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Abstract: Biunivalent holomorphic functions form an interesting class in geometric function theory
and are connected with special functions and solutions of complex differential equations. This class
has been investigated by many authors, mainly to find the coefficient estimates. The assumption
of biunivalence is rigid; this rigidity means that, for example, only the initial Taylor coefficients
have been estimated. The aim of this paper is to develop a variational technique for biunivalent
functions, which provides a power tool for solving the general extremal problems on the classes of
such functions. It involves quasiconformal analysis.

Keywords: biunivalent holomorphic function; quasiconformal homeomorphism; variations;
distortion theorem; coefficient estimates

MSC: primary: 30C45, 30C50, 30C75; secondary: 30C62

1. Introductory Remarks

A univalent holomorphic function w = f (z) on a given disk is called biunivalent if
the inverse z = f−1(w) is also univalent on this disk. One can deal here with the unit disk
D = {z ∈ C : ∥z| < 1}.

In this sense, the notion of biunivalence is very broad, because one can take, for
example, all functions of the form f (z) = 4g(z), where g(z) = z + a2z2 + . . . belongs
to the canonical class S of univalent functions on D with g(0) = 0, g′(0) = 1. These
functions occupy a substantial part of the classical geometric function theory in view of
their remarkable features and have been widely investigated.

The normalization f (0) = 0, | f ′(0)| ≤ 4 ensures the compactness of this collection in
topology generated by uniform convergence on closed (compact) subsets of D, which plays
a crucial role.

Another more special class of biunivalent functions originated in the 1960s. It consists
of functions f (z) = z + a2z2 + . . . , which are univalent on a given disk (usually this is the

unit disk D) together with their inverse functions z = f−1(w) =
∞
∑
1

bnwn. We denote this

class by B.
(This normalization is customary. It would be interesting to consider the collection of

functions subject to another normalization.)
The biunivalent functions are connected with special functions and solutions of com-

plex differential equations, with the so-called q-calculus, etc. From these points of view,
these functions have been and remain intensively investigated by many authors, who
have considered and defined new special subclasses of biunivalent functions depending
on different parameters; see, e.g., [1–9] and the references cited there. These investiga-
tions resulted mainly in the estimates of the initial Taylor coefficients a2 and a3 and their
combinations.

The conditions of normalization are essential, because the assumption of biunivalence
is rather rigid. Together with the classical Schwarz lemma and holomorphy of the inverse
function f−1 on the disk D, it implies that f (z) must have a holomorphic extension into
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a broader domain D containing D (this domain depends on f ), and the same is valid for
the inverse functions. This rigidity causes a scarcity of results obtained for biunivalent
functions; in particular, only a few partial distortion results mentioned above are known.
Actually, the basic methods of the classical geometric function theory touch on biunivalence
only to a small extent.

Among the important open problems here are to develop an extended distortion
theory and find new applications of biunivalent functions.

2. A General Distortion Theorem for Biunivalent Functions

Our approach is completely different. It links the biunivalence of holomorphic func-
tions with quasiconformality.

We develop here a variational technique for biunivalent functions, which provides
a powerful tool to solve the general extremal maximization problems on the classes of
such functions.

We shall denote the class of biunivalent functions f (z) on the disk D with f (0) =
f ′(0)− 1 = 0 by B and also consider its subclasses Bk formed by functions f ∈ B whose
restrictions to the disk D admit k-quasiconformal extensions across the circle S1 = {|z| = 1}
onto the whole plane Ĉ = C∪ {∞} (here, 0 < k < 1). One can assume that these extensions
preserve the point at z = ∞ fixed. Finally, denote D∗ = {z ∈ Ĉ : |z| > 1}.

Recall that a quasiconformal map of a domain G ⊂ Ĉ is a generalized homeomorphic
solution w(z) of the Beltrami equation ∂zw = µ(z)∂zw, where µ is a given measurable
function on G with ∥µ∥∞ < 1 (called the Beltrami coefficient of w). Quasiconformal
maps require the additional third normalization, which insures their compactness, the
holomorphic dependence of their Beltrami coefficients µ f on complex parameters, etc. The
maps with ∥µ∥∞ ≤ k < 1 are called k-quasiconformal. For the properties of quasiconformal
maps see, e.g., [10–13].

We consider on these classes B and Bk the continuously differentiable real or complex
functionals of the form

J( f ) = J(an1 , an2 , . . . , ans , f (z1), . . . , f (zm)), (1)

where z1, . . . , zm are the distinguished fixed points in D \ {0}, and J is a continuously
differentiable real or complex function of its arguments, with

grad J( f ) ̸= 0.

We define for any f ∈ B the function

g(z) = z +
∞

∑
2

bnzn, |z| < 1, (2)

with the same coefficients as the inverse f−1. In view of the biunivalence of f , this function
g is moved to the class Bk or B simultaneously with f .

Now, using the Lagrange formula for the coefficients of the inverse function

f−1(w) =
∞

∑
1

1
n!

dn−1

dzn−1

{[
z

f (z)

]n}
z=0

wn, (3)

which determines the coefficients of g as the polynomials of the initial coefficients aj of f ,
and vice versa, after substituting these expressions of aj into the representation of the initial
functional J( f ), one obtains a new functional J̃( f ) on classes B and Bk depending on the
corresponding coefficients bn and the values wj = f (zj). These functionals satisfy

max
Bk

|J(g)| = max
Bk

| J̃( f )|,
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and similarly for the maxima on B. Hence, to find the extremals of J( f ) in these classes,
one can use the second functional J̃( f ).

Our approach involves the variational method of quasiconformal analysis created by
Belinskii and the author in [13,14]. The variational technique is one of the basic techniques in
quasiconformal theory; its different variants were given, for example, in [15–21].

The main result of this paper is given by the following:

Theorem 1. For any functional J( f ) of the form (1) and any k < 1, we have the equalities

max
Bk

|J( f )| = max
Bk

| J̃( f )| = | J̃( f µk )|, (4)

where
µk(z) = k|φ0(z)|/φ0(z), z ∈ D∗, (5)

and

φ0(z) =
s

∑
l=1

∂ J̃
∂anl

(z) +
m

∑
j=1

∂ J̃
∂wj

.

This theorem shows that the extremals of all indicated functionals J on classes Bk are
of the Teichmüller type.

The extremal function f0 for J on the entire class B is obtained in the limit as

|J( f0)| = max
B

|J( f )| = sup
k

|J( f µk )|, (6)

and this supremum is attained on some function from B.

3. Proof

Proof. As was mentioned above, the proof is variational. We start with variations given by the
local existence theorem from [13]. Its special case for simply connected plain domains states the
following:

Lemma 1. Let D be a simply connected domain on the Riemann sphere Ĉ. Assume that there are a
set E0 of positive two-dimensional Lebesgue measures and a finite number of points z1, z2, ..., zm
distinguished in D. Let α1, α2, ..., αm be non-negative integers assigned to z1, z2, ..., zm, respectively,
so that αj = 0 if zj ∈ E0.

Then, for a sufficiently small ε0 > 0 and ε ∈ (0, ε0), and for any given collection of numbers
wsj, s = 0, 1, ..., αj, j = 1, 2, ..., m, which satisfy the conditions w0j ∈ D,

|w0j − zj| ≤ ε, |w1j − 1| ≤ ε, |wsj| ≤ ε (s = 0, 1, . . . aj, j = 1, ..., m),

there exists a quasiconformal self-map h of D which is conformal on D \ E0 and satisfies

h(s)(zj) = wsj for all s = 0, 1, ..., αj, j = 1, ..., m.

Moreover, the Beltrami coefficient µh(z) = ∂zh/∂zh of h on E0 satisfies ∥µh∥∞ ≤ Mε. The
constants ε0 and M depend only upon the sets D, E0 and the vectors (z1, ..., zm) and (α1, ..., αm).

If the boundary ∂D is Jordan or is Cl+α-smooth, where 0 < α < 1 and l ≥ 1, we can also take
zj ∈ ∂D with αj = 0 or αj ≤ l, respectively.

Applying the variations ω(w) given by this lemma to the sets E0 ⊂ f (D∗) of positive
measure immediately implies that the dilatation k( f0 of the extremal map f0(z) in Bk equals
k almost everywhere. In view of the general properties of quasiconformal maps, one can
set |µ0(z)| = k at all points z, where f0(z) is not conformal.

To establish the explicit form of arg µ0(z), we apply another quasiconformal variation
borrowed from [13,14].
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First, observe that letting f2 = f1 ◦ f , one has from the chain rule for Beltrami coeffi-
cients the equalities

µ f1 ◦ f = µ f2◦ f−1 ◦ f =
µ f2 − µ f

1 − µ f µ f2

∂z f
∂z f

.

We can vary the functions f ∈ Bk using the variations

ω = H(w, ε) = w − w2

π

∫∫
E

µH(ζ)

ζ2(ζ − w)
dξdη + O(∥µH∥2

∞), (7)

whose Beltrami coefficients µH are supported on sufficiently small sets E ⊂ f0(D∗), and
∥µH∥∞ < ε is small. Then, H ◦ f (z) = f (z) + O(ε), and such composition preserves
biunivalence.

In particular, for the extremal map f0, letting

µ̃(w) = µ f−1
0 ◦H−1(ω(w))∂wω/∂wω,

one obtains
µ̃(w) = µ f−1

0
− εµH(w) + εµH(w)µ f−1

0
(w)2 + O(ε2).

This implies

|µ̃(w)| = |µ f −1
0
(w)| − |εµH(w)|(1 − |µ f −1

0
(w)|2) cos[arg µ f −1

0
(w)− arg(εµH(w))] + O(ε2). (8)

Now, we specify the choice of E. Since the extremal Beltrami coefficient µ0 = µ f0 is
measurable on D∗, one can choose the closed subsets Eδ of f0(D∗) so that the measure of
E \ Eδ is arbitrarily small and µ0 is continuously differentiable on these subsets. Further,
choose the set E in (7) to be the intersection of Eδ with a small disk centered at a density
point of Eδ. In addition, one can assume for simplicity (distorting f−1

0 ◦ H−1 up to quantity
O(ε2)) that µH ≡ const on E.

Any such variation shows that the linear term of the increment of J̃( f−1
0 ) is equal to

J̃(h ◦ f−1
0 )− J̃( f−1

0 ) =
m

∑
s=1

∂J
∂bns

( f−1
0 )

= −2|φ0(w)||εµH(w)| cos 2 arg(εµH(w))− arg φ0(w).

(9)

Comparing (8) and (9), one finds that, in the case |µ(w)| ≡ k, any constructed
above variation H(w) with sufficiently small ∥µH∥∞ is admissible, and the differential
of J̃(H ◦ f0)− J̃( f0) can have any sign. This is impossible for extremal f−1

0 , and therefore,
the extremal Beltrami coefficient of this function must be of the form

µ(w) = k|φ0(w)|/φ0(w) for all w ∈ f0(D∗). (10)

Now, passing from the inverse functions f−1
0 to the corresponding functions (2) (with the

same Taylor coefficients), one obtains the desired equalities (4), (5) for the extremals of J( f )
in all classes Bk. Then, the limit case k → 1 for B follows trivially, which completes the
proof of the theorem.

4. Some Applications of Theorem 1

As a consequence of Theorem 1 and of (7), one obtains an explicit approximatively
sharp estimate for functions from classes Bk with small k and the non-explicit bound for
arbitrary k < 1 (and thereby for all f ∈ B).

To give an intrinsic formulation, we use the Schwarzian derivatives S f of these func-
tions defined by

S f (z) =
( f ′′(z)

f ′(z)

)′
− 1

2

( f ′′(z)
f ′(z)

)2
, z ∈ D.
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These derivatives satisfy

Sγ◦ f (z) = S f (z), S f ◦γ(z) = S f (γz)(γ′(z))2

for any Moebius automorphism γ of Ĉ and range over a bounded domain in the com-
plex Banach space B(D) of hyperbolically bounded holomorphic functions (quadratic
differentials) φ on D with norm

∥φ∥B = sup
D

(1 − |z|2)2|φ(z)|.

This domain plays a crucial role in geometric complex analysis and in Techmüller space
theory; it models the universal Techmüller space T, in other words, the space of com-
plex structures on the disk in holomorphic Bers’ embedding of T, but we shall use these
derivatives in another aspect.

The well-known estimate (obtained, for example, in [13]), yields

Lemma 2. For all univalent functions f (z) in D admitting k-quasiconformal extension, their
Schwarzians are sharply estimated (for any k < 1) by

|S f (z) ≤ 6k(1 − |z|2)−2.

By the Ahlfors–Weill theorem (see [11,12]), every function φ in the space B with
∥φ∥B < 2 is the Schwarzian derivative of a univalent function f (z) on the unit disk D, and
this function f has quasiconformal extension onto the disk D∗ with the Beltrami coefficient

µφ(z) = −1
2
(|z|2 − 1)2 φ(1/z)(1/z4), z ∈ D∗;

such Beltrami coefficients are called harmonic.
As a consequence of the above results, we have

Theorem 2. For any functional (1) with maxB |J( f )| ≤ 1, there is a number ε0 = ε0(J) >
0 (ε0 > 1/3) such that for any k ≤ ε0 and all f ∈ Bk, whose Schwarzian derivatives S f satisfy
∥S f ∥B ≤ 6k, we have the sharp asymptotic estimate

max
Bk

|J( f )| = k + O(k2) (11)

with uniform bound for the reminder. The equality is attained on the map f µk with

µk(z) = k|φ0(z)|/φ0(z), z ∈ D∗,

where

φ0(z) =
s

∑
1

∂J
∂anj

(z) +
m

∑
1

∂J
∂zj

(z).

Proof. Similar to (7),

f (z) = z − z2

π

∫∫
D∗

µS f (ζ)

ζ2(ζ − z)
dξdη + O(∥µS f ∥

2
∞).

On the other hand, the extremal Beltrami coefficient µk and the corresponding harmonic
coefficient µS f are related by

µk(z) = µS f (z) + ν(z), ν ∈ A1(D∗)⊥,
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where
A1(D∗) = {ψ ∈ L1(D∗) : ψ holomorphic on D∗}

and A1(D∗)⊥ is the collection of Beltrami coefficients on D∗ orthogonal to A1(D∗). This
implies (11).

In the case of arbitrary k < 1, the extremal map f µk in the class Bk is represented by

f µk (z) = z − z2

π

∫∫
D∗

ρ(ζ)

ζ2(ζ − z)
dξdη,

where ρ is the solution of the singular integral equation

ρ − µkΠρ = µk,

where

Πρ = − 1
π

∫∫
D∗

ρ(ζ)

(ζ − z)2 dξdη

(this integral exists as a principal Cauchy value). Hence,

ρ(z) =
∂ f µk

∂z
= µk + µkΠµk + . . .

Generically, this integral can be calculated only approximatively.

5. Example

We illustrate the above distortion theorems on the coefficient problem for univalent
functions with k-quasiconformal extension represented by the functional

J( f ) = an, n ≥ 2.

It is solved by the author only for small k; the result is given by

Theorem 3 ([17]). For all univalent functions f (z) = z + a2z2 + . . . in D with k-quasiconformal
extension to Ĉ and all

k ≤ kn = 1/(n2 + 1), (12)

we have the sharp estimate

|an| ≤
2k

n − 1
, (13)

with equality only for the function

fn−1(z) =
zn−1

(1 − tkzn−1)2 = z +
2kt

n − 1
zn + . . . , |t| = 1, n = 2, 3, . . .

This solves the well-known Kühnau–Niske problem. Note that, in contrast to (7) and
Theorem 2, the estimate (13) does not contain a reminder term O(k2).

However, the extremal function fn−1 does not belong to Bk. Its perturbation
by stretching

fn−1,r(z) =
1
r

fn−1(rz) (14)

provides by appropriate r < 1 the needed function from Bk maximizing an in this class. A
similar estimate is valid also for the coefficients bn of the inverse functions.

Moreover, the assertions of Theorem 3 are valid for more general functionals of the
form (1) on classes Sk of univalent functions in the disk with k-quasiconformal extension
(see, e.g., [17] and the references cited there). These classes are slightly connected with
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classes Bk by stretching (14), and some distortion results obtained for the classes Sk (with
sufficiently small k) can be reformulated for functions from Bk.

6. Additional Remarks

1. One can associate with any biunivalent function f also its second quasiconformal
dilatation, namely, the maximal dilatation among its quasiconformal extensions across
the boundary of the entire domain D f , where the map f is conformal. This provides
a weaker result, because then the representation of type (5) of the extremal Beltrami
coefficient is valid only on the complementary domain D∗

f , and there occurs an
additional complication to find the extremal domain D f0 explicitly.

2. Any univalent function f (z) = z + a2z2 + . . . on the disk D naturally generates a
Ĉ-holomorphic univalent zero-free function

Ff (z) = 1/ f (1/z) = z − c0 + c1z−1 + c2z−2 + . . . (c0 = −a − 2)

on the complementary disk D∗. This canonical class also plays a crucial role in
geometric complex analysis.

The Lagrange formula (3) shows that the coefficients bn of the inverse function f−1(w)
are rather simply connected with coefficients of Ff .

3. We conclude that in fact, the class B of biunivalent functions is rich enough. For
example, the following assertion is valid.

Lemma 3. All univalent functions f ∈ S with the second coefficient a2 satisfying |a2| ≤ 1/2
belong to B.

This statement is a consequence of the following covering lemma of Koebe’s type
proven in [22].

Let χ be a holomorphic map from a domain G in a complex Banach space X = {x}
into the universal Teichmüller space T modeled as a bounded subdomain of B (indicated in
Section 3) and suppose that the image set χ(G) admits the circular symmetry, which means
that for every point φ ∈ χ(G), the circle eiθ φ belongs entirely to this set. Consider in the
unit disk the corresponding Schwarzian differential equations

Sw(z) = χ(x) (15)

and pick their holomorphic univalent solutions w(z) in D satisfying w(0) = 0, w′(0) = 1
(hence, w(z) = z + ∑∞

2 anzn). Put

|a0
2| = sup{|a2| : Sw ∈ χ(G)},

and let w0(z) = z+ a0
2z2 + . . . be one of the maximizing functions (its existence follows from

the compactness of the family of these w(z) in the topology of locally uniform convergence
in D). Then, we have

Lemma 4 ([22]). For every indicated solution w(z) = z + a2z2 + . . . of the differential
equation (15), the image domain w(D) covers entirely the disk {|w| < 1/(2|a0

2|)}.
The radius value 1/(2|a0

2|) is sharp for this collection of functions, and the circle {|w| =
1/(2|a0

2|)} contains points not belonging to w(D) if and only if |a2| = |a0
2| (i.e., when w is one of

the maximizing functions).

In particular, all functions w(z) cover the unit disk {|w| < 1}, which shows that their
inverse functions z−1(w) are also univalent in this disk.

Another corollary of Lemma 4 is that the inverted functions

Ww(ζ) = 1/w(1/ζ) = ζ − a − 2 + b1ζ−1 + b2ζ−2 + . . . , |ζ| > 1,
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map the complementary disk D∗ onto the domains whose boundaries are entirely contained
in the disk {|W + a2| ≤ α0

2|}.
Combining this with the well-known result of Elisha Netanyahu [6] that

max
B

|a2| =
4
3

,

one finds that the boundaries of all domains Ff (D∗) determined by univalent functions
f ∈ B are placed in the disk {|w + a2| ≤ 4/3}.
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