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Abstract: A quadratic integral Equation (QIE) of the second kind with continuous kernels is solved
in the space C([0, T]× [0, T]). The existence of at least one solution to the QIE is discussed in this
article. Our evidence depends on a suitable combination of the measures of the noncompactness
approach and the fixed-point principle of Darbo. The quadratic integral equation can be used to
derive a system of integral equations of the second kind using the quadrature method. With the aid
of two different polynomials, Laguerre and Hermite, the system of integral equations is solved using
the collocation method. In each numerical approach, the estimation of the error is discussed. Finally,
using some examples, the accuracy and scalability of the proposed method are demonstrated along
with comparisons. Mathematica 11 was used to obtain all of the results from the techniques that
were shown.

Keywords: quadratic integral equation; Darbo’s fixed-point theorem; collocation method; measure of
noncompactness; Hermite polynomials; Laguerre polynomials
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1. Introduction

Integral equations of various types play an important role in many branches of linear
and nonlinear functional analysis and their applications, which appear in many different
applied science fields. For example, in [1], Alhazmi solved the mixed integral equation of
the first kind using a novel approach, Ghiat et al. [2] solved the non-linear Volterra integral
equation of the first kind using a block-by-block technique, in [3], Gong et al. focused on
an optimal control problem in a confined domain that includes a wave equation constraint
across the whole space, Jaabar and Hussain solved Volterra integral equations using the
definition of a new transformation (the Al-Zughair Transform) in [4], the unique solution
and existence of the nonlinear Volterra–Fredholm integral equation of the second kind were
examined by Matoog et al. in [5], Ma and Huang created a collocation technique for VIE of
the third kind solutions in [6], a form of Volterra functional integral Equations (VIEs) of the
second kind in which both limits of integration are variables was examined by Micula in [7]
using an iterative numerical approach, Micula presented a simple numerical technique for
estimating solutions to Fredholm-–Volterra integral equations of the second kind in [8],
and Sarkar et al. presented a method for resolving a nonlinear Fredholm integral equation
with a constant delay in [9]. Quadratic integral equations are complex equations in the
science of integral equations due to the difficulty of obtaining an exact solution, but they
have many applications in life sciences, so researchers have been interested in finding
an approximate solution to this type of equation. For example, we can cite the meshless
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method in Fatahi [10], the homotopy perturbation method in Noeiaghdam et al. [11], the
collocation method in Jaan [12], the Chebyshev polynomial method in Abusalim et al. [13],
the Legendre polynomials method in Abdel-Aty and Abdou [14], the block–pulse and
hybrid functions in Abusalim et al. [15], the wavelet method in Adibi et al. [16], and
the resolvent kernel method in Abdel-Aty et al. [17]. To find an approximate solution to
this type of equation, researchersfound new algorithms, that use a linear combination of
functions with an orthogonal or non-orthogonal basis and polynomials as an expression of
the solution, for example, Fibonacci polynomials in Mirzaee and Hoseini [18], block–pulse
functions in Hesameddini and Shahbazi [19], Chebyshev polynomials in Alhazmi [20], hat
functions in Mirzaee and Hadadiyan [21], Bernoulli polynomials in Bazm [22], and the
operational matrix method in Mirzaee and Samadyar [23].

Quadratic integral equations are a special type of integral equations that appear in
many mathematical models of various phenomena in the real world. Numerous mathe-
matical physics and chemical engineering problems at times involve quadratic integral
equations, such as the theory of kinetic gases, the theory of radiative transfer, the traffic
theory, the queuing theory, the theory of neutron transport, and many other applica-
tions [24–26]. See Abdou et al. [27], El-Sayed et al. [28], Abdel-Aty [29], and Mirzaee [30]
for studies on the existence of a solution and a numerical approach to solve this kind
of integral equations. Volterra-type singular quadratic integral equations have recently
attracted a lot of attention due to their importance in describing problems that appear in
basic sciences and various events in the real world.

In many branches of nonlinear analysis, special measures of specific incompatibilities
are often used. Arab et al. [31] found this technique a really useful tool within the existence
theorems of many kinds of integral equations. The purpose of this study is to prove the
existence theorem for a nonlinear integral equation using the method of special measures of
noncompactness and a fixed-point theory of the Darbo type in the class C[0, T]. The results
conferred during this article appear to be new and original. The result obtained within
the article generalizes a lot of results obtained earlier in many papers, such as Abdel-Aty
et al. [17] and Basseem [32].

In this paper, we will discuss the solvability of the following quadratic integral equation:

µΦ(x, t) = g(x, t) + E1

(
x, t,

∫ t

0
f (x, τ)Φ(x, τ)dτ

)
× E2

(
x, t,

∫ x

0
k(y, t)Φ(y, t)dy

)
, for (x, t) ∈ ([0, T]× [0, T]),

(1)

where µ is a constant, Φ(x, t) is unknown function in Banach space C([0, T]× [0, T]); T < 1.
The kernels f (x, τ), k(y, t) are continuous in C([0, T]× [0, T]); in addition, the given g(x, t)
is a continuous function in the same class.

The rest of this paper is organized as follows: In Section 2, the initial principles are
reviewed by mentioning some important definitions and theorems in the noncompactness
measure. In Section 3, in light of the fixed-point theorem and the contradiction measure
and under certain conditions, we obtain the basic condition for the existence of at least
one solution to the quadratic integral equation Equation (1). This solution is positive and
belongs to the used branch. This is formulated by stating a basic theorem for the existence
of at least one solution. This context is justified by proving that the integrative operators
satisfy the Darbo condition. In Section 4, we review the squaring method to obtain an
algebraic system of quadratic integral equations. Then, using the collocation approach, the
quadratic integral equations are written for possible solutions after completing the study
of the system. In Section 5, the convergence of the solution of quadratic integral systems
is studied. The concept of convergence is contextualized through a theory in which the
necessary and essential conditions for convergence are stated. The work is completed with
the help of Laguerre and Hermite limits by discussing the convergence of the solution. In
Section 6, the analytical application is followed by showing some examples that are solved
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numerically using Mathematica 11. The error resulting from the solution for the mentioned
applications is also calculated. Finally, Section 7 presents some concluding remarks.

2. Auxiliary Results and Notation

In this section, we provide some preliminary observations and facts found in Banaś
et al. [33] that are used in the following sections of the paper.

Let E be a real Banach space with the norm ∥.∥, infinite-dimensional, and the zero
element θ, the closed ball with a centered at x with radius r, is denoted as B(x, r). We write
Br for B(0, r).

Definition 1. A function ω0 : ME → R+ = [0,+∞) is said to be the measure of noncompactness
in E, if it satisfies the following conditions:

(1*) The family ker ω0 = {X ∈ ME : ω0(X) = 0} is nonempty and ker ω0 ⊂ NE;

(2*) X ⊂ Y ⇒ ω0(X) ≤ ω0(Y);

(3*) ω0(X̄) = ω0( Conv X) = ω0(X);

(4*) ω0(λX + (1 − λ)Y) ≤ λω0(X) + (1 − λ)ω0(Y) for 0 ≤ λ ≤ 1;

(5*) If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, ..., and if
limn→∞ ω0{Xn} = 0, then the set X∞ =

⋂∞
n=1 Xn is nonempty.

The following fixed-point theorem of the Darbo kind will suffice for our needs, see
Pourhadi et al. [34]. Assume that M is a nonempty subset of a Banach space E and the
operator H : M → E transforms bounded sets into bounded and continuous ones. let us
suppose that H satisfies the Darbo condition (with constant α ≥ 0) with respect to the
measure of noncompactness ω0 if for any bounded subset X of M, we obtain

ω0(HX) ≤ αω0(X).

If H satisfies the Darbo condition with α < 1, then it is called a contraction with respect
to ω0.

Theorem 1. Let Q be a convex, bounded, closed, and nonempty subset of E and ω0 a measure of
noncompactness in E. Let H : Q → Q be a contraction with respect to ω0. Then, H has at least one
fixed point in the set Q.

Theorem 2. Suppose that Q is a convex, bounded, closed, and nonempty subset of C[0, T] and the
operators F and K mapping continuously the set Q into C[0, T] such that both F(Q) and K(Q)
are bounded. Additionally, consider that the operator H = F × K transform Q into itself. If the
operators F and K satisfy on the set Q the Darbo condition with the constant α1 and α2, respectively,
then the operator H satisfies the Darbo condition on Q with the constant

∥F(Q)∥α1 + ∥K(Q)∥α2.

Particularly, if ∥F(Q)∥α1 + ∥K(Q)∥α2 < 1, then, H has at least one fixed point in the set Q and
is a contraction with respect to the measure ω0.

In this following, work will be carried out in the classical Banach space C([0, T]×
[0, T]), which contains all real functions continuously and defined on ([0, T]× [0, T]). For
brevity, assume that [0, T] = I and we write C(I × I) in place of C([0, T] × [0, T]). The
standard norm ∥Φ∥ = max{|Φ(x, t)| : 0 ≤ (x, t) ≤ T} is present in the space C(I × I).

Let us fix a bounded and nonempty subset X of C(I × I). For ε ≥ 0 and x ∈ X denoted
by ω(x, ε), we have

ω(x, ε) = sup{|x(t)− x(s)| : (t, s) ∈ (I × I), |t − s| ≤ ε}.
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Moreover, let us write

ω(X, ε) = sup{ω(x, ε) : x ∈ X}
ω0(X) = lim

ε→0
ω(X, ε).

3. Existence of the Solution

In this section, we will discuss the solvability of the quadratic integral equation
Equation (1) for (x, t) ∈ ([0, T]× [0, T]). The following integral operator form can be used
to represent Equation (1):

Φ(x, t) = µ−1g(x, t) + (µ)−1(HΦ)(x, t), (HΦ)(x, t) = (FΦ)(x, t)× (KΦ)(x, t), (2)

where

(FΦ)(x, t) = E1

(
x, t,

∫ t

0
f (x, τ)Φ(x, τ)dτ

)
(KΦ)(x, t) = E2

(
x, t,

∫ x

0
k(y, t)Φ(y, t)dy

)
.

Suppose that I is any arbitrary real interval and that E1 is a real function defined on
the set I × I × R. The superposition operator Vf Φ,E1(x, t) = E1

(
x, t,

∫ t
0 f (x, τ)Φ(x, τ)dτ

)
is studied under the following hypotheses:

(a) E1 is continuous on the set I × I × R.

(b) The function (x, t) → E1

(
x, t,

∫ t
0 f (x, τ)Φ(x, τ)dτ

)
is nondecreasing on (I × I) for any

fixed
∫ t

0 f (x, τ)Φ(x, τ)dτ ∈ R.

(c) For any fixed (x, t) ∈ (I× I), the function
∫ t

0 f(x, τ)Φ(x, τ)dτ → E1

(
x, t,
∫ t

0 f(x, τ)Φ(x, τ)dτ
)

is nondecreasing on R.

(d) With a constant l > 0, the function E1

(
x, t,

∫ t
0 f (x, τ)Φ(x, τ)dτ

)
satisfies the Lipschitz

condition.

We make the following assumptions to discuss the existence of at least one solution of
Equation (1):

(i) g : I × I → R; E1, E2 : I × I × R → R are continuous, nondecreasing functions
on the set I × I × R and there exist constant a, b1, b2 ≥ 0, such that |g(x, t)| ≤ a,
|E1(x, t, 0)| ≤ b1, |E2(x, t, 0)| ≤ b2.

(ii) The functions E1, E2 satisfies the following conditions:

|E1(x, t, y1)− E1(x, t, y2)| ≤ l1(x, t)|y1 − y2|
|E2(x, t, y1)− E2(x, t, y2)| ≤ l2(x, t)|y1 − y2|,

where max{l1(x, t), l2(x, t)} ≤ l, for all (x, t) ∈ ([0, T]× [0, T]) and y1, y2 ∈ R.
(iii) The kernels f (x, τ), k(y, t) belong to the class C([0, T]× [0, T]) and satisfy the condi-

tions: | f (x, τ)| ≤ n1, |k(y, t)| ≤ n2, where n1 and n2 are two constants.
(iv) 4ηb < 1, for η = lTn, max{n1, n2} ≤ n, max{b1, b2} ≤ b.

The main existence theorem can now be formulated.

Theorem 3. Equation (1) has at least one non-negative, nondecreasing solution, Φ = Φ(x, t), that
belongs to the space C([0, T]× [0, T]) and is non-negative under the conditions (i)− (iv).

Proof. Consider the operator H that the formula (2) defines on the space C(I × I).
Taking into account the properties of the superposition operator and assumptions

(i)− (iv), we conclude that HΦ is continuous on (I × I) for any function Φ ∈ C(I × I),
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i.e., H transforms C(I × I) into itself. Moreover, using our conditions, we arrive at the
estimation that follows:

|HΦ(x, t)| =
∣∣∣∣E1

(
x, t,

∫ t

0
f (x, τ)Φ(x, τ)dτ

)∣∣∣∣· ∣∣∣∣E2

(
x, t,

∫ x

0
k(y, t)Φ(y, t)dy

)∣∣∣∣
≤
{∣∣∣∣E1

(
x, t,

∫ t

0
f (x, τ)Φ(x, τ)dτ

)
− E1(x, t, 0)

∣∣∣∣+ |E1(x, t, 0)|
}

×
{∣∣∣∣E2

(
x, t,

∫ x

0
k(y, t)Φ(y, t)dy

)
− E2(x, t, 0)

∣∣∣∣+ |E2(x, t, 0)|
}

≤
{

l1(x, t)
∣∣∣∣∫ t

0
f (x, τ)Φ(x, τ)dτ

∣∣∣∣+ b1

}
×
{

l2(x, t)
∣∣∣∣∫ x

0
k(y, t)Φ(y, t)dy

∣∣∣∣+ b2

}
≤{lTn1∥Φ∥+ b1}· {lTn2∥Φ∥+ b2}
≤{lTn∥Φ∥+ b}2.

Then, it is clear from the estimate above that

∥FΦ∥ ≤ η∥Φ∥+ b

∥KΦ∥ ≤ η∥Φ∥+ b

∥HΦ∥ ≤ (η∥Φ∥+ b)2.

(3)

Using (3), we obtain that the operator H maps the ball Br ⊂ C([0, T]× [0, T]) into itself for
(η∥Φ∥+ b)2 ≤ r, where

r1 =
1 − 2ηb −

√
1 − 4ηb

2η2

r2 =
1 − 2ηb +

√
1 − 4ηb

2η2 .

Additionally, let us observe that estimations (3) lead to the following

∥FBr∥ ≤ ηr + b

∥KBr∥ ≤ ηr + b.
(4)

We now prove that F is continuous on the set Br. To do this, let us fix ε > 0 and
choose δ > 0 according to the continuity of F. Further, arbitrarily take Φ, Ψ ∈ Br such that
∥Φ − Ψ∥ ≤ δ. Then, for (x, t) ∈ (I × I), we deduce

|(FΦ)(x, t)− (FΨ)(x, t)| =
∣∣∣∣E1

(
x, t,

∫ t

0
f (x, τ)Φ(x, τ)dτ

)
− E1

(
x, t,

∫ t

0
f (x, τ)Ψ(x, τ)dτ

)∣∣∣∣
≤l1(x, t)

∣∣∣∣∫ t

0
f (x, τ)Φ(x, τ)dτ −

∫ t

0
f (x, τ)Ψ(x, τ)dτ

∣∣∣∣
≤l1(x, t)n1

∣∣∣∣∫ t

0
Φ(x, τ)dτ −

∫ t

0
Ψ(x, τ)dτ

∣∣∣∣
≤ln1T∥Φ − Ψ∥
≤ln1Tδ.

F is continuous according to the estimation presented above in the set Br. Similar to this, it
is simple to prove that K is continuous on Br, and from this, we derive that H is continuous
on Br.
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About the measure ω0 on the ball Br, we now prove that the operators F and K satisfy
the Darbo condition. To do this, take a nonempty set Θ such that Θ ∈ Br. Additionally,
ε > 0, Φ ∈ Θ and |t2 − t1| ≤ ε, ∀t1, t2 ∈ I. Then, utilizing our assumptions, we obtain

|(FΦ)(x, t2)− (FΦ)(x, t1)|

=

∣∣∣∣E1

(
x, t2,

∫ t2

0
f (x, τ)Φ(x, τ)dτ

)
− E1

(
x, t1,

∫ t1

0
f (x, τ)Φ(x, τ)dτ

)∣∣∣∣
≤
∣∣∣∣E1

(
x, t2,

∫ t2

0
f (x, τ)Φ(x, τ)dτ

)
− E1

(
x, t2,

∫ t1

0
f (x, τ)Φ(x, τ)dτ

)∣∣∣∣
+

∣∣∣∣E1

(
x, t2,

∫ t1

0
f (x, τ)Φ(x, τ)dτ

)
− E1

(
x, t1,

∫ t1

0
f (x, τ)Φ(x, τ)dτ

)∣∣∣∣
≤ l1(x, t2)

∣∣∣∣∫ t2

0
f (x, τ)Φ(x, τ)dτ −

∫ t1

0
f (x, τ)Φ(x, τ)dτ

∣∣∣∣+ ω(E1, ε)

≤ (lnr)|t2 − t1|+ ω(E1, ε).

Consequently, considering our assumptions and the information mentioned above, we
obtain the following inequality:

ω0(FΦ) ≤ (0)ω0(Φ). (5)

Similarly, we can show that

|(KΦ)(x, t2)− (KΦ)(x, t1)|

=

∣∣∣∣E2

(
x, t2,

∫ t2

0
k(x, y)Φ(y, t2)dy

)
− E2

(
x, t1,

∫ t1

0
k(x, y)Φ(y, t1)dy

)∣∣∣∣
≤
∣∣∣∣E2

(
x, t2,

∫ t2

0
k(x, y)Φ(y, t2)dy

)
− E2

(
x, t2,

∫ t1

0
k(x, y)Φ(y, t1)dy

)∣∣∣∣
+

∣∣∣∣E2

(
x, t2,

∫ t1

0
k(x, y)Φ(y, t1)dy

)
− E2

(
x, t1,

∫ t1

0
k(x, y)Φ(y, t1)dy

)∣∣∣∣
≤ l2(x, t2)

∣∣∣∣∫ t2

0
k(x, y)Φ(y, t2)dy −

∫ t1

0
k(x, y)Φ(y, t1)dy

∣∣∣∣+ ω(E2, ε)

≤ (lTn)|Φ(y, t2)− Φ(y, t1)|+ ω(E1, ε).

Then,
ω0(KΦ) ≤ (lTn)ω0(Φ). (6)

We conclude that operator H satisfies the Darbo condition with regard to the measure
ω0 with the constant (lTn)(ηr + b) by using Equations (4)–(6) and applying Theorem 3.
However, we also have

(lTn)(ηr + b) = (lTn)(ηr1 + b)

= (lTn)

(
η

(
1 − 2ηb −

√
1 − 4ηb

2η2

)
+ b

)

= (lTn)

(
1 −

√
1 − 4ηb

2η

)
< 1.

Therefore, with regard to ω0, the operator H is a contraction on Br. Theorem 3 is thus
applied and the result is that H has at least one fixed point in Br. Therefore, there is at
least one solution in Br for the quadratic integral equation Equation (1). The proof is
now complete.
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4. Hermite-and-Laguerre-Polynomial-Based Collocation Technique

In this section, we utilize numerical approaches to show that the integral Equation (1)
is a system of quadratic integral equations of the second kind. For this, we partition the
time interval, [0, T], 0 ≤ t ≤ T < 1, as 0 = t0 < t1 < ... < tn < ... < tN = T, where
t = tn , n = 0, 1, ..., N; to obtain

µΦ(x, tn) = g(x, tn) + E1

(
x, tn,

∫ tn

0
f (x, τ)Φ(x, τ)dτ

)
× E2

(
x, tn,

∫ x

0
k(y, tn)Φ(y, tn)dy

)
,

(7)

Using the quadrature formula, we have

E1

(
x, tn,

∫ tn

0
f (x, τ)Φ(x, τ)dτ

)
= E1

(
x, tn,

n

∑
m=0

ωm f (x, tm)Φ(x, tm)

)
+ O(h̄℘+1

n ). (8)

where,
h̄n = max

0≤m≤n
ρm and ρm = tn+1 − tn,

and ωm is a weight function. In Delves and Mohamed [35], more details on the quadrature
coefficients and characteristic points are provided. Using Equation (8) in (7) and neglecting
[O(h̄℘+1

n ), we obtain

µΦ(x, tn) = g(x, tn) + E1

(
x, tn,

n

∑
m=0

ωm f (x, tm)Φ(x, tm)

)

× E2

(
x, tn,

∫ x

0
k(y, tn)Φ(y, tn)dy

)
.

(9)

The collocation technique can be used to solve the previous system of Equation (9).
Equation (9) depends on applying the partial sum to approximate the solution; in this case:

SN(x, tn) =
N

∑
k=1

ck(tn)Φk(x); n = 0, 1, . . . , N (10)

for N a linear function that is independent Φ1(x), Φ2(x), . . . , ΦN(x) in the interval [0, T]. If
we change Φ(x, tn) in Equation (9) to the approximate solution of Equation (10), this will
produce an error E(x, c1(tn), c2(tn), . . . , cN(tn)) that depends on x and tn. Then, we have

µSN(x, tn) = g(x, tn) + E1

(
x, tn,

n

∑
m=0

ωm f (tn, tm)SN(x, tm)

)

× E2

(
x, tn,

∫ x

0
k(y, tn)SN(y, tn)dy

)
+ E(x, c1(tn), c2(tn), . . . , cN(tn)).

(11)

After utilizing the collocation approach, the error is shown in the Formula (11).
The position interval [0, T] is divided, where x = xi, 0 ≤ i ≤ M. In this way, we have

µSN(xi, tn) = g(xi, tn) + E1

(
xi, tn,

n

∑
m=0

ωm f (xi, tm)SN(xi, tm)

)

× E2

(
xi, tn,

∫ xi

0
k(y, tn)SN(y, tn)dy

)
.

(12)

We utilize the linear independent functions Φ1(x), Φ2(x), . . . , ΦN(x) instead of SN(x, tn) in
Equation (10) to obtain the coefficients c1(tn), c2(tn), . . . , cN(tn), of the approximate solution
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of Equation (11) such that the error E(x, c1(tn), c2(tn), . . . , cN(tn)) vanishes. Recurrence
relations can be used to solve the system of Equation (12).

5. Convergence of a Solution to the System of Quadratic Integral Equation (12)

To discuss the convergence of solution SN(xi, tn), we build a family of solution
SN(xi, tn) = {SN,0(xi, tn), SN,1(xi, tn), . . . , SN,ℓ(xi, tn), SN,ℓ−1(xi, tn), . . .} or in a simple form
SN(xi, tn) = {SN,k(xi, tn)}∞

k=0.
Consequently, we define two functions SN,ℓ−1(xi, tn), SN,ℓ(xi, tn) to satisfy the system

of quadratic integral Equations (12) and build the sequence of integral equations as

µSN,ℓ(xi, tn) = g(xi, tn) + E1

(
xi, tn,

n

∑
m=0

ωm f (xi, tm)SN,ℓ−1(xi, tm)

)

× E2

(
xi, tn,

∫ xi

0
k(y, tn)SN,ℓ−1(y, tn)dy

)
,

(13)

and

µSN,ℓ−1(xi, tn) = g(xi, tn) + E1

(
xi, tn,

n

∑
m=0

ωm f (xi, tm)SN,ℓ−2(xi, tm)

)

× E2

(
xi, tn,

∫ xi

0
k(y, tn)SN,ℓ−2(y, tn)dy

)
.

(14)

From Equations (13) and (14), we can build a new family of corresponding functions of
the solution

µℑN,ℓ(xi, tn) = E1

(
xi, tn,

n

∑
m=0

ωm f (xi, tm)SN,ℓ−1(xi, tm)

)

×
{

E2

(
xi, tn,

∫ xi

0
k(y, tn)SN,ℓ−1(y, tn)dy

)
− E2

(
xi, tn,

∫ xi

0
k(y, tn)SN,ℓ−2(y, tn)dy

)}
+ E2

(
xi, tn,

∫ xi

0
k(y, tn)SN,ℓ−2(y, tn)dy

)
×
{

E1

(
xi, tn,

n

∑
m=0

ωm f (xi, tm)SN,ℓ−1(xi, tm)

)
− E1

(
xi, tn,

n

∑
m=0

ωm f (xi, tm)SN,ℓ−2(xi, tm)

)}
.

(15)

In (15), we considered that

ℑN,ℓ(xi, tn) = SN,ℓ(xi, tn)− SN,ℓ−1(xi, tn). (16)

We derive from (16) that

SN,ℓ(xi, tn) =
ℓ

∑
k=0

ℑN,k(xi, tn), ℑN,0(xi, tn) =
g(xi, tn)

µ
̸= 0. (17)

Theorem 4. If the series ∑ℓ
k=0 ℑN,k(xi, tn) is uniformly convergent, then SN(y, tn) represents

a solution of the system (12), under the conditions (i)− (iii), ∑n
m=0 |ωm f (xi, tm)| ≤ n1, and

3a
(
2n1n2l2 + b1n2l + b2n1l

)
< |µ|.

Proof. From Equation (17), conditions in this theorem, and properties of the norm, we
obtained the following:
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∥ℑN,ℓ(xi, tn)∥ ≤Θ∥ℑN,ℓ−1(xi, tn)∥,

Θ =
3a
|µ|

(
2n1n2l2 + b1n2l + b2n1l

)
.

(18)

Applying the mathematical induction, with the value of ∥ℑN,0(xi, tn)∥ and using condition
(i), we arrive at

∥ℑN,ℓ(xi, tn)∥ ≤ Θ2ℓa. (19)

The inequality (19) leads to the convergence of the sequence {ℑN,ℓ(xi, tn)} and also the
sequence {SN,ℓ(xi, tn)} is uniformly convergent. Thus, using Equation (17), we can derive

SN(xi, tn) = lim
ℓ→∞

SN,ℓ(xi, tn) = lim
ℓ→∞

(
ℓ

∑
k=0

ℑN,k(xi, tn)

)
. (20)

5.1. Hermite-Polynomial-Based Collocation Technique

Suppose that the known function g(x, tn) and the unknown approximation function
SN(x, tn) have the following forms, respectively.

g(x, tn) =
N

∑
k=1

gk(tn)Hk(x) =
N

∑
k=1

gk,n Hk(x)

SN(x, tn) =
N

∑
k=1

ck(tn)Hk(x) =
N

∑
k=1

ck,n Hk(x).

(21)

The constants of the given function gk,n may be calculated using the following relation,
where ck,n are constants and Hk(x) is the Hermite function of order k

gk,n =
1

2k
√

π(k!)

∫ ∞

−∞
e−x2

gn(x)Hk(x)dx; (k, n = 0, 1, . . . , N). (22)

After using the orthogonal polynomials technique, we obtain the known coefficients of the
known function from Equation (22).

Then, to obtain the residual equation form, we substitute Equation (21) into Equation (12)

Ei,n = µ
N

∑
k=1

ck,n Hk,i−
N

∑
k=1

gk,n Hk,i − E1

(
xi, tn,

n

∑
m=0

ωm fi,m

N

∑
k=1

ck,mHk,i

)

× E2

(
xi, tn,

N

∑
k=1

ck,n

∫ xi

0
kn(y)Hk(y)dy

)
.

(23)

where in Equation (23), Ei,n are the errors of order (N × M), which vanish at n points of
time and i points of position, i.e., Ei,n = 0 at 0 = x0 < x1 < ... < xi < ... < xM = T;
0 = t0 < t1 < ... < tn < ... < tN = T.

5.2. Laguerre-Polynomial-Based Collocation Technique

In order to use Laguerre polynomials, we assume

SN(x, tn) =
N

∑
k=1

ck,nLk(x); g(x, tn)
N

∑
k=1

gk,nLk(x). (24)

The values that the constants gk,n in Equation (24) take

gk,n =
∫ ∞

0
e−x2

gn(x)Lk(x)dx; (k, n = 0, 1, . . . , N). (25)
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After using the orthogonal Laguerre polynomials, Equation (24) yields Equation (25). The
residual equation has the following form:

Ei,n = µ
N

∑
k=1

ck,nLk,i−
N

∑
k=1

gk,nLk,i − E1

(
xi, tn,

n

∑
m=0

ωm fi,m

N

∑
k=1

ck,mLk,i

)

× E2

(
xi, tn,

N

∑
k=1

ck,n

∫ xi

0
kn(y)Lk(y)dy

)
.

(26)

In Equation (26), Ei,n = 0 at 0 = x0 < x1 < ... < xi < ... < xM = T; 0 = t0 < t1 < ... <
tn < ... < tN = T.

6. Numerical Illustrations

In this section, we provide some computational results from numerical examples to
show the reliability and accuracy of the proposed technique and validate our theoretical
discussion.

Example 1. Consider the following quadratic integral equation:

Φ(x, t) = x2 + t2 − 4
675

t8x5
(

t6

5
+

t4x2

3

)
+

(
xt2

9

∫ t

0
xτ2Φ(x, τ)dτ

)
×
(

x3

10

∫ x

0
t2y2Φ(y, t)dy

)
,

(27)

where, Equation (27) has the exact solution Φ(x, t) = x2 + t2, and µ = 1 is constant, describing
the kind of Equation (27). It is clear from Equation (27) that the analytical function Φ(x, t) depends
on the values of the variables t and x. It is noticeable that when t = 0, we find that the value
of the function Φ(x, 0) = x2 represents a parabola. The original equation Φ(x, t) represents an
equivalence sector that can be drawn with changes in t and x.

The kernel of time is f (x, τ) = x2τ2, while the kernel of position is k(y, t) = t2y2. The
fundamental surface of the material is represented by the given function g(x, t), whereas the
unknown function is Φ(x, t). Equation (27) will be computed at time t ∈ [0, 0.6].

Table 1, illustrates a comparison between the absolute error of collocation with a Laguerre
polynomial solution and collocation with a Hermite polynomial solution. We will observe and derive
the changes that occur between the approximate solution and the exact solution for each of the two
approaches for various values of x.

Table 1. Error and Numerical Results of Collocation via Laguerre and Hermite Polynomials with
t ∈ [0, 0.6].

xi Exact Sol. Hermite Polys. Error of Hermite Laguerre Polys. Error of Laguerre

0 0.09 0.089999978 2.236 × 10−8 0.089999597 4.034 × 10−7

0.1 0.1 0.099999998 2.122 × 10−9 0.09999997 3.025 × 10−8

0.2 0.13 0.129999998 1.634 × 10−9 0.129999976 2.369 × 10−8

0.3 0.18 0.179999998 1.585 × 10−9 0.179999978 2.164 × 10−8

0.4 0.25 0.249999999 1.208 × 10−9 0.249999979 2.112 × 10−8

0.5 0.34 0.339999917 8.266 × 10−8 0.339999038 9.624 × 10−7

0.6 0.45 0.449999348 6.524 × 10−7 0.44999718 2.821 × 10−6

0.7 0.58 0.579999307 6.932 × 10−7 0.579996631 0.000003369

0.8 0.73 0.729999126 8.741 × 10−7 0.729994998 0.000005002

0.9 0.9 0.899999076 9.236 × 10−7 0.899993886 0.000006114
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In Figures 1 and 2, we show a comparison between the approximate solution, the exact solution,
and the absolute error of the solution using the introduced numerical approaches with different
values of x.

Figure 1. Exact solution, approximate solution, and absolute error of Hermite Polys. For 0 ≤ t ≤ 0.6.

Figure 2. Exact solution, approximate solution, and absolute error of Laguerre Polys. For 0 ≤ t ≤ 0.6.

Example 2. Consider the following quadratic integral equation when µ = 0.5:

1
2

Φ(x, t) =
1
2

x2t2 − 1
150

t17x7
(

t6

5
+

t4x2

3

)
+

(
t4

3

∫ t

0
x2τ2Φ(x, τ)dτ

)
×
(

x3

2

∫ x

0
ty2Φ(y, t)dy

)
,

(28)
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where, Equation (28) has the exact solution Φ(x, t) = x2t2. The kernel of position is k(y, t) = ty2,
while the kernel of time is f (x, τ) = x2τ2. Equation (28) will be computed at time t ∈ [0, 0.1].

Table 2 presents a comparison between the absolute error of collocation with a Laguerre
polynomial solution and collocation with a Hermite polynomial solution. For different values of x,
we can observe and derive the changes that occur between the approximate solution and the exact
solution for each of the two methods.

Table 2. Error and Numerical Results of Collocation via Laguerre and Hermite Polynomials with
0 ≤ t ≤ 0.1.

xi Exact Sol. Hermite Polys. Error of Hermite Laguerre Polys. Error of Laguerre

0.0 0 8.652 × 10−10 8.652 × 10−10 2.587 × 10−9 2.587 × 10−9

0.1 0.000025 2.499 × 10−5 5.411 × 10−11 2.499 × 10−5 2.631 × 10−10

0.2 0.0001 1.000 × 10−4 4.754 × 10−11 9.999 × 10−5 5.231 × 10−10

0.3 0.000225 0.000224999 8.758 × 10−10 0.000224993 7.418 × 10−9

0.4 0.0004 0.000399999 9.587 × 10−10 0.000399991 8.648 × 10−9

0.5 0.000625 0.00062499 9.632 × 10−9 0.000624938 6.235 × 10−8

0.6 0.0009 0.00089999 9.961 × 10−9 0.000899928 7.231 × 10−8

0.7 0.001225 0.001224967 3.254 × 10−8 0.001224904 9.624 × 10−8

0.8 0.0016 0.001599935 6.523 × 10−8 0.001599136 8.645 × 10−7

0.9 0.002025 0.002024926 7.412 × 10−8 0.002024094 9.058 × 10−7

In Figures 3 and 4, we show a comparison between the approximate solution, the exact solution,
and the absolute error of the solution using the proposed numerical approaches with different values
of x.

Figure 3. Exact solution, approximate solution, and absolute error of Hermite Polys. For 0 ≤ t ≤ 0.1.
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Figure 4. Exact solution, approximate solution, and absolute error of Laguerre Polys. For 0 ≤ t ≤ 0.1.

Example 3. Consider the quadratic integral equation of the second kind:

Φ(x, t) =t2ex − 1
4

t9ex(−2 + et(t2 − 2t + 2)x2

+

(
t2
∫ t

0
xτΦ(x, τ)dτ

)
×
(

x
∫ x

0
ty2Φ(y, t)dy

)
,

(29)

where Equation (29) has the exact solution Φ(x, t) = t2ex, the kernel of position is k(y, t) = ty2,
and the kernel of time is f (x, τ) = xτ. Equation (29) will be computed at time t ∈ [0, 0.01].

Table 3 shows a comparison between the absolute error of collocation with a Laguerre polynomial
solution and collocation with a Hermite polynomial solution. For different values of x, we can
observe and derive the changes that occur between the approximate solution and the exact solution
for each of the two methods.

Table 3. Error and Numerical Results of Collocation via Laguerre and Hermite Polynomials with
0 ≤ t ≤ 0.01.

xi Exact Sol. Hermite Polys. Error of Hermite Laguerre Polys. Error of Laguerre

0 0.000025 0.000025 3.22 × 10−25 0.000025 5.25 × 10−22

0.1 2.763 × 10−5 2.763 × 10−5 7.13 × 10−24 2.763 × 10−5 5.99 × 10−22

0.2 3.053 × 10−5 3.053 × 10−5 5.68 × 10−22 3.053 × 10−5 2.37 × 10−21

0.3 3.375 × 10−5 3.375 × 10−5 6.03 × 10−22 3.375 × 10−5 1.03 × 10−20

0.4 3.730 × 10−5 3.730 × 10−5 6.90 × 10−22 3.730 × 10−5 5.21 × 10−20

0.5 4.122 × 10−5 4.122 × 10−5 6.07 × 10−20 4.122 × 10−5 7.26 × 10−19

0.6 4.555 × 10−5 4.555 × 10−5 7.11 × 10−20 4.555 × 10−5 9.37 × 10−19

0.7 5.034 × 10−5 5.034 × 10−5 7.57 × 10−20 5.034 × 10−5 3.37 × 10−18

0.8 5.564 × 10−5 5.564 × 10−5 8.26 × 10−20 5.564 × 10−5 6.32 × 10−18

0.9 6.149 × 10−5 6.149 × 10−5 8.21 × 10−19 6.149 × 10−5 8.99 × 10−18

In Figures 5 and 6, we show a comparison between the approximate solution, the exact solution,
and the absolute error of the solution using the presented numerical approaches with different values
of x.
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Figure 5. Exact solution, approximate solution, and absolute error of Hermite Polys. For 0 ≤ t ≤ 0.01.

Figure 6. Exact solution, approximate solution, and absolute error of Laguerre Polys. for 0 ≤ t ≤ 0.01.

Example 4. We take into consideration the quadratic integral equation in this case [36]:

Φ(t) =
t

4(1 + Φ(t)2)

(
1 +

∫ 1

0

tτ
16(1 + Φ(τ)2)

dτ

)
+ Φ(t)

∫ τ

0

tτ
16(1 + Φ(τ)2)2 dτ. (30)

We find the approximate solutions using the procedure provided in this work. The numerical
computational results of our approach and the current method in [36] for t = [0, 1] are computed
and presented in Table 4. The maximum absolute errors of the approach described in our paper
and [36] are displayed in Table 5.
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Table 4. Comparison of the absolute errors of the methods presented in this article and the method
presented in [36] with 0 ≤ t ≤ 1.

Error of Φ1(t) Error of Φ2(t)

t of Hermite of Laguerre Method of [36] of Hermite of Laguerre Method of [36]

0 0 5.931 × 10−5 0 3.147 × 10−5 4.587 × 10−5 1.61 × 10−2

0.1 5.741 × 10−5 4.635 × 10−4 3 × 10−4 4.563 × 10−5 5.965 × 10−5 1.59 × 10−2

0.2 7.411 × 10−5 5.963 × 10−4 1.9 × 10−3 4.654 × 10−5 6.456 × 10−5 1.42 × 10−2

0.3 7.952 × 10−5 6.524 × 10−3 5.9 × 10−3 5.952 × 10−5 2.457 × 10−4 1.01 × 10−2

0.4 8.853 × 10−5 6.852 × 10−3 1.3 × 10−2 6.258 × 10−5 4.213 × 10−4 3.8 × 10−3

0.5 3.531 × 10−4 7.528 × 10−3 2.34 × 10−2 7.856 × 10−5 6.547 × 10−4 4.2 × 10−3

0.6 4.204 × 10−4 7.968 × 10−3 3.68 × 10−2 2.047 × 10−4 7.698 × 10−4 1.29 × 10−2

0.7 6.824 × 10−4 8.521 × 10−3 5.3 × 10−2 3.965 × 10−4 8.472 × 10−4 2.12 × 10−2

0.8 5.632 × 10−3 9.124 × 10−3 7.15 × 10−2 2.854 × 10−3 5.368 × 10−3 2.82 × 10−2

0.9 3.541 × 10−2 5.232 × 10−2 9.18 × 10−2 3.147 × 10−3 6.147 × 10−3 3.42 × 10−2

1.0 5.223 × 10−2 7.852 × 10−2 1.135 × 10−1 4.567 × 10−3 8.210 × 10−3 3.91 × 10−2

Table 5. Comparison of the maximum errors of the methods presented in this article and the method
presented in [36] with 0 ≤ t ≤ 1.

Φ1(t) Φ2(t)

Maximum errors of Hermite 5.223 × 10−2 4.567 × 10−3

Maximum errors of Laguerre 7.852 × 10−2 8.210 × 10−3

Maximum errors of [36] 1.135 × 10−1 3.91 × 10−2

In Figures 7–10, we present the approximate solution and the exact solution using the proposed
numerical approaches and the method in paper [36] with various values of t.

Figure 7. Approximate and exact solutions of Hermite and Laguerre Polys for Φ1(t).
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Figure 8. Approximate solution and exact solution for Φ1(t) of [36].

Figure 9. Approximate and exact solutions of Hermite and Laguerre Polys for Φ2(t).
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Figure 10. Approximate solution and exact solution for Φ2(t) of [36].

7. Final Remarks
7.1. Discussions and Conclusions on Numerical Solutions

In this study, from the above discussion and results, the following may be concluded,

1. From Example 1, for the quadratic integral equation Equation (27) in Table 1 and
Figures 1 and 2, the max. value error of the collocation method via Hermite polyno-
mials is (9.236 × 10−7) at t ∈ [0, 0.6], while the max. value error of the collocation
method via Laguerre polynomials is (0.000006114) at x = 0.9. In addition, the error
of the collocation method via Laguerre and Hermite polynomials is decreasing at
x ∈ [0, 0.4] and increasing at x ∈ (0.4, 0.9].

2. In Example 2, for Equation (28) in Table 2 and Figures 3 and 4, the max. value error
of the collocation method via Hermite polynomials is (7.412 × 10−7) at t ∈ [0, 0.1],
while the max. value error of the collocation method via Laguerre polynomials is
(9.058 × 10−7). In addition, the error of the collocation method via Hermite poly-
nomials is decreasing at x ∈ [0, 0.2] and increasing at x ∈ (0.2, 0.9], while the error
of the collocation method via Laguerre polynomials is decreasing at x ∈ [0, 0.1] and
increasing at x ∈ (0.1, 0.9].

3. In Example 3, for Equation (29) of the second kind at 0 ≤ t ≤ 0.01 in Table 3 and
Figures 5 and 6, the max. value error of collocation method via Hermite polynomials
is (8.21 × 10−19), while the max. value error of the collocation method via Laguerre
polynomials is (8.99 × 10−18). The errors of the collocation methods via Laguerre and
Hermite polynomials increase if the position x increases, and vice versa.

4. From Examples 1–3, we notice that the numerical solution quickly converges to the
exact solution when the variable t converges to 0. When the variable x takes the value
x = 0.9, we obtain a maximum value of the error; conversely, we find a minimum
value of the error at x = 0.

5. In Example 4, we discussed Equation (30), which was discussed previously in [36]. We
can see from Tables 4 and 5, and Figures 7–10 that the method studied in this article is
more accurate in terms of results and better in providing a numerical solution closer
to the exact solution.
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7.2. Conclusions

Based on the results of this work, we can establish the following:

1. In this research, a quadratic integral equation is discussed in a general form, in the
space C([0, T]× [0, T]), T < 1, from which many special cases can be derived. These
special cases are considered important in application in many different fields.

2. If in Equation (1), we let E2 = 1, we have a nonlinear integral equation

µΦ(x, t) = g(x, t) + E1

(
x, t,

∫ t

0
f (x, τ)Φ(x, τ)dτ

)
. (31)

The above equation also has many applications in different fields.
3. It is noted that the squaring method, which depends on dividing one of the variables

into distances that may be equal or unequal, directly helps transform the quadratic
integral equation in two variables into an algebraic system of quadratic integral
equations in one variable.

4. Combining the collocation method and orthogonal polynomials enables researchers
to obtain more accurate and less error-prone solutions compared to other methods.

8. Future Work

The authors will consider the solution of the principal equation of this paper in two-
dimensional problem with phase-lag in time:

µΦ(x, t + δt) = g(x, t + δt) + E1

(
x, t + δt,

∫ t+δt

0
f (x, τ)Φ(x, τ)dτ

)
× E2

(
x, t + δt,

∫ x

0
k(y, t + δt)Φ(y, t + δt)dy

)
, 0 < δt < 1.
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