .

We use the following identity.

Lemma 3. For i, v ≥ 3, we have:

rWi+2 + qWi+k =
(
Wi+1 + v(qWk−1 + r)

)
Wi .

Proof. By (1) and (7) together with (9), we get:

LHS − RHS = r(u2 + v)Wi + ruvs.Wi−1 + q(Wi+1Wk + vWiWk−1)

− (uWi + vWi−1)Wi − rvs.Wi − qvs.WiWk−1

= 0 .

Assume that k ∤ i (the case k | i is discussed later). Then, the elements of the (0-)Apéry
set are given in Figure 1. Here, we consider the expression:

ty,z := yWi+2 + zWi+k (y, z ≥ 0)

or simply the position (y, z).

(0, 0) (1, 0) · · · · · · (Wk − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk − 1, 1)

...
...

...
(0, q− 1) (1, q− 1) · · · · · · (Wk − 1, q− 1)
(0, q) · · · (r− 1, q)

...
...

(0, q+ u − 1) · · · (r− 1, q+ u − 1)

Figure 1. Ap0(Wi, Wi+2, Wi+k) for odd k.

We shall show that all the elements in Figure 1 constitute the sequence{ℓWi+2 (mod Wi)}
Wi−1
ℓ=0

in the vertical y direction. However, if i is odd and i is even, the situation of this sequence
is different. In short, if i is odd, the sequence appears continuously, but if i is even, the se-
quence is divided into u subsequences.

First, let i be odd. Then, by gcd(Wi, Wi+2) = 1, we have:

{ℓWi+2 (mod Wi)}
Wi−1
ℓ=0 = {ℓ (mod Wi)}

Wi−1
ℓ=0 .

By (7), we get:
Wi+2Wk − uWi+k = v2WiWk−2 (13)

Hence:
Wi+2Wk ≡ uWi+k (mod Wi) and Wi+2Wk > uWi+k. (14)

Thus, the element at (Wk, j) (0 ≤ j ≤ q− 1) cannot be an element of Ap0(A) but (0, u + j)
as the same residue modulo Wi, where A = {Wi, Wi+2, Wi+k}. Next, by Lemma 3, we have:

rWi+2 + qWi+k ≡ 0 (mod Wi) and rWi+2 + qWi+k > 0 .

Thus, the element at (r, q+ j) (0 ≤ j ≤ u − 1) cannot be an element of Ap0(A) but
(0, j).
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Therefore, the sequence {ℓWi+2 (mod Wi)}
Wi−1
ℓ=0 is divided into the longer parts with

length Wk and the shorter parts with length r. Namely, the longer part is of the subsequence:

(0, j), (1, j), . . . , (Wk − 1, j) (j = 0, 1, . . . , q− 1)

with the next element at (0, u + j). The shorter part is of the subsequence

(0, q+ j), (1, q+ j), . . . , (r− 1, q+ j) (j = 0, 1, . . . , u − 1)

with the next element at (0, j). Since gcd(Wi+2,Wi+k) = 1, all elements in{ℓWi+2 (mod Wi)}
Wi−1
ℓ=0

are different modulo Wi.
Next, let i be even. Then by gcd(Wi, Wi+2) = u, we have:

{ℓWi+2 (mod Wi)}
Wi/u−1
ℓ=0 = {ℓ (mod Wi/u)}Wi/u−1

ℓ=0 .

Hence:
{ℓ (mod Wi)}

Wi−1
ℓ=0 = ∪u−1

κ=0{ℓWi+2 + κWi+k (mod Wi)}
Wi/u−1
ℓ=0

with {ℓWi+2 + κ1Wi+k (mod Wi)}
Wi/u−1
ℓ=0 ∩ {ℓWi+2 + κ2Wi+k (mod Wi)}

Wi/u−1
ℓ=0 = ∅

(κ1 ̸= κ2). By the determination of q in (11), we see that u|q. So, we use the relation
(14). Thus, each subsequence is given as the following points. For z = 0, 1, . . . , u − 1:

(0, z), (1, z), . . . , (Wk − 1, z), (0, u + z), (1, u + z), . . . , (Wk − 1, u + z),

(0, 2u + z), (1, 2u + z), . . . , (Wk − 1, 2u + z), . . . . . . ,

(0, q− u + z), (1, q− u + z), . . . , (Wk − 1, q− u + z),

(0, q+ z), (1, q+ z), . . . , (r− 1, q+ z)

with next element is at (0, z), coming back to the first one, because of Lemma 3. In addition,
by (8), all terms of the above subsequence are:

yWi+2 + zWi+k ≡ zv
i+k−1

2 (mod u) .

Since gcd(u, v) = 1, this is equivalent to z (mod u) (z = 0, 1, . . . , u − 1). Therefore, there is
no overlapped element among all subsequences. By (9), the total number of terms in each
subsequence is:

q

u
Wk + r =

Wi
u

as expected.

By Figure 1, the candidates of the largest element of Ap0(A) are at (r− 1, q+ u − 1)
or at (Wk − 1, q− 1). Since (r− 1)Wi+2 + (q+ u − 1)Wi+k > (Wk − 1)Wi+2 + (q− 1)Wi+k
is equivalent to rWi+2 > v2WiWk−2, by Lemma 1 (2), if rWi+2 ≥ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q+ u − 1)Wi+k − Wi .

If rWi+2 ≤ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q− 1)Wi+k − Wi .

• The case k is odd with k|i
When k is odd and k|i, we get q = Wi/Wk and r = 0. Hence, the elements of the

(0-)Apéry set are given in Figure 2.
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(0, 0) (1, 0) · · · · · · (Wk − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk − 1, 1)

...
... · · · · · ·

...
(0, Wi/Wk − 1) (1, Wi/Wk − 1) · · · · · · (Wk − 1, Wi/Wk − 1)

Figure 2. Ap0
(
Wi, Wi+2, Wi+k

)
when k|i.

Similarly to the case k ∤ i, when i is odd, so uWk ∤ Wi, the sequence {ℓWi+2 (mod Wi)}
Wi−1
ℓ=0

simply becomes one sequence by combining all the subsequences with length Wk and with
length r. When i is even, so uWk | Wi, the sequence {ℓWi+2 (mod Wi)}

Wi−1
ℓ=0 consists of u

subsequences with the same length Wi/u.
By Figure 2, the largest element of Ap0(A) is at (Wk − 1, Wi/Wk − 1). Hence:

g0(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 +

(
Wi
Wk

− 1
)

Wi+k − Wi .

In fact, this is included in the case where k ∤ i and rWi+2 ≤ v2WiWi−2.

3.2. The Case Where k Is Even

When k is even (so i is odd), we choose nonnegative integers q and r as:

Wi = q
Wk
u

+ r, 0 ≤ r <
Wk
u

, (15)

where q = ⌊uWi/Wk⌋. Note that Wk/u is an integer for even k. Note that k ∤ i because
otherwise i is also even. Then, the elements of the (0-)Apéry set are given in Figure 3.

(0, 0) (1, 0) · · · · · · (Wk/u − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk/u − 1, 1)

...
...

...
(0, q − 1) (1, q − 1) · · · · · · (Wk/u − 1, q − 1)
(0, q) · · · (r − 1, q)

Figure 3. Ap0
(

P2i+1(u), P2i+3(u), P2i+k+1(u)
)

for even k.

Similarly to the case where k is odd in (14), we have:

Wi+2
Wk
u

≡ Wi+k (mod Wi) and Wi+2
Wk
u

> Wi+k.

Thus, the element at (Wk/u, j) (0 ≤ j ≤ q − 1) cannot be an element of Ap0(A) but (0, j + 1)
as the same residue modulo Wi. The sequence {ℓWi+2 (mod Wi)}

Wi−1
ℓ=0 is divided into the

longer parts with length Wk/u and one shorter part with length r. Namely, the longer part
is of the subsequence:

(0, j), (1, j), . . . , (Wk/u − 1, j) (j = 0, 1, . . . , q − 1)

with the next element at (0, j + 1). One shorter part is of the subsequence:

(0, q), (1, q), . . . , (r − 1, q)

with the next element at (0, 0). Notice that similarly to Lemma 3, we have:

rWi+2 + qWi+k ≡ 0 (mod Wi) .
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Since gcd(Wi+2, Wi+k) = 1, all elements in {ℓWi+2 (mod Wi)}
Wi−1
ℓ=0 are different mod-

ulo Wi. Then by gcd(Wi, Wi+2) = 1, we have:

{ℓWi+2 (mod Wi)}
Wi−1
ℓ=0 = {ℓ (mod Wi)}

Wi−1
ℓ=0 .

By Figure 3, the candidates of the largest element of Ap0(A) are at (r − 1, q) or at
(Wk/u − 1, q − 1). Since (r − 1)Wi+2 + qWi+k > (Wk/u − 1)Wi+2 + (q − 1)Wi+k is equiva-
lent to ruWi+2 > v2WiWk−2, by Lemma 1 (2), if ruWi+2 ≥ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) = (r − 1)Wi+2 + qWi+k − Wi .

If ruWi+2 ≤ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) =

(
Wk
u

− 1
)

Wi+2 + (q − 1)Wi+k − Wi .

Notice that ruWi+2 = v2WiWk−2 may occur in some cases. For example, (i, k, u, v) =
(9, 2, 6, 133). In this case, both of the two formulas are valid, yielding the Frobenius number
g0(A) = 5949962315313983.

4. The Case Where p > 0

It is important to see that the elements of App(A) are determined from those of App−1(A).

4.1. When k Is Odd

• When p = 1
The corresponding relations from Ap0(A) to Ap1(A) are as follows, see Figure 4.

[The first u rows]

(y, z) → (y + r, z + q) (0 ≤ y ≤ Wk − r− 1, 0 ≤ z ≤ u − 1) ,

(y, z) → (y − Wk + r, z + q+ u) (Wk − r ≤ y ≤ Wk − 1, 0 ≤ z ≤ u − 1)

by Lemma 3 and

(−Wk + r)Wi+2 + (q+ u)Wi+k = (Wi+1 + v(qWk−1 + r)− v2Wk−2)Wi(
Lemma 3 and (13)

)
,

respectively. Note that when r = 0, the second corresponding relation does not exist.
This also implies that all the elements at (y + r, z + q) and (y − Wk + r, z + q+ u) can be
expressed in terms of (Wi, Wi+2, Wi+k) in at least two ways.
[Others]

(y, z) → (y + Wk, z − u) (0 ≤ y ≤ Wk − 1, u ≤ z ≤ q− 1;

0 ≤ y ≤ r− 1, q ≤ z ≤ q+ u − 1)

by the identity (13). This also implies that all the elements at (y + Wk, z − u) can be
expressed in at least two ways.

By Figure 4, there are four candidates to take the largest value of Ap1(A). Namely,
the values at:

(r− 1, q+ 2u − 1), (Wk − 1, q+ u − 1),

(Wk + r− 1, q− 1), (2Wk − 1, q− u − 1).
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If 2uWi+k > WkWi+2, one of the elements at (r− 1, q+ 2u − 1) and at (Wk − 1, q+ u − 1) is
the largest. In this case, if rWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q+ 2u − 1)Wi+k − Wi .

If rWi+2 ≤ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ u − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2, one of the elements at (Wk + r− 1, q− 1) and at (2Wk − 1, q− u − 1)
is the largest. In this case, if rWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (Wk + r− 1)Wi+2 + (q− 1)Wi+k − Wi .

If rWi+2 ≤ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (2Wk − 1)Wi+2 + (q− u − 1)Wi+k − Wi .

(0, 0) (1, 0) · · · · · · Wk − 1, 0) (Wk, 0) (Wk + 1, 0) · · · · · · (2Wk − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk − 1, 1) (Wk, 1) (Wk + 1, 1) · · · · · · (2Wk − 1, 1)

...
...

...
...

...
...

(0, q− u − 1) (1, q− u − 1) · · · · · · (Wk − 1, q− u − 1) (Wk, q− u − 1) (Wk + 1, q− u − 1) · · · · · · (2Wk − 1, q− u − 1)
(0, q− u) (1, q− u) · · · · · · (Wk − 1, q− u) (Wk, q− u) · · · (Wk + r− 1, q− u)

...
...

...
...

...
(0, q− 1) (1, q− 1) · · · · · · (Wk − 1, q− 1) (Wk, q− 1) · · · (Wk + r− 1, q− 1)
(0, q) · · · (r− 1, q) · · · (Wk − 1, q)

...
...

...
(0, q+ u − 1) · · · (r− 1, q+ u − 1) · · · (Wk − 1, q+ u − 1)
(0, q+ u) · · · (r− 1, q+ u)

...
...

(0, q+ 2u − 1) · · · (r− 1, q+ 2u − 1)

Figure 4. App(Wi, Wi+2, Wi+k) (p = 0, 1) for odd k.

Example 1. When (i, k, u, v) = (5, 3, 4, 3), the first identity is applied:

g1(W5, W7, W8) = g1(409, 8827, 41008)

= 11W7 + 26W8 − W5 = 1162896 .

Indeed, there are two representations in terms of W5, W7, W8 as:

11W7 + 26W8 = 2155W5 + 18W7 + 3W8 ,

which is the largest element of Ap1(W5, W7, W8). In fact, the second, the third and the fourth
identities yield the smaller values:

1060653 = 18W7 + 22W8 − W5(= 2164W5 + 6W7 + 3W8 − W5) ,

1002545 = 30W7 + 18W8 − W5(= 9W5 + 11W7 + 22W8 − W5) ,

900302 = 37W7 + 14W8 − W5(= 9W5 + 18W7 + 18W8 − W5) ,

respectively.
When (i, k, u, v) = (5, 3, 2, 7), the second identity is applied:

g1(W5, W7, W8) = g1(149, 2143, 8136)

= 10W7 + 14W8 − W5(= 753W5 + 7W7 + W8 − W5) = 135185 .

In fact, the first, the third, and the fourth identities yield the smaller values:

134313, 125342, 126214 ,

respectively.
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When (i, k, u, v) = (5, 3, 1, 4), the third identity is applied:

g1(W5, W7, W8) = g1(29, 181, 441)

= 8W7 + 4W8 − W5(= 16W5 + 3W7 + 5W8 − W5) = 3183 .

In fact, the first, the second, and the fourth identities yield the smaller values:

3160, 2900, 2923 ,

respectively.
When (i, k, u, v) = (5, 3, 3, 35), the fourth identity is applied:

g1(W5, W7, W8) = g1(2251, 123929, 898467)

= 87W7 + 46W8 − W5(= 1225W5 + 43W7 + 49W8 − W5) = 521090543 .

In fact, the first, the second, and the third identities yield the smaller values:

51396298, 52046980, 51458372 ,

respectively.

• When p ≥ 2
The similar corresponding relations to the case p = 1 are also applied for p ≥ 2. When

p = 2, the elements of the first u rows of the main area (the second block from the left)
correspond to fill the gap below the left-most block:

(y, z) → (y − Wk + r, z + q+ u) (Wk ≤ y ≤ 2Wk − r− 1, 0 ≤ z ≤ u − 1) ,

(y, z) → (y − 2Wk + r, z + q+ 2u) (2Wk − r ≤ y ≤ 2Wk − 1, 0 ≤ z ≤ u − 1)

The other elements of the main area correspond to those in the block immediately to the
right to go up the u row:

(y, z) → (y + Wk, z − u) (Wk ≤ y ≤ 2Wk − 1, u ≤ z ≤ q− u − 1;

Wk ≤ y ≤ Wk + r− 1, q− u ≤ z ≤ q− 1) .

The elements of the stair areas correspond to those in the block immediately to the right in
the form as it is to go up the 2u row:

(y, z) → (y + Wk, z − 2u) (r ≤ y ≤ Wk − 1, q+ u ≤ z ≤ q+ 2u − 1;

0 ≤ y ≤ r− 1, q+ 2u ≤ z ≤ q+ 3u − 1) .

Figure 5 shows the areas in which the elements of p-Apéry set exist for p = 0, 1, 2. The
outermost lower right area is the area where the elements of the 2-Apéry set exist. We can
also show that all the elements of the 2-Apéry set have at least three distinct representations
in terms of Wi, Wi+2, Wi+k.

From Figure 5, there are six candidates to take the largest element of Ap2(A). These
elements are indicated as follows:

2a⃝ : (r− 1, q+ 3u − 1) 2b⃝ : (Wk − 1, q+ 2u − 1)
2c⃝ : (Wk + r− 1, q+ u − 1) 2d⃝ : (2Wk − 1, q− 1)
2e⃝ : (2Wk + r− 1, q− u − 1) 2 f⃝ : (3Wk − 1, q− 2u − 1) .

If uWi+k > (Wk − r)Wi+2 (or rWi+2 ≥ v2WiWk−2), one of those at 2a⃝, 2c⃝, and 2e⃝ is the
largest. Otherwise, one of those at 2b⃝, 2d⃝, and 2 f⃝ is the largest. However, it is clear that one
of the values at 2a⃝ or 2e⃝ (respectively, 2b⃝ or 2 f⃝) is larger than at 2c⃝ (respectively, 2d⃝). Hence,
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if 2uWi+k > WkWi+2, then the element at 2a⃝ (respectively, 2b⃝) is the largest. Otherwise,
the element at 2e⃝ (respectively, 2 f⃝) is the largest.

· · · 2 f⃝

· · · 2e⃝

· · · 2d⃝

· · · 2c⃝

· · · 2b⃝

· · · 2a⃝

Figure 5. App
(
Wi, Wi+2, Wi+k

)
(p = 0, 1, 2) for odd k.

In conclusion, if 2uWi+k > WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q+ 3u − 1)Wi+k − Wi .

If 2uWi+k > WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ 2u − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (2Wk + r− 1)Wi+2 + (q− u − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (3Wk − 1)Wi+2 + (q− 2u − 1)Wi+k − Wi .

In general, for an integer p > 0, it is sufficient to compare two elements at both ends,
see Figure 6. If 2uWi+k > WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 +
(
q+ (p + 1)u − 1

)
Wi+k − Wi .

If 2uWi+k > WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ pu − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (pWk + r− 1)Wi+2 +
(
q− (p − 1)u − 1

)
Wi+k − Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =
(
(p + 1)Wk − 1

)
Wi+2 + (q− pu − 1)Wi+k − Wi .

The positions of the elements of App(A) below the left-most block and the positions
of App(A) in the right-most block are arranged as shown in Figure 6.

This situation is continued as long as z = q− pu ≥ 0. However, when p > q/u − 1,
the shape of the block on the right side collapses. Thus, the regularity of taking the
maximum value of App(A) is broken. Hence, the fourth case holds until p ≤ ⌊q/u⌋ − 1
and other cases hold for p ≤ ⌊q/u⌋.
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· · · ((p + 1)Wk − 1, q− pu − 1)

· · · · · · · · · (pWk + r− 1, q− (p − 1)u − 1)

. . .

... · · · (Wk − 1, q+ pu − 1)

· · · (r− 1, q+ (p + 1)u − 1)

Figure 6. App
(
Wi, Wi+2, Wi+k

)
for odd k.

In conclusion, when k is odd, the p-Frobenius number is given as follows.

Theorem 1. Let i be an integer and k be odd with 3 ≤ k ≤ i. Let q and r be determined as (9) and
(10). For 0 ≤ p ≤ q/u, if 2uWi+k > WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 +
(
q+ (p + 1)u − 1

)
Wi+k − Wi .

If 2uWi+k > WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ pu − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (pWk + r− 1)Wi+2 +
(
q− (p − 1)u − 1

)
Wi+k − Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≤ v2WiWk−2, then for p ≤ q/u − 1:

gp(Wi, Wi+2, Wi+k) =
(
(p + 1)Wk − 1

)
Wi+2 + (q− pu − 1)Wi+k − Wi .

Example 2. When (i, k, u, v) = (5, 3, 3, 7), the first identity is applied. Since q = 19 and r = 5, for
0 ≤ p ≤ ⌊19/3⌋ = 6 we have:

{gp(W5, W7, W8)}6
p=0 = {gp(319, 6553, 29739)}6

p=0

= 650412, 739629, 828846, 918063, 1007280, 1096497, 1185714.

Namely, the corresponding element for each integer is at (4, 3p + 21) (p = 0, 1, . . . , 6).
However, for p ≥ 7, the p-Frobenius numbers can be computed neither by the above formula nor by
any other closed formulas. Namely, the real value is g7(A) = 1218479, corresponding to (9, 39),
though the formula gives 1274931, corresponding to (4, 42).

4.2. When k Is Even

• When p = 1
Similarly to the odd case where k is odd, the elements of App(A) can be determined

from those of App−1(A). When p = 1, there are corresponding relations as follows.
[The first row z = 0]

(y, 0) → (y + r, z + q) (0 ≤ y ≤ Wk/u − r − 1) ,

(y, 0) → (y − Wk/u + r, z + q + 1) (Wk/u − r ≤ y ≤ Wk/u − 1)

with

rWi+2 + qWi+k = (Wi+1 + v(qWk−1 + r))Wi

due to (15). Note that when r = 0 the second corresponding relation does not exist. This
also implies that all the elements at (y + r, z + q) and (y − Wk/u + r, z + q + 1) can be
expressed in terms of (Wi, Wi+2, Wi+k) in at least two ways.



Axioms 2024, 13, 608 13 of 20

[Others]

(y, z) → (y + Wk/u, z − 1) (0 ≤ y ≤ Wk/u − 1, 1 ≤ z ≤ q − 1;

0 ≤ y ≤ r − 1, z = q)

by the identity (13). This also implies that all the elements at (y + Wk/u, z − 1) can be
expressed in at least two ways.

By Figure 7, there are four candidates to take the largest value of Ap1(A). Namely,
the values at:

(r − 1, q + 1), (Wk/u − 1, q),

(Wk/u + r − 1, q − 1), (2Wk/u − 1, q − 2).

If 2uWi+k > WkWi+2, one of the elements at (r − 1, q + 1) and at (Wk/u − 1, q) is the
largest. In this case, if ruWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (r − 1)Wi+2 + (q + 1)Wi+k − Wi .

If ruWi+2 ≤ v2WiWk−2, then

g1(Wi, Wi+2, Wi+k) =

(
Wk
u

− 1
)

Wi+2 + qWi+k − Wi .

If 2uWi+k < WkWi+2, one of the elements at (Wk/u + r − 1, q − 1) and at (2Wk/u − 1, q − 2)
is the largest. In this case, if ruWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) =

(
Wk
u

+ r − 1
)

Wi+2 + (q − 1)Wi+k − Wi .

If ruWi+2 ≤ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) =

(
2Wk

u
− 1

)
Wi+2 + (q − 2)Wi+k − Wi .

• When p ≥ 2

(0, 0) (1, 0) · · · · · · (Wk/u − 1, 0) (Wk/u, 0) (Wk/u + 1, 0) · · · · · · (2Wk/u − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk/u − 1, 1) (Wk/u, 1) (Wk/u + 1, 1) · · · · · · (2Wk/u − 1, 1)

...
...

...
...

...
...

(0, q − 2) (1, q − 2) · · · · · · (Wk/u − 1, q − 2) (Wk/u, q − 2) (Wk/u + 1, q − 2) · · · · · · (2Wk/u − 1, q − 2)
(0, q − 1) (1, q − 1) · · · · · · (Wk/u − 1, q − 1) (Wk/u, q − 1) · · · (Wk/u + r − 1, q − 1)
(0, q) · · · (r − 1, q) · · · (Wk/u − 1, q)

(0, q + 1) · · · (r − 1, q + 1)

Figure 7. App(Wi, Wi+2, Wi+k) (p = 0, 1) for even k.

The situation is similar for p ≥ 2. From Figure 8, there are six candidates to take the
largest element of Ap2(A). These elements are indicated as follows:

2a⃝ : (r − 1, q + 2) 2b⃝ : (Wk/u − 1, q + 1)
2c⃝ : (Wk/u + r − 1, q) 2d⃝ : (2Wk/u − 1, q − 1)
2e⃝ : (2Wk/u + r − 1, q − 2) 2 f⃝ : (3Wk/u − 1, q − 3) .

Similarly to the case where k is odd, middle element at 2c⃝ and at 2d⃝ cannot take the
largest value. Hence, if 2uWi+k > WkWi+2, then the element at 2a⃝ (respectively, 2b⃝) is the
largest. Otherwise, the element at 2e⃝ (respectively, 2 f⃝) is the largest.
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· · · 2 f⃝
· · · 2e⃝

· · · 2d⃝
· · · 2c⃝

· · · 2b⃝
· · · 2a⃝

Figure 8. App(Wi, Wi+2, Wi+k) (p = 0, 1, 2) for even k.

In conclusion, if 2uWi+k > WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (r − 1)Wi+2 + (q + 2)Wi+k − Wi .

If 2uWi+k > WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) =

(
Wk
u

− 1
)

Wi+2 + (q + 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) =

(
2Wk

u
+ r − 1

)
Wi+2 + (q − 2)Wi+k − Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) =

(
3Wk

u
− 1

)
Wi+2 + (q − 3)Wi+k − Wi .

In general, for an integer p > 0, it is sufficient to compare two elements at both ends,
see Figure 9. If 2uWi+k > WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r − 1)Wi+2 + (q + p)Wi+k − Wi .

If 2uWi+k > WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
Wk
u

− 1
)

Wi+2 + (q + p − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
pWk

u
+ r − 1

)
Wi+2 + (q − p)Wi+k − Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
(p + 1)Wk

u
− 1

)
Wi+2 + (q − p − 1)Wi+k − Wi .

The positions of the elements of App(A) below the left-most block and the positions
of App(A) in the right-most block are arranged as shown in Figure 6.

This situation is continued as long as z = q − p − 1 ≥ 0. However, when p = q,
the shape of the block on the right side collapses. Namely, we cannot take the value at(
(p + 1)Wk/u − 1, q − p − 1

)
. Thus, the regularity of taking the maximum value of App(A)

is broken. Hence, the fourth case holds until p ≤ q − 1, and other cases hold for p ≤ q.

· · · ((p + 1)Wk/u − 1, q − p − 1)
· · · · · · · · · (pWk/u + r − 1, q − p)

. . .

... · · · (Wk/u − 1, q + p − 1)
· · · (r− 1, q + p)

Figure 9. App(Wi, Wi+2, Wi+k) for even k.
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In conclusion, when k is even, the p-Frobenius number is given as follows.

Theorem 2. Let i be an integer and k be even with 3 ≤ k ≤ i. Let q and r be determined as (15).
For 0 ≤ p ≤ q, if 2uWi+k > WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r − 1)Wi+2 + (q + p)Wi+k − Wi .

If 2uWi+k > WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
Wk
u

− 1
)

Wi+2 + (q + p − 1)Wi+k − Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
pWk

u
+ r − 1

)
Wi+2 + (q − p)Wi+k − Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≤ v2WiWk−2, then for 0 ≤ p ≤ q − 1:

gp(Wi, Wi+2, Wi+k) =

(
(p + 1)Wk

u
− 1

)
Wi+2 + (q − p − 1)Wi+k − Wi .

Example 3. When (i, k, u, v) = (5, 4, 2, 3), we have q = 6 and r = 1. So, the elements of
Ap6(W5, W7, W9), where (W5, W7, W9) = (61, 547, 4921), are given as in Figure 10. The largest
element is at (Wk/u − 1, q + p − 1) = (9, 11), which comes from the second identity. Thus:

g6(W5, W7, W9) = 9W7 + 11W9 − W5 = 58993 .

Notice that the right-most element is at (pWk/u + r − 1, q − p) = (60, 0) and the block of
the right side is empty. Therefore, the formula does not hold for p = 7. In fact, g7(A) = 59542,
corresponding to (19, 10), though the formula gives 63,914, corresponding to (9, 12).

(60, 0)
(51, 1) . . . (59, 1)

(50, 2)
(41, 3) . . . (49, 3)

(40, 4)
(31, 5) . . . (39, 5)

(30, 6)
(21, 7) . . . (29, 7)

(20, 8)
(11, 9) . . . (19, 9)

(10, 10)
(1, 11) . . . (9, 11)

(0, 12)

Figure 10. Ap6(W5, W7, W9) for (u, v) = (2, 3).

5. p-Genus
5.1. The Case Where k Is Odd

Let k be odd. For a nonnegative integer p, the areas of the p-Apéry set can be divided
into three parts: the stairs part (left), the stairs part (right), and the main part. By referring
to Figure 6 (with Figures 4 and 5), we can compute:

∑
w∈App(A)

w

=
p

∑
l=0

q+(p−2l+1)u−1

∑
z=q+(p−2l)u

lWk+r−1

∑
y=lWk

(yWi+2 + zWi+k)
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+
p

∑
l=0

q+(p−2l)u−1

∑
z=q+(p−2l−1)u

(l+1)Wk−1

∑
y=lWk+r

(yWi+2 + zWi+k)

+
q−pu−1

∑
z=0

pWk+r−1

∑
y=pWk

(yWi+2 + zWi+k) +
q−(p+1)u−1

∑
z=0

(p+1)Wk−1

∑
y=pWk+r

(yWi+2 + zWi+k)

=
Wi
2u

(
(Wi − u)Wi+2 + u(u − 1)Wi+k − qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
pWi

2
Wk(2Wi+2 − uv2Wk−2)−

p2Wi
2

uv2WkWk−2 .

Here, we used the relation (9) to simplify the expression. In addition, by qvs.Wk−2 ≡
qWk ≡ Wi (mod u), we have:

(Wi − u)Wi+2 + u(u − 1)Wi+k − qv2(2Wi − uWk)Wk−2 + q2v2WkWk−2

≡ vs.W2
i − 2vs.W2

i + vW2
i ≡ 0 (mod u).

By Lemma 1 (3), we have:

np(Wi, Wi+2, Wi+k)

=
1

2u
(
(Wi − u)Wi+2 + u(u − 1)Wi+k − qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
p
2

Wk(2Wi+2 − uv2Wk−2)−
p2

2
uv2WkWk−2 −

Wi − 1
2

=
1

2u
(
(Wi − u)(Wi+2 − u) + u(u − 1)(Wi+k − 1)− qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
p
2

Wk(2Wi+2 − uv2Wk−2)−
p2

2
uv2WkWk−2 .

Since the z value of the right-most side must be nonnegative, q− pu − 1 ≥ 0. Namely,
the above formula is valid for p ≤ (q− 1)/u.

Example 4. When (i, k, u, v) = (5, 3, 3, 7), by:

q = 3
⌊

1
3

(⌊
319
16

⌋
− 7

5−3
2

)⌋
+ 7

5−3
2 = 19 ,

for 0 ≤ p ≤ (q− 1)/u = 6 we have for 0 ≤ p ≤ ⌊q/u⌋ = 6

{np(W5, W7, W8)}6
p=0 = {np(319, 6553, 29739)6

p=0

= 330327, 432823, 532967, 630759, 726199, 819287, 910023.

However, for p ≥ 7, the p-genus cannot be obtained by the above formula. The real values are
given by:

{np(W5, W7, W8)}9
p=7 = 965215, 1021448, 1067956,

though the formula gives:
998407, 1084439, 1168119.
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5.2. The Case Where k Is Even

Similarly to the case for k is odd, when k is even, by referring to Figure 9 (with
Figures 7 and 8), we can compute:

∑
w∈App(A)

w

=
p

∑
l=0

lWk/u+r−1

∑
y=lWk/u

(
yWi+2 + (q + p − 2l)Wi+k

)
+

p

∑
l=0

(l+1)Wk/u−1

∑
y=lWk/u+r

(yWi+2 + (q + p − 2l − 1)Wi+k)

+
q−p−1

∑
z=0

pWk/u+r−1

∑
y=pWk/u

(yWi+2 + zWi+k) +
q−p−2

∑
z=0

(p+1)Wk/u−1

∑
y=pWk/u+r

(yWi+2 + zWi+k)

(When p = q − 1, the fourth term is empty, and

when p = q, the third and the fourth terms are empty.)

=
1

2u2 Wi
(
u2Wi+2(Wi − 1)− qv2Wk−2(2uWi − Wk)

+ q2v2WkWk−2
)

+
p

2u2 WiWk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WiWkWk−2 .

Here, we used the relation (15) to simplify the expression. In addition:

Wk−2(2uWi − Wk)

u2 =
Wk−2

u

(
2Wi −

Wk
u

)
,

v2WkWk−2

u2 = v2 Wk
u

Wk−2
u

,

Wk(2uWi+2 − v2Wk−2)

u2 =
Wk
u

(
2Wi+2 − v2 Wk−2

u

)
,

v2WiWkWk−2

u2 = v2Wi
Wk
u

Wk−2
u

are all positive integers. By Lemma 1 (3), we have:

np(Wi, Wi+2, Wi+k)

=
1

2u2

(
u2Wi+2(Wi − 1)− qv2Wk−2(2uWi − Wk)

+ q2v2WkWk−2
)

+
p

2u2 Wk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WkWk−2 −
Wi − 1

2

=
1

2u2

(
u2(Wi − 1)(Wi+2 − 1)− qv2Wk−2(2uWi − Wk)

+ q2v2WkWk−2
)

+
p

2u2 Wk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WkWk−2 .

In conclusion, the p-genus is explicitly given as follows.
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Theorem 3. Let i and k be integers with gcd(i, k) = 1 and i ≥ k ≥ 3. When k is odd, for
0 ≤ p ≤ q/u we have:

np(Wi, Wi+2, Wi+k)

=
1

2u
(
(Wi − u)(Wi+2 − u) + u(u − 1)(Wi+k − 1)− qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
p
2

Wk(2Wi+2 − uv2Wk−2)−
p2

2
uv2WkWk−2 ,

where q and r are given in (9). When k is even (and i is odd), for 0 ≤ p ≤ q we have:

np(Wi, Wi+2, Wi+k)

=
1

2u2

(
u2(Wi − 1)(Wi+2 − 1)− qv2Wk−2(2uWi − Wk)

+ q2v2WkWk−2
)

+
p

2u2 Wk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WkWk−2 ,

where q and r are given in (15).

Example 5. Let (i, k, u, v) = (5, 4, 2, 3). So, q = ⌊2W5/W4⌋ = ⌊2 · 61/20⌋ = 6. Then, for
0 ≤ p ≤ 6 by the formula we have:

{np(W5, W7, W9)}6
p=0 = {np(61, 547, 4921)}6

p=0

= 14976, 20356, 25646, 30846, 35956, 40976, 45906 .

However, contrary to the fact that n7(W5, W7, W9) = 46885, the formula gives 50746.

6. Final Comments

The original numbers studied by Horadam satisfy the recurrence relation Wn =
uWn−1 − vWn−2. From this point of view, almost all the above identities hold by replacing
v by −v, though the condition u > |v| is necessary. For example, the identities of (7) and (8)
are replaced by:

Wi+k = Wi+1Wk − vWiWk−1 ,

Wn ≡
{

0 (mod u) if n is even;

(−v)
n−1

2 (mod u) if n is odd .

respectively. For example, when (i, k, u, v) = (8, 5, 4,−3), by q = 24 for 0 ≤ p ≤ 6 = 24/4
by the first identity of Theorem 1, we have:

{gp(W5, W7, W9)}6
p=0 = 24265799, 27454443, 30643087,

33831731, 37020375, 40209019, 43397663 .

When (i, k, u, v) = (5, 4, 3,−2), by q = 6 for 0 ≤ p ≤ 6 by the first identity of
Theorem 2, we have:

{gp(W5, W7, W9)}6
p=0 = 3035, 3546, 4057, 4568, 5079, 5590, 6101 .

7. Conclusions

In this paper, we give explicit formulas of the p-Frobenius number and the p-genus
of triplet (Wi, Wi+2, Wi+k) for integers i, k(≥3), where Wn’s are the so-called Horadam
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numbers, satisfying the recurrence relation Wn = uWn−1 + vWn−2 (n ≥ 2) with W0 = 0
and W1 = 1. We give explicit closed formulas of p-Frobenius numbers and p-genus of this
triple. When u = v = 1, v = 1 or u = 1, the results for Fibonacci, Pell, and Jacobsthal triples
are recovered.

Horadam also studied the number Wn with arbitrary initial values W0 and W1. How-
ever, with arbitrary initial values, many identities (e.g., (7)) do not hold as they are. Hence,
the situation becomes too complicated. An approach to get some recurrences to a wide
class of polynomials in [39] may be useful for future works.
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