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Abstract: Aiming to explore the subtle connection between the number of nonlinear terms in Lorenz-
like systems and hidden attractors, this paper introduces a new simple sub-quadratic four-thirds-
degree Lorenz-like system, where ẋ = a(y − x), ẏ = cx − 3

√
xz, ż = −bz + 3

√
xy, and uncovers the

following property of these systems: decreasing the powers of the nonlinear terms in a quadratic
Lorenz-like system where ẋ = a(y− x), ẏ = cx− xz, ż = −bz+ xy, may narrow, or even eliminate the
range of the parameter c for hidden attractors, but enlarge it for self-excited attractors. By combining
numerical simulation, stability and bifurcation theory, most of the important dynamics of the Lorenz
system family are revealed, including self-excited Lorenz-like attractors, Hopf bifurcation and generic
pitchfork bifurcation at the origin, singularly degenerate heteroclinic cycles, degenerate pitchfork
bifurcation at non-isolated equilibria, invariant algebraic surface, heteroclinic orbits and so on. The
obtained results may verify the generalization of the second part of the celebrated Hilbert’s sixteenth
problem to some degree, showing that the number and mutual disposition of attractors and repellers
may depend on the degree of chaotic multidimensional dynamical systems.

Keywords: generalization of hilbert’s 16th problem; sub-quadratic Lorenz-like system; heteroclinic
orbit; Lyapunov function

MSC: 34D23; 34C37; 37C29

1. Introduction

As the fourteenth mathematical problem of the twenty-first century collected by
Smale [1], revealing the nature of the Lorenz attractor has continued to be a hot topic of
ongoing research in nonlinear science since its introduction [2–8]. As part of this ongoing
effort, when studying the chaos of three-dimensional quadratic autonomous differential
systems using the contraction map and boundary problem, Shilnikov et al. introduced the
following classification: chaos of the Shilnikov homoclinic orbit, or heteroclinic orbit, or ho-
moclinic and heteroclinic orbits hybrid orbit type, etc. [7]. Combining numerical technique
and theoretical analysis, Kokubu et al. gave some explanation of Lorenz-like attractors
from the viewpoint of the collapse of singularly degenerate heteroclinic cycles [9,10]. Llibre
and Zhang applied homogeneous-weight polynomials and the method of characteristic
curves to solve the linear partial differential equations in order to study invariant algebraic
surface of the Lorenz system, the collapse of which may generate strange attractors [11].
Liao et al. argued that the existence of a global attractive compact set and having at least
one positive Lyapunov exponent are the two sufficient conditions of a continuous system
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exhibiting chaos, and verified their findings using the chaotic Lorenz family [12,13]. Based
on the algebraic structure and topological characterization, Letellier et al. introduced the
concepts of Lorenz-like systems and attractors [8]. Chen separated the vector fields of
Lorenz chaotic family into the linear and nonlinear parts [14], while others divided them
into the conservative, dissipative and the external force field part [15–17].

However, Kuznetsov et al. turned their attention to the relationship between the
degree of the considered model and Lorenz-like attractors and generalized the second
part of the celebrated Hilbert’s sixteenth problem: the degree may control the number
and mutual disposition of attractors and repellers [18,19]. Zhang and Chen reasserted
this conjecture and coined two coexisting two-scroll Lorenz attractors from a cubic Lorenz
system [20]. Motivated by that, Wang et al. guessed that decreasing the powers of x of the
second and third equations of the quadratic Lorenz-like system [21] may widen the range
of the parameter c for hidden attractors, and verified this via two sub-quadratic Lorenz-like
analogues with degrees of four-thirds and six-fifths [22,23].

Now, one can not help but wonder what happens when decreasing the powers of x of
the cross products xz and xy of the Lorenz-like system [21], especially for the self-excited
and hidden attractors. To the best of our knowledge, little attention seems to have been
paid to this problem. Furthermore, this newly reported Lorenz-like system also satisfies
the second criterion of Sprott [24], i.e., the main contribution of this study, validating the
generalization of the second part of the Hilbert’s sixteenth problem to some degree: the
decrease in the powers of nonlinear terms may narrow or even eliminate the scope of some
certain parameters for hidden Lorenz-like attractors, but enlarge it for self-excited attractors.
This compelled us to carry out the research detailed here.

2. New Four-Thirds-Degree Lorenz-like System and Its Main Dynamics

By replacing the nonlinear term c 3
√

x in the sub-quadratic Lorenz-like system [22] with
the linear one cx, we formulate the analogue as follows:





ẋ = a(y − x),
ẏ = cx − 3

√
xz, a ̸= 0, (b, c) ∈ R2,

ż = −bz + 3
√

xy.
(1)

In order to distinguish system (1) from the systems in [21–23], we must first present
its basic dynamics in the following propositions. We have done this indentation.

Proposition 1.

(i) If b = 0 (resp. b ̸= 0 and bc ≤ 0), then Ez = {(0, 0, z)|z ∈ R} is the non-isolated equilibria
(resp. a single equilibrium point) of system (1).

(ii) If bc > 0, then E± = (± 2
√
(bc)3,± 2

√
(bc)3, bc2) is a pair of nontrivial equilibrium points

in system (1) beside E0.

Remark 1. As in the systems in [21–23], a generic (resp. degenerate) pitchfork bifurcation at E0
(resp. Ez) occurs in system (1) when b ̸= 0 (resp. c ̸= 0) and c (resp. b) passes through the zero
value and bc > 0.

Proposition 2. For a ̸= 0 and (b, c) ∈ R2 (resp. b = 0 and z ̸= 0), Table 1 (resp. Table 2) lists the
local dynamics of E0 (resp. Ez).

Remark 2. As for the system in [22], using a linear analysis, one can easily obtain the characteristic
equations of E0 and Ez: (λ+ b)(λ2 + aλ− ac) = 0 and λ(λ2 + aλ− a(c− z

3 3√x2
)), where x → 0,

and from which Proposition 2 follows.
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Table 1. The dynamical behaviors of E0.

b a c Property of E0

<0
<0 <0 A 1D Ws

loc and a 2D Wu
loc

>0 A 3D Wu
loc

>0 <0 A 2D Ws
loc and a 1D Wu

loc
>0 A 1D Ws

loc and a 2D Wu
loc

>0
<0 <0 A 2D Ws

loc and a 1D Wu
loc

>0 A 1D Ws
loc and a 2D Wu

loc

>0 <0 A 3D Ws
loc

>0 A 2D Ws
loc and a 1D Wu

loc

Table 2. The dynamical behaviors of Ez.

z a Property of Ez

>0 <0 A 1D Ws
loc, a 1D Wc

loc and a 1D Wu
loc

>0 A 2D Ws
loc and a 1D Wc

loc

<0 <0 A 2D Wu
loc and a 1D Wc

loc
>0 A 1D Ws

loc, a 1D Wc
loc and a 1D Wu

loc

In the next proposition, let us discuss the local dynamics of E±.

Proposition 3. Make S = {(a, b, c)|a ̸= 0, bc > 0}, S1 = {(a, b, c) ∈ S : a + b > 0,
ab + bc − 2ac

3 > 0, 2abc
3 > 0}, S2 = S\S1 and

S1
1 = {(a, b, c) ∈ S1 : ab(a + b)− c[ a(2a+b)

3 − b2] < 0},

S2
1 = {(a, b, c) ∈ S1 : c = 3ab(a+b)

(a−b)(2a+3b)},

S3
1 = {(a, b, c) ∈ S1 : ab(a + b)− c[ a(2a+b)

3 − b2] > 0}.

Then, E± is unstable (resp. asymptotically stable) when (a, b, c) ∈ S1
1 (resp. S3

1). However, when
(a, b, c) ∈ S2

1, system (1) undergoes Hopf bifurcation at E±.

As stated in [21] (Proposition 2.4, p. 2567) (resp. Proposition 3), the non-trivial
equilibria E± of the following quadratic Lorenz-like system is





ẋ = a(y − x),
ẏ = cx − xz, a ̸= 0, (b, c) ∈ R2,
ż = −bz + xy,

(2)

(resp. system (1)) is asymptotically stable when 0 < c < a(a+b)
a−b (resp. 0 < c < 3ab(a+b)

(a−b)(2a+3b) ).

Due to 3ab(a+b)
(a−b)(2a+3b) <

a(a+b)
a−b , system (1) may experience chaotic behaviors coexisting with

the unstable origin and stable E± in a narrower range of the parameter c in contrast to the
quadratic one (2).

Likewise, for (a, b) = (4, 1), the E± of system (1) (resp. (2)) is asymptotically stable
when 0 < c < 20

11 (resp. 0 < c < 20
3 ), and Figure 1 shows the periodic behavior rather than

chaotic attractors displayed in system (2) [22] (Fig. 3, p. 363).
For (a, b) = (3, 1.5) and c ∈ [0.1, 599.1], the quadratic Lorenz-like system (2) mainly

experiences periodic behaviors, whereas system (1) mainly experiences chaotic ones, as
shown in Figures 2–6.

Therefore, compared with another two sub-quadratic Lorenz-like analogues [22]
(Figures 1–2, p. 362), [23] (Property, Figures 2–4, p. 2450071-5-7) and Figures 2–6, one may
obtain the convincing argument:



Axioms 2024, 13, 625 4 of 16

Property. A decrease in the powers of nonlinear terms of the quadratic Lorenz-like
system (2) may narrow or even eliminate the range of the parameter c for hidden attractors,
but enlarge it for self-excited attractors.

Meanwhile, unlike most of other Lorenz-like systems [9,10,22,23,25–28], the collapse
of the singularly degenerate heteroclinic cycles in the system in (1) makes it hard to create
strange attractors, as shown in the following numerical result.

Numerical Result. 2.1 According to the dynamics of Ez in Table 2, for a > 0, z1 < 0
and t → ∞, the one-dimensional unstable manifold Wu(E1

z) (E1
z = (0, 0, z1)) tending

towards the stable E2
z = (0, 0, z2) with z2 > 0 creates singularly degenerate heteroclinic

cycles, as shown in Figure 3a. Moreover, a tiny perturbation in b > 0 may change singularly
degenerate heteroclinic cycles to limit cycles, as depicted in Figure 3b.

(a) c− x (b) c− y

(c) c− z
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(d) Lyapunov exponents versus c

Fig. 1: For (a, b) = (4, 1), c ∈ [0, 5] and (x10, y
1
0 , z

1
0) = (0.13, 1.3, 1.6)×10−7, (a), (b), (c) bifurcation diagrams, (d) Lyapunov exponents

versus c of system (1). In contrast to system (2) [22, Fig. 3, p.363], these �gures suggest that solutions of system (1) display stable
equilibria and period orbits, rather than self-excited and hidden attractors shown in system (2).

3 Hopf bifurcation

Using theory of Hopf bifurcation, one sketches the proof of Proposition 2.5.

Proof of Proposition 2.5. First of all, the characteristic equation of E± is calculated:

λ3 + (a+ b)λ2 + [ab+ bc− 2ac

3
]λ+

2abc

3
= 0. (3)

Next, based on Routh-Hurwitz criterion and Eq. (3), one derives the stability of E± and omits its

proof here.

For (a, b, c) ∈ S2
1 , λ1,2 = ±ωi = ±

√
ab[1 + (3b−2a)(a+b)

(a−b)(2a+3b) ]i and λ3 = −(a + b) are a pair of conjugate

purely imaginary roots and one negative real root of Eq. (3), respectively. Moreover, one has

dRe(λ1)

dc

∣∣∣∣
c=c∗

=
ab− 3b2 + 2a2

6[ω2 + (a+ b)2]
=

(3b+ 2a)(a− b)

6[ω2 + (a+ b)2]
̸= 0,

5

Figure 1. For (a, b) = (4, 1), c ∈ [0, 5] and (x1
0, y1

0, z1
0) = (0.13, 1.3, 1.6) × 10−7; (a−c) bifurcation

diagrams; (d) Lyapunov exponents versus c of system (1). In contrast to system (2) [22] (Figure 3,
p. 363), these figures suggest that the solutions for the system in (1) display stable equilibria and
period orbits, rather than the self-excited and hidden attractors shown in the system in (2).
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(d) Lyapunov exponents versus c

Fig. 2: For (a, b) = (3, 1.5), c ∈ [0.1, 599.1] and (x20, y
2
0 , z

2
0) = (1.314, 2.236, 4.669), (a), (b), (c) bifurcation diagrams, (d) Lyapunov

exponents versus c of system (2). The sub�gures (a)-(c) are consistent with the sub�gure (d), showing that system (2) mainly experiences
periodic behaviors.

from which the transversal condition is veri�ed. Therefore, Hopf bifurcation happens at E±.

Next, one applies the project method [36,37] to compute the Lyapunov coe�cients, aiming to determine

the nondegeneracy (or stability) of the Hopf bifurcation at E±.
Firstly, based on the time and coordinate transformations

(x, y, z, t) → (x3, y, z,
1

3
3
√
x2
t),

one transforms system (1) to the equivalent one:





ẋ = a(y − x3),

ẏ = 3x2(cx3 − xz),

ż = 3x2(−bz + xy).

(4)

E± of system (1) correspond to E1,2 = (±
√
bc,±

√
(bc)3, bc2) of system (4). One can verify the transver-

sality of Hopf bifurcation at E1,2.

6

Figure 2. For (a, b) = (3, 1.5), c ∈ [0.1, 599.1] and (x2
0, y2

0, z2
0) = (1.314, 2.236, 4.669); (a−c) bifurcation

diagrams; (d) Lyapunov exponents versus c of system (2). The subfigures (a−c) are consistent with
the subfigure (d), showing that system (2) mainly experiences periodic behaviors.

Remark 3. When (a, b) = (3, 1.5), E± is asymptotically stable (resp. unstable) when
0 < c < 3.8571 (resp. c > 3.8571). However, when (a, c, b) = (3, 3.8571, 1.5), the system
in (1) undergoes Hopf bifurcation at E±.

Finally, similarly to [21–23,26,28–35], we will discuss the heteroclinic orbits of the
system in (1) and present it in the following proposition.

Proposition 4. If c > 0 and 3b ≥ 4a > 0, then (a) the ω-limit of any one trajectory of system (1)
is an equilibrium point; (b) system (1) has a pair of heteroclinic orbits to E0 and E± but no
homoclinic orbits.

Remark 4. Generally speaking, the equilibria of heteroclinic orbits are all saddles or saddle-foci, or
unstable nodes [7]. As heteroclinic orbits [21–23,26,28–35], those discussed in Proposition 4 are
heteroclinic wiggles [7] (Fig. 14.3.2, p. 439), which connect the stable E± and unstable E0.

The rest of the paper is arranged as follows. Section 3 studies the stability and Hopf
bifurcation of E± followed by the proof of Proposition 3. Section 4 discusses the heteroclinic
orbits and the proof of Proposition 4 is outlined. A conclusion is drawn and the subject of
future work is discussed in Section 5, particularly related to the the relationship between
the degree and the Lorenz-like attractors.
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(d) Lyapunov exponents versus c

Fig. 3: For (a, b) = (3, 1.5), c ∈ [0.1, 599.1] and (x20, y
2
0 , z

2
0) = (1.314, 2.236, 4.669), (a), (b), (c) bifurcation diagrams, (d) Lyapunov

exponents versus c of system (1). In contrast with Fig. 2, the four sub�gures show that system (1) mainly behaves self-excited
attractors, verifying the introduced Property, i.e., Decrease of powers of nonlinear terms of the quadratic Lorenz-like system (2) may
narrow, or even eliminate the range of the parameter c for hidden attractors, but enlarge the one of self-excited attractors.

In fact, the characteristic equation at E1,2 is

λ3 + 3bc(a+ b)λ2 + 3(bc)2[(3b− 2a)c+ 3ab]λ+ 18a(bc)4 = 0, (5)

with λ1,2 = ±ωi = ±
√
3(bc∗)2[(3b− 2a)c∗ + 3ab]i and λ3 = −3bc∗(a + b) < 0 when (a, b, c) ∈ S2

1 . One

obtains the following derivative

dRe(λ1)

dc

∣∣∣∣
c=c∗

=
∆

2[ω2 + 9(bc∗)2(a+ b)2]
̸= 0,

where∆ = −3b(a+b)ω2+72ab4c3∗−3ab(a+b)[9b2c2∗(3b−2a)+18ab3c∗], which thus veri�es the transversality
of Hopf bifurcation of E1,2.

Then, the following transformation

(x, y, z) → (x+
√
bc∗, y +

√
(bc∗)3, z + b(c∗)2),

7

Figure 3. For (a, b) = (3, 1.5), c ∈ [0.1, 599.1] and (x2
0, y2

0, z2
0) = (1.314, 2.236, 4.669); (a–c) bifurcation

diagrams; (d) Lyapunov exponents versus c of system (1). In contrast with Figure 2, the four sub-
figures show that system (1) mainly behaves in a similar way to self-excited attractors, verifying
the introduced property, i.e., a decrease in powers of nonlinear terms of the quadratic Lorenz-like
system (2) may narrow or even eliminate the range of the parameter c for hidden attractors, but
enlarge it for self-excited attractors.

(a) x− y − z (b) x− y

(c) x− z (d) y − z

Fig. 4: For (a, c, b) = (3, 100, 1.5) and (x20, y
2
0 , z

2
0) = (1.314, 2.236, 4.669), phase portraits of system (1), illustrating the existence of

two-scroll self-excited attractor suggested in Fig. 3.

converts system (4) into the resulting one




ẋ

ẏ

ż


 =




−3abc∗ a 0

6b2c3∗ 0 −3
√
(bc∗)3

3(bc∗)3 3(bc∗)2 −3b
√
(bc∗)3







x

y

z


+ 3




−a
√
bc∗x2

7c∗
√
(bc∗)3x2 − 3

√
bc∗xz

3
√
(bc∗)5x2 + 4

√
(bc∗)3xy − 3b2c∗xz




+




−ax3
9
√
bc∗(3c∗x3 − x2z)

9(−
√
bc∗bx2z + (bc∗)2x3 + 2bc∗x2y)


+




0

3x3(5c∗
√
bc∗x− z)

3x3(4
√
bc∗y − bz +

√
(bc∗)3x)




+




0

3c∗x5

3x4y


 .

(6)

For computing the �rst Lyapunov coe�cient l1, one has to distill the following multi-linear symmetric

8

Figure 4. Cont.
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Fig. 4: For (a, c, b) = (3, 100, 1.5) and (x20, y
2
0 , z

2
0) = (1.314, 2.236, 4.669), phase portraits of system (1), illustrating the existence of

two-scroll self-excited attractor suggested in Fig. 3.
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ż
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√
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



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z


+ 3




−a
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bc∗x2

7c∗
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√
bc∗xz

3
√

(bc∗)5x2 + 4
√

(bc∗)3xy − 3b2c∗xz
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

+




−ax3
9
√
bc∗(3c∗x3 − x2z)

9(−
√
bc∗bx2z + (bc∗)2x3 + 2bc∗x2y)
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+




0

3x3(5c∗
√
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3x3(4
√
bc∗y − bz +

√
(bc∗)3x)
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+


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0

3c∗x5

3x4y


 .

(6)

For computing the �rst Lyapunov coe�cient l1, one has to distill the following multi-linear symmetric

8

Figure 4. Phase portraits of system (1) for (a, c, b) = (3, 100, 1.5) and (x2
0, y2

0, z2
0) = (1.314, 2.236, 4.669)

illustrating the existence of two-scroll self-excited attractor suggested in Figure 3.

-2000 -1500 -1000 -500 0 500 1000 1500 2000

x

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

y

(a) z = 10000

-6000 -4000 -2000 0 2000 4000 6000

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

z

104

(b) y = 300

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y 104

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z

104

(c) x = 300

Fig. 5: For (a, c, b) = (3, 100, 1.5) and (x20, y
2
0 , z

2
0) = (1.314, 2.236, 4.669), Poincaré cross-sections of system (1), showing the geometrical

structure of the Lorenz-like attractor depicted in Fig. 4.
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Fig. 6: For (a, c) = (1, 36), (a) b = 0, (b) b = 0.07, and (x1,30 , y1,30 , z30) = (±1.3×10−8,±1.3×10−7,−1), phase portraits of system (1).
Both �gures imply that the collapses of singularly degenerate heteroclinic cycles of system (1) create limit cycles rather than strange
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
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√
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√
bc∗(x1y3 + x3y1)

18
√

(bc∗)5x1y1 + 12
√

(bc∗)3(x1y2 + x2y1)− 9b2c∗(x1y3 + x3y1)


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from system (4). When l1 = 0, one needs to compute the other multi-linear symmetric functions to get
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Due to complex algebraic structure of system (6) itself, it is di�cult to get the explicit form of l1
now. However, one can easily calculate it for a concrete problem, e.g. (a, c, b) = (4, 2011 , 1). At this time,

E
′
1,2 = (±
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(2011)

3, 400121), whose eigenvalues are λ1,2 = ±ωi = ±5.3713i and λ3 = −27.2727, and
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Figure 6. Phase portraits of system (1) for (a, c) = (1, 36), (a) b = 0, (b) b = 0.07, and (x1,3
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(±1.3 × 10−8,±1.3 × 10−7,−1). Both figures imply that collapsing singularly degenerate heteroclinic
cycles in system (1) create limited cycles rather than strange attractors.
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3. Hopf Bifurcation

Using the theory of Hopf bifurcation, we then sketched a proof for Proposition 3.

Proof of Proposition 3. First of all, the characteristic equation of E± is calculated:

λ3 + (a + b)λ2 + [ab + bc − 2ac
3

]λ +
2abc

3
= 0. (3)

Next, based on the Routh–Hurwitz criterion and Equation (3), we derived the stability
of E±; however, we have omitted its proof here.

(a, b, c) ∈ S2
1, λ1,2 = ±ωi = ±

√
ab[1 + (3b−2a)(a+b)

(a−b)(2a+3b) ]i and λ3 = −(a + b) are a pair of
conjugate purely imaginary roots and one negative real root for Equation (3), respectively.
Moreover, one has

dRe(λ1)

dc

∣∣∣∣
c=c∗

=
ab − 3b2 + 2a2

6[ω2 + (a + b)2]
=

(3b + 2a)(a − b)
6[ω2 + (a + b)2]

̸= 0,

from which the transversal condition is verified. Therefore, Hopf bifurcation happens at
E±.

Next, we applied the project method [36,37] to compute the Lyapunov coefficients,
aiming to determine the nondegeneracy (or stability) of the Hopf bifurcation at E±.

Firstly, based on the time and coordinate transformation

(x, y, z, t) → (x3, y, z,
1

3 3√x2
t),

system (1) can be transformed to the equivalent one:




ẋ = a(y − x3),
ẏ = 3x2(cx3 − xz),
ż = 3x2(−bz + xy).

(4)

The E± of system (1) corresponds to E1,2 = (±
√

bc,±
√
(bc)3, bc2) in system (4). One can

verify the transversality of Hopf bifurcation at E1,2.
In fact, the characteristic equation at E1,2 is

λ3 + 3bc(a + b)λ2 + 3(bc)2[(3b − 2a)c + 3ab]λ + 18a(bc)4 = 0, (5)

with λ1,2 = ±ωi = ±
√

3(bc∗)2[(3b − 2a)c∗ + 3ab]i and λ3 = −3bc∗(a + b) < 0 when
(a, b, c) ∈ S2

1. We then obtained the following derivative

dRe(λ1)

dc

∣∣∣∣
c=c∗

=
∆

2[ω2 + 9(bc∗)2(a + b)2]
̸= 0,

where ∆ = −3b(a + b)ω2 + 72ab4c3∗ − 3ab(a + b)[9b2c2∗(3b − 2a) + 18ab3c∗], which thus
verifies the transversality of Hopf bifurcation of E1,2.

Then, the following transformation

(x, y, z) → (x +
√

bc∗, y +
√
(bc∗)3, z + b(c∗)2),

converts system (4) into the resulting one
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


ẋ
ẏ
ż


 =




−3abc∗ a 0
6b2c3∗ 0 −3

√
(bc∗)3

3(bc∗)3 3(bc∗)2 −3b
√
(bc∗)3






x
y
z


+ 3




−a
√

bc∗x2

7c∗
√
(bc∗)3x2 − 3

√
bc∗xz

3
√
(bc∗)5x2 + 4

√
(bc∗)3xy − 3b2c∗xz




+




−ax3

9
√

bc∗(3c∗x3 − x2z)
9(−

√
bc∗bx2z + (bc∗)2x3 + 2bc∗x2y)


+




0
3x3(5c∗

√
bc∗x − z)

3x3(4
√

bc∗y − bz +
√
(bc∗)3x)




+




0
3c∗x5

3x4y


.

(6)

To compute the first Lyapunov coefficient l1, one has to distill the following multi-
linear symmetric functions from system (4)

B(x, y) =




−6a
√

bc∗x1y1
42c∗

√
(bc∗)3x1y1 − 9

√
bc∗(x1y3 + x3y1)

18
√
(bc∗)5x1y1 + 12

√
(bc∗)3(x1y2 + x2y1)− 9b2c∗(x1y3 + x3y1)


,

C(x, y, z) =




−6ax1y1z1
162

√
bc∗c∗x1y1z1 − 18

√
bc∗(x3y1z1 + x1y3z1 + x1y1z3)

−18b
√

bc∗(x3y1z1 + x1y3z1 + x1y1z3) + 54(bc∗)2x1y1z1 + 36bc∗(x2y1z1 + x1y2z1 + x1y1z2)




When l1 = 0, one needs to compute the other multi-linear symmetric functions to get the
second Lyapunov exponent or the third or even higher order ones.

Due to complex algebraic structure of system (6) itself, it is difficult to obtain the
explicit form of l1 . However, one can easily calculate it for a concrete problem, e.g.,

(a, c, b) = (4, 20
11 , 1). Here, E

′
1,2 = (±

√
20
11 ,±

√
( 20

11 )
3, 400

121 ), whose eigenvalues are
λ1,2 = ±ωi = ±5.3713i and λ3 = −27.2727, and the transversality condition holds:
dRe(λ1)

dc

∣∣
c=c∗= 20

11
≈ 0.5251 > 0. Moreover, the l1 of E

′
1,2 is discussed in the following proposition.

Proposition 5. For (a, c, b) = (4, 20
11 , 1), system (6) undergoes a Hopf bifurcation at E

′
1,2, for

which the first Lyapunov coefficient is l1 ≈ −91.2608 < 0, and thus E
′
1,2 are both weakly unstable

foci. Because of dRe(λ1)
dc ≈ 0.5251 > 0, the Hopf bifurcation at E

′
1,2 is supercritical. In a word, for

c > c∗ = 20
11 when it is close to c∗ = 20

11 , there is at least a pair of stable close orbits around the
unstable E

′
1,2.

Proof. Based on the method proposed in [36,37], one can easily obtain the following ex-
pressions

p =




0.0318 + 0.0349i
0.0173 + 0.0233i

−0.00019 −−0.02346i


, q =




4
21.8181 + 5.3712i
23.5357 − 15.9337i


, h11 =




−108.4504
−462.1017
−435.16077


,

h20 =




55.35369 + 20.7412i
375.6721 + 261.7939i
750.3901 − 236.67872i


, G21 = −182.5216 − 1713.4399i and l1 = 1

2 G21 =

−91.2608. Since dRe(λ1)
dc ≈ 0.5251 > 0, the Hopf bifurcation at E

′
1,2 is supercritical. Namely,

when c = 1.8182 > c∗, there exists a pair of stable close orbits around the unstable
E

′′
1,2 = (±1.3484,±2.4517, 3.3059) for system (4), i.e., E± = (±2.4517,±2.4517, 3.3059) of

system (1), as illustrated in Figure 7. This finishes the proof.
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the transversality condition holds: dRe(λ1)
dc

∣∣
c=c∗= 20

11
≈ 0.5251 > 0. Moreover, the l1 of E

′
1,2 is discussed in

the following proposition.

Proposition 3.1. For (a, c, b) = (4, 2011 , 1), system (6) undergoes Hopf bifurcation at E
′
1,2, of which �rst

Lyapunov coe�cient is l1 ≈ −91.2608 < 0, and thus E
′
1,2 are both weakly unstable foci. Because of

dRe(λ1)
dc ≈ 0.5251 > 0, the Hopf bifurcation at E

′
1,2 is supercritical. In a word, for c > c∗ = 20

11 , but close

to c∗ = 20
11 , there is at least a pair of stable close orbits around the unstable E

′
1,2.

Proof. Based on the project method [36,37], one easily gets the following expressions

p =




0.0318 + 0.0349i

0.0173 + 0.0233i

−0.00019−−0.02346i


 , q =




4

21.8181 + 5.3712i

23.5357− 15.9337i


 , h11 =




−108.4504

−462.1017

−435.16077


 ,

h20 =




55.35369 + 20.7412i

375.6721 + 261.7939i

750.3901− 236.67872i


 , G21 = −182.5216 − 1713.4399i and l1 = 1

2G21 = −91.2608. Since

dRe(λ1)
dc ≈ 0.5251 > 0, the Hopf bifurcation at E

′
1,2 is supercritical. Namely, set c = 1.8182 > c∗, there

exists a pair of stable close orbits around the unstable E
′′
1,2 = (±1.3484,±2.4517, 3.3059) of system (4),

i.e., E± = (±2.4517,±2.4517, 3.3059) of system (1), as illustrated in Fig. 7. This �nishes the proof.
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0) = (−2.39,−2.4, 3.32), phase portraits of system (1), showing at least �ve limit cycles of system (1) when Hopf bifurcation

occurs at E±, i.e., two ones around E+, two ones around E− and one around E±.

In the next section, let us study the existence of heteroclinic orbits in system (1). For the sake of

argument, we list the following symbols:

(1) ψ(t;ψ0) = (x(t;x0), y(t; y0), z(t; z0)): a solution of system (1) with the initial condition ψ0 =

(x0, y0, z0).

(2) γ− = {ψ−(t;ψ0)|ψ−(t;ψ0) = (−x+(t;x0),−y+(t; y0), z+(t; z0)) ∈ W u
−(E0), t ∈ R} (resp. γ+ =

{ψ+(t;ψ0)|ψ+(t;ψ0) = (x+(t;x0), y+(t; y0), z+(t; z0)) ∈ W u
+(E0), t ∈ R}): the negative (resp. positive)

branch of W u(E0) with −x+ < 0 (resp. x+ > 0) when t→ −∞.

4 Existence of heteroclinic orbit

In this section, as the ones in [21�23, 26, 28�35], with suitable choice of Lyapunov functions, the proof of

Proposition 2.7 is divided into two stages: (1) 3b− 4a > 0, (2) 3b− 4a = 0.
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Figure 7. Phase portraits of system (1) for (a, c, b) = (4, 1.8182, 1) and (a) (x1,3
0 , y1,3

0 , z4
0) =

(±0.13,±1.3, 1.6)× 10−7, (x3,4
0 , y3,4

0 , z4
0) = (±2.4,±2.41, 3.3) and (x5,6

0 , y5,6
0 , z5

0) = (±2.39,±2.4, 3.32),
(b) (x3

0, y3
0, z4

0) = (2.4, 2.41, 3.3), (x5
0, y5

0, z5
0) = (2.39, 2.4, 3.32), (c) (x4

0, y4
0, z4

0) = (−2.4,−2.41, 3.3) and
(x6

0, y6
0, z5

0) = (−2.39,−2.4, 3.32), showing at least five limit cycles for system (1) when Hopf bifurca-
tion occurs at E±, i.e., two around E+, two around E− and one around E±.

In the next section, we will study the existence of heteroclinic orbits in system (1). For
the sake of our argument, we list the following symbols:

(1) ψ(t; ψ0) = (x(t; x0), y(t; y0), z(t; z0)): a solution for system (1) with the initial
condition ψ0 = (x0, y0, z0).

(2) γ− = {ψ−(t; ψ0)|ψ−(t; ψ0) = (−x+(t; x0),−y+(t; y0), z+(t; z0)) ∈ Wu
−(E0), t ∈ R}

(resp. γ+ = {ψ+(t; ψ0)|ψ+(t; ψ0) = (x+(t; x0), y+(t; y0), z+(t; z0)) ∈ Wu
+(E0), t ∈ R}): the

negative (resp. positive) branch of Wu(E0) with −x+ < 0 (resp. x+ > 0) when t → −∞.

4. Existence of Heteroclinic Orbit

In this section, as in [21–23,26,28–35], with a suitable choice of Lyapunov functions,
the proof of Proposition 4 can be divided into two stages: (1) 3b − 4a > 0, (2) 3b − 4a = 0.

4.1. 3b − 4a > 0

This subsection introduces the first Lyapunov function

V1(ψ(t; ψ0)) =
1
2
[b(b − 4a

3
)(y − x)2 + (−bz +

3√
x4)2 +

3b − 4a
6a

(−bc 3√x2 +
3√

x4)2 +
3b − 4a

12a
(−b2c2 +

3√
x4)2]

and the following assertions:

Lemma 1. If c > 0 and 3b − 4a > 0, then we have the following results:

1. Assume ∃t1,2, t1 < t2 and V1(ψ(t1; ψ0)) = V1(ψ(t2; ψ0)). ψ0 is one of the stationary points.
2. If limt→−∞ ψ(t; ψ0) = E0 and x(t3; x0) < 0, ∃t3 ∈ R, then we arrive at

V1(E0) > V1(ψ(t; ψ0)) and x(t; x0) < 0, ∀t ∈ R. Namely, ψ0 ∈ γ−.

Proof. (1) By taking the derivative of V1 with respect to ψ(t; ψ0), we arrive at

dV1(ψ(t;ψ0))
dt

∣∣
(1) = −ab(b − 4a

3 )(y − x)2 − b(−bz + 3√x4)2, (7)

and derive
y(t; y0) ≡ x(t; x0), bz(t; z0) ≡ 3√

x4(t; x0), (8)

under the condition of (1), ∀t ∈ (t1, t2).
Based on system (1) and Equation (8), the identities ẋ(t; x0) ≡ ẏ(t; y0) ≡ ż(t; z0) ≡ 0

hold, ∀t ∈ (t1, t2). Namely, ψ0 is a fixed point.
(2) Now, ∀t ∈ R, we prove the fact V1(E0) > V1(ψ(t; ψ0)). If not, ∃t ∈ R,

V1(E0) ≤ V1(ψ(t; ψ0)). In fact, the first assertion suggests that ψ0 is just an equilibrium
point, contradicting the assumption that limt→−∞ ψ(t; ψ0) = E0 and x(t3; x0) < 0. In a
word, V1(E0) > V1(ψ(t; ψ0)), ∀t ∈ R.
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Next, let us prove x(t; x0) < 0, ∀t ∈ R. Otherwise, x(t4; x0) ≥ 0, ∃t4 ∈ R. Since
x(t3; x0) < 0, t3 ∈ R, one arrives at x(t5; x0) = 0, ∃t5 ∈ R. Due to V1(E0) > V1(ψ(t; ψ0)),
∀t ∈ R, one gets ψ(t5; ψ0) ∈ {(x, y, z)|V1(x, y, z) < V1(E0)} ∩ {(x, y, z)|x = 0}. Further,
the following statement is derived, {(x, y, z)|V1(x, y, z) < V1(E0)} ∩ {(x, y, z)|x = 0} =

{(0, y, z)| 1
2 [b(b − 4a

3 )y
2 + b2z2 + (3b−4a)b4c4

12a ] < (3b−4a)b4c4

24a } = ∅, which is impossible. As a
result, one arrives at x(t; x0) < 0, for all t ∈ R. This ends the proof.

Lemma 2. When c > 0 and 3b > 4a > 0, all of the solutions for system (1) tend towards an
equilibrium point such as t → ∞. Namely, system (1) has no closed orbits.

Proof. On the basis of Equation (7), one derives limt→+∞ V1(ψ(t; ψ0)) = Φ(ψ0), 0 ≤
V1(ψ(t; ψ0)) ≤ V1(ψ(0; ψ0)) = V1(ψ0), ∀t ≥ 0, and obtains that x(t; x0), y(t; y0) and z(t; z0)
are all bounded, t ∈ [0,+∞), i.e., ψ(t; ψ0) is bounded.

Denoting the ω-limit set of ψ(t; ψ0) by Ω(ψ0) ̸= ∅. For ∀w ∈ Ω(ψ0), ∃{tn}, we have

lim
n→+∞

tn = +∞, lim
n→+∞

ψ(tn, ψ0) = w.

Next, for all t ∈ R, ψ(t; w) = lim
n→+∞

ψ(t; ψ(tn; ψ0)) = lim
n→+∞

ψ(t + tn; ψ0) suggests

V1(ψ(t; w)) = V1[ lim
n→+∞

ψ(t; ψ(tn; ψ0))] = lim
n→+∞

V1(ψ(t + tn; ψ0)) = Φ(ψ0). As a result,

w ∈ {E+, E−, E0}. Because of connectedness of Ω(ψ0), one only deduces Ω(ψ0) = {E+},
Ω(ψ0) = {E−} or Ω(ψ0) = {E0}, yielding that ψ(t; ψ0) approaches an equilibrium point
such as t → +∞. The proof is completed.

Lastly, one considers the existence of heteroclinic orbits with the help of above two lemmas.

Theorem 1. When c > 0 and 3b > 4a > 0, the following two statements hold.

1. System (1) has no homoclinic orbits.
2. A pair of heteroclinic orbits at E± and E0 exists in system (1).

Proof. For c > 0 and 3b > 4a > 0, one firstly shows that homoclinic orbits at E± or E0 do
not exist in system (1). If not, a homoclinic orbit at E0, E+ or E− can be denoted by ψ(t),
i.e., lim

t→±∞
ψ(t) = e±, where e− = e+ ∈ {E−, E+, E0}.

From Equation (7), one obtains

V1(e−) ≥ V1(ψ(t)) ≥ V1(e+). (9)

In both cases, we obtain the fact that V1(e−) = V1(e+) and further arrive at V1(ψ(t)) ≡
V1(e+). From the first statement in Lemma 1, ψ(t) is only an equilibrium point. Namely,
homoclinic orbits at E0, E+ or E− are non-existent.

Then, let us prove that γ− is a heteroclinic orbit at E0 and E−, i.e., lim
t→+∞

p(t) = E−.

From the concept of γ− and Lemma 1, we only arrive at −x+(t) < 0, for all t ∈ R, yielding
lim

t→+∞
ψ−(t) ̸= E0. As a result, lim

t→+∞
ψ−(t) = E− is true.

Finally, let us prove the uniqueness of γ−.
Let ψ1(t) = (x1(t), y1(t), z1(t)) be a solution for system (1) such that lim

t→±∞
ψ1(t) = e±1 ,

and {e−1 , e+1 } = {E0, E−}. Like Equation (9), one gets V1(e−1 ) ≥ V1(ψ1(t)) ≥ V1(e+1 ), ∀t ∈ R,
from Equation (8). Due to V1(E0) > V1(E−), one derives e−1 = E0 and e+1 = E−, i.e.,

lim
t→−∞

ψ1(t) = E0, lim
t→+∞

ψ1(t) = E−,

which leads to ψ1(t) ∈ γ− from the second assertion of Lemma 1. Since system (1) is
axis-symmetrical with respect to the z-axis, a single heteroclinic orbit γ+, i.e., the ones at E0
and E+, also exists in system (1). This completes the proof.
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4.2. 3b − 4a = 0

Firstly, we introduce another Lyapunov function

V2(ψ(t; ψ0)) =
1
2
[(y − x)2 +

3
8a2 (−

4ac
3

3√x2 +
3√

x4)2 +
3

16a3 (−
16a2c2

9
+

3√
x4)2]

from which the following lemma is deduced:

Lemma 3. When c > 0 and 3b = 4a > 0, one arrives at the following four assertions.
(i) If limt→−∞ ψ(t; ψ0) is bounded, then Q(ψ(t; ψ0)) = z(t; z0)− 3

4a
3√x4(t; x0) = 0.

(ii) If 4az(t; z0) = 3 3√x4(t; x0), then dV2(ψ(t;ψ0))
dt

∣∣
(1) = −a(y − x)2 ≤ 0.

(iii) If 4az(t; z0) = 3 3√x4(t; x0) and V2(ψ(t1; ψ0)) = V2(ψ(t2; ψ0)), ∃t1,2, t1 < t2, then ψ0
is an equilibrium point.

(iv) If limt→−∞ ψ(t; ψ0) = E0 and x(t3; x0) < 0, ∃t3 ∈ R, then V2(E0) > V2(ψ(t; ψ0))
and x(t; x0) < 0, ∀t ∈ R. Namely, ψ0 ∈ γ−.

Proof. (i) When c > 0 and 3b = 4a > 0, the derivative of Q(ψ(t; ψ0)) = z(t; z0) −
3
4a

3√x4(t; x0) is calculated as follows: dQ(ψ(t;ψ0))
dt

∣∣
(1) = − 4a

3 Q(ψ(t; ψ0)), i.e.,

Q(ψ(t; ψ0)) = Q(ψ(τ; ψ0))e−
4a
3 (t−τ), ∀τ, t ∈ R. (10)

Since limτ→−∞ ψ(τ; ψ0) is bounded, Equation (10) yields Q(ψ(t; ψ0)) ≡ 0, i.e., z(t; z0) ≡
3
4a

3√x4(t; x0).
(ii) The fact that 4az(t; z0) ≡ 3 3√x4(t; x0) and system (1) result in Conclusion (ii) of

Lemma 3.
(iii) Based on assumed conditions and the above statement, we obtain dV2(ψ(t,ψ0))

dt

∣∣
(1) =

0, for all t ∈ (t1, t2), i.e.
y(t; y0) ≡ x(t; x0). (11)

In virtue of ẋ, Equation (11) and 4az(t; z0) ≡ 3 3√x4(t; x0), one deduces

ẋ(t; x0) ≡ ẏ(t; y0) ≡ ż(t; z0) ≡ 0, ∀t ∈ (t1, t2).

Hence, ψ0 is only an equilibrium point.
(iv) First of all, one shows that V2(E0) > V2(ψ(t; ψ0)), ∀t ∈ R. If not,

V2(E0) ≤ V2(ψ(t0; ψ0)), ∃t0 ∈ R. In addition, the first, second and third assertions yield
that ψ0 is an equilibrium point, which contradicts limt→−∞ ψ(t; ψ0) = 0 and x(t3; x0) < 0.
Namely, we find that V2(E0) > V2(ψ(t; ψ0)) holds for ∀t ∈ R.

Then, we prove x(t; x0) < 0, ∀t ∈ R. If not, ∃t4 ∈ R, such that x(t4; x0) ≥ 0. Due to
x(t3; x0) < 0, ∃t5 ∈ R, such that x(t5; x0) = 0. Since V2(E0) > V2(ψ(t; ψ0)), ∀t ∈ R, we
obtain ψ(t5; ψ0) ∈ {(x, y, z)|V2(x, y, z) < V2(E0)} ∩ {(x, y, z)|x = 0}. On the other hand,
{(x, y, z)|V2(x, y, z) < V2(E0)} ∩ {(x, y, z)|x = 0} = {(0, y, z)| 1

2 [y
2 + 16ac4

27 ] < 8ac4

27 } = ∅.
As such, a contradiction happens. Therefore, x(t; x0) < 0 holds, ∀t ∈ R.

Lemma 4. Set c > 0 and 3b = 4a > 0. If ψ(t, ψ0) is bounded when t → −∞, then
limt→−∞ ψ(t, ψ0) → E0, or E±. In a word, there are no closed orbits in system (1).

Proof. From the first and second assertion of Lemma 3, limt→−∞ V2(ψ(t; ψ0)) = Ψ(ψ0)
exists. Assume h ∈ α(ψ0), i.e., ∃{tn}, we have limtn→−∞ ψ(tn; ψ0) = h, n → +∞. For all
t ∈ R,

ψ(t; h) = lim
n→+∞

ψ(t; ψ(tn; ψ0)) = lim
n→+∞

ψ(t + tn; ψ0)

leads to
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{
ψ(t; h) is bounded, ∀t ∈ R,
V2(ψ(t; h)) = limn→+∞ V2(ψ(t + tn; ψ0)) = Ψ(ψ0).

(12)

On the basis of Lemma 3, one obtains h ∈ {E−, E0, E+}. Therefore,

α(ψ0) ⊆ {E−, E0, E+}.

Because α(ψ0) is connected, one derives α(q0) = {E−}, or α(q0) = {E0}, or α(q0) =
{E+}, suggesting that limn→+∞ ψ(t; ψ0) approaches an equilibrium point. The proof is
completed.

Theorem 2. When 3b = 4a > 0 and c > 0, we derive the statements as follows.
(i) There are no homoclinic orbits in system (1).
(ii) A pair of heteroclinic orbits E± and E0 exist in system (1).

Proof. (i) When 3b = 4a > 0 and c > 0, we are able to prove the non-existence of
homoclinic orbits connecting E+, E− and E0 in system (1). Otherwise, we assume that
ψ(t) = (x(t), y(t), z(t)) is a homoclinic orbit to E+, E− or E0, i.e.,

lim
t→±∞

ψ(t) = e±, e− = e+ ∈ {E−, E0, E+}.

Based on Lemma 3 and V2(e−) = V2(e+), we find that ψ(t) is only a stationary point.
As such, homoclinic orbits to E± or E0 are non-existent in system (1).
(ii) Then, we prove the uniqueness of γ−, i.e., the heteroclinic orbit at E0 and E−.
Suppose ψ1(t) = (x1(t), y1(t), z1(t)) is a solution of system (1) such that

lim
t→±∞

ψ1(t) = e±1 , {e−1 , e+1 } = {E0, E−}.

For all t ∈ R, the first and second assertions of Lemma 3 yield

V2(e−1 ) ≥ V2(ψ1(t)) ≥ V2(e+1 ).

Due to V2(E0) > V2(E−), one derives e−1 = E0 and e+1 = E−, i.e.,

lim
t→+∞

ψ1(t) = E− and lim
t→−∞

ψ1(t) = E0, (13)

which leads to ψ1(t) ∈ γ− based on Lemma 3.
Finally, one shows that γ− is just the heteroclinic orbit to E− and E0; that is, limt→+∞ ψ−

(t) = E−. According to Lemma 3, we deduce the following:




z+(t; z0) ≡ 3
4a

3
√

x4
+(t; x0),

dV2(ψ−(t))
dt

∣∣
(1) = −a(y+(t; y0)− x+(t; x0))

2,
V2(ψ−(t)) < V2(E0),−x+(t) < 0, ∀t ∈ R.

(14)

Based on the second part of Equation (14), one arrives at limt→∞ V2(ψ−(t)) = v2.
Again, Equation (14) suggests that x+(t), y+(t) and z+(t) are all bounded, and also shows
the boundedness of ψ−(t), for all t ∈ [0,+∞). We denote the ω-limit set of ψ−(t) as Ω; that
is, for all h ∈ Ω, ∃{tn}, we obtain limn→+∞ tn = +∞ and limn→+∞ ψ−(tn) = h. In a word,
for all t ∈ R,

ψ−(t; h) = lim
n→+∞

ψ−(t; ψ−(tn)) = lim
n→+∞

ψ−(t + tn),

{
ψ−(t; h) is bounded, for all t ∈ R,
V2(ψ−(t; h)) = limn→+∞ V2(ψ−(t + tn)) = v2,

(15)



Axioms 2024, 13, 625 14 of 16

and Lemma 3 all lead to h ∈ {E−, E0}. Therefore, Ω ⊆ {E−, E0}. Because of the connected-
ness of Ω, the relation Ω = E− or Ω = E0 holds. Based on Lemma 3 and Equation (14), one
derives Ω ̸= E0. In a word, Ω = E−, i.e., limn→+∞ ψ+(t) = E−. Therefore, there exists a
single heteroclinic orbit to E− and E0. Due to the symmetry, there exists another unique
heteroclinic orbit to E+ and E0 in system (1), as shown in Figure 8. The proof is finished.
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Fig. 8: For (a, c) = (6, 100), b = 8, 9 and (x1,30 , y1,30 , z30) = (±0.13,±1.3, 1.6) × 10−7, phase portraits of system (1), verifying the
existence of a pair of heteroclinic orbits to unstable E0 and stable E± when c > 0 and 3b ≥ 4a > 0.

5 Conclusions

Combining theoretical analysis and numerical simulation, this paper investigates a newly reported 3D

sub-quadratic Lorenz-like system of degree 4
3 , and reveals most of inherent dynamics of Lorenz system

family, i.e., self-excited attractors, Hopf bifurcation, generic and degenerate pitchfork, heteroclinic orbits,

singularly degenerate heteroclinic cycle, invariant algebraic surface, etc.

In contrast to the existing quadratic and sub-quadratic Lorenz-like analogues, we may �nd a new

property: only decreasing powers of nonlinear terms may narrow and even eliminate the range of some

certain parameters for hidden attractors, but enlarge the one of self-excited attractors. This may verify

the generalization of the second part of the celebrated Hilbert's sixteenth problem in some degree: the

number and mutual disposition of attractors and repellers may depend on the degree of polynomials

of chaotic multidimensional dynamical systems. However, previous studies mainly emphasized that the

aforementioned dynamics may explain the forming mechanism of strange attractors.

In future, we will expect other researchers to test that property through more Lorenz-like analogues,

and clarify the relationship between other complex dynamics and the degrees, shedding light on the nature

of chaos and providing reference for chaos-based applications.
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Figure 8. For (a, c) = (6, 100), b = 8, 9 and (x1,3
0 , y1,3

0 , z3
0) = (±0.13,±1.3, 1.6)× 10−7, phase portraits

of system (1), verifying the existence of a pair of heteroclinic orbits to unstable E0 and stable E± when
c > 0 and 3b ≥ 4a > 0.

5. Conclusions

Combining a theoretical analysis and numerical simulation, this paper investigates
a newly reported 3D sub-quadratic four-thirds-degree Lorenz-like system, and reveals
most of inherent dynamics of the Lorenz system family, i.e., self-excited attractors, Hopf
bifurcation, generic and degenerate pitchfork, heteroclinic orbits, singularly degenerate
heteroclinic cycle, an invariant algebraic surface, etc.

In contrast to the existing quadratic and sub-quadratic Lorenz-like analogues, we
may find a new property: decreasing the powers of nonlinear terms may narrow and even
eliminate the range of some certain parameters for hidden attractors, but enlarge it for self-
excited attractors. This may verify the generalization of the second part of the celebrated
Hilbert’s sixteenth problem to some degree: the number and mutual disposition of attractors
and repellers may depend on the degree of polynomials of chaotic multidimensional
dynamical systems. However, previous studies mainly emphasized that the aforementioned
dynamics may explain the forming mechanism of strange attractors.

In future, we will expect other researchers to test this property through more Lorenz-
like analogues, and clarify the relationship between other complex dynamics and the degrees,
shedding light on the nature of chaos and providing reference for chaos-based applications.
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