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Abstract: The ERW model was introduced twenty years ago to study memory effects in a one-
dimensional discrete-time random walk with a complete memory of its past throughout a parameter
p between zero and one. Several variations of the ERW model have recently been introduced. In
this work, we investigate the asymptotic normality of the ERW model with a random step size and
gradually increasing memory and delays. In particular, we extend some recent results in this subject.
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1. Introduction and Main Results

In 2004, Schütz and Trimper [1] introduced the now famous elephant random walk
(ERW model) in order to examine memory effects in a non-Markovian random walk. Over
the years, the study of the ERW model has captivated a lot of attention in the probability
and statistic communities. In particular, Dedecker et al. [2] considered a nice variation of
the ERW model, allowing the elephant to have a random step size each time the elephant
moves to the right or to the left. Recently, Aguech [3] investigated the asymptotic normality
of this new model when the memory of the elephant is allowed to gradually increase in
the sense of the model introduced by Gut and Stadtmüller [4]. In this paper, our main
contribution is the investigation of the validity of the central limit theorem for the elephant
random walk with random step sizes and gradually increasing memory and delays. Our
work can be seen as an extension of some results established in [2–5]. First, we recall the
definition of the one-dimensional ERW model introduced by Schuütz and Trimper [1]. At
time zero, the position S0 of the elephant is zero. At time n = 1, the elephant moves to the
right with probability s and to the left with probability 1 − s, where s ∈ [0, 1] is fixed. So,
the position of the elephant at time n = 1 is given by S1 = X1, where X1 has a Rademacher
R(s) distribution. Now, for any n ⩾ 1, we uniformly choose at random an integer n′ among
the previous times 1, . . . , n, and we define

Xn+1 =

{
+Xn′ with probability p
−Xn′ with probability 1 − p

where the parameter p ∈ [0, 1] is the memory of the ERW. Then, the position of the ERW is
given by

Sn+1 = Sn + Xn+1.

Recently, Gut and Stadtmüller [4] considered the case of variable memory length in the
ERW model. This means that, at each time n ⩾ 1, the random integer n′ is no longer
uniformly chosen from the previous times 1, 2, . . . , n, but rather from between 1, 2, . . . , mn,
where (mn)n⩾1 is a nondecreasing sequence growing to infinity satisfying mn ⩽ n and
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where n−1mn → 0 as n goes to infinity. Bercu [6] introduces the model with delays but
using all the last steps: 1, 2, . . . , n. One year later, Aguech and El Machkouri [7] considered
the general case of a nondecreasing memory satisfying mn ⩽ n and n−1mn → θ as n goes
to infinity where θ ∈ [0, 1] is fixed, proving the following result:

Theorem 1 (Aguech and El Machkouri [7]). Let (mn)n⩾1 be a nondecreasing sequence of
positive integers growing to infinity such that n−1mn −−−−−→

n→→+∞
θ for some θ ∈ [0, 1], and denote

τ = θ + (1 − θ)(2p − 1).

(1) if 0 < p < 3/4, then
√

mn Sn
n

Law−−−−→
n→+∞

N
(

0, τ2

3−4p + θ(1 − θ)
)

.

(2) if p = 3/4, then
√

mn Sn

n
√

log(mn)

Law−−−−→
n→+∞

N
(

0, (1+θ)2

4

)
.

(3) if 3/4 < p < 1, then m2(1−p)
n Sn

n
Ł4, a.s.−−−−→
n→+∞

τL where L is a non Gaussian random variable. In

addition, if
√

m4p−3
n |n−1mn − θ| −−−−→

n→+∞
0 then

√
m4p−3

n

(
Snm2(1−p)

n
n

− τL

)
Law−−−−→

n→+∞
N
(

0,
τ2

4p − 3
+ θ(1 − θ)

)
.

where L is a non-Gaussian random variable (see [6], Theorem 3.7]).

In this work, we are going to extend the result established in Theorem 1 by allowing
the elephant to have a random step size, and also by including a possibility for the elephant
to have stops, which means that the elephant can sometimes stay in its current position.

When comparing this study to earlier ones, its primary contribution is as follows:
In contrast to [7], we allow the elephant to pause and take steps of any size, which is an
extension. Additionally, in contrast to [2], where the elephant’s memory is increasing and it
only remembers steps up to mn, in [8], the elephant’s memory is decreasing and it can take
random steps.

The ERW with random step sizes was introduced by Fan and Shao [9]. In what
follows, we investigate an extension of the model introduced in [9]. More precisely, let
θ be a fixed constant in [0, 1] and let (mn)n⩾1 be an nondecreasing sequence of positive
integers growing to infinity and satisfying mn ⩽ n and limn→+∞ mn/n = θ. Consider
also a sequence (Zk)k≥1 of positive i.i.d random variables, with a finite mean ν = E(Z1)

and variance Var(Z1) = σ2 ≥ 0. An ERW with random step sizes may be described
as follows: At time n = 1, the elephant moves to Z1 with probability s ∈ [0, 1] and to
−Z1 with probability 1 − s. So, the position S1 of the elephant at time n = 1 is given by
S1 = X1Z1, where

X1 =

{
1 with probability s
−1 with probability 1 − s.

For any integer n ≥ 1, we also define

Xn+1 =


XLn with probability p ∈ [0, 1]
−XLn with probability q ∈ [0, 1]

0 with probability r ∈ [0, 1]

where (p, q, r) ∈]0, 1[3 are fixed parameters satisfying p + q + r = 1 and Ln is a random
variable uniformly distributed on the set {1, 2, . . . , mn}. From now on ,we assume that
(Zn)n⩾1 and (Xn)n⩾1 are independent, and we define the position Sn of the elephant at
time n ⩾ 1 and the sum of X. Dn at time n by

Sn =
n

∑
k=1

XkZk, Dn =
n

∑
k=1

Xk.
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In the sequel, we use m and L to, respectively, denote mn and Ln throughout the paper.
Additionally, we assume, without a loss of generality, that ν = 1.

Moreover, we introduce the σ-algebra Fn = σ(X1, X2, . . . , Xn) and the notations

Σn =
n

∑
k=1

X2
k and r′k = P[Xk = 0|Fm] for m + 1 ≤ k ≤ n.

The expression of r′n is given in the following lemma:

Lemma 1. For all k ∈ {m + 1, . . . , n}, given Fm, the probability that the elephant does not move
is given by

r′k =
rΣm

m
+

(
1 − Σm

m

)
= 1 − (1 − r)

Σm

m
. (1)

Proof. Conditioned on Fm, the probability of Xk = 0 is the probability that the elephant
previously chose to make a step not equal to zero, but he decides to not move, plus the
probability that the elephant previously chose a step equal to zero.

r′k =
rΣm

m
+

(
1 − Σm

m

)
= 1 − (1 − r)

Σm

m
. (2)

The term rΣm
m is exactly the probability of choosing a step from 1 to m not equal to 0 and

deciding to not move, and the term 1 − Σm
m represents the probability of choosing a step

from 1 to m equal to 0.

The following result is a key lemma in obtaining our main results:

Lemma 2. For all k = m + 1, . . . , n, conditioned on Fm, the distribution of Xk is given by

P[Xk = +1|Fm] =

(
1 − r′n

2
+

(p − q)Dm

2m

)
,

P[Xk = −1|Fm] =

(
1 − r′n

2
− (p − q)Dm

2m

)
,

P[Xk = 0|Fm] = r′n = 1 − (1 − r)
Σm

m
.

Recall that Dm = ∑m
l=1 Xl .

Proof. Let m + 1 ≤ k ≤ n, then, for L uniformly distributed on {1, . . . , m},

E[Xk|Fm] = pE[XL|Fm]− qE[XL|Fm] = (p − q)E[XL|Fm] = (p − q)E
[

m

∑
ℓ=1

Xℓ1{L=ℓ}|Fm

]

=
(p − q)E[Dm|Fm]

m
=

(p − q)
m

Dm.

In order to complete the proof, it suffices to note that for k = m + 1, . . . , n,

P[Xk = 1|Fm] + P[Xk = −1|Fm] + P[Xk = 0|Fm] = 1.

2. Asymptotics When the Elephant Has Full Memory

In this section, we suppose that mn = n, which means that the elephant remembers all
its steps from the past. The following result gives the almost certain asymptotic of (Σn)n⩾1
as n goes to infinity.
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Lemma 3 (Lemma 2.1, [8]). For any p, q, and r in [0, 1], we have

Σn

n1−r
a.s.−−−−→

n→+∞
Σ

where Σ has a Mittag-Leffler distribution with parameter 1 − r.

The main result of this section is the following theorem:

Theorem 2. Let Σ be a Mittag-Leffler random variable with parameter 1 − r. We assume that
Z1 has a mean of 1 and a finite variance of σ2. Consider the notations pr := p

1−r , and for any
pr < 3/4,

σ2
r :=

1 − r
3(1 − r)− 4p

.

1. If 0 < pr < 3/4 (diffusive regime), then

Sn√
n1−r

Law−−−−→
n→+∞

√
Σ N

(
0, σ2

r + σ2
)

,

where the random variables Σ and N
(

0, σ2
r + σ2

)
are independent.

2. If pr = 3/4 (critical regime), then

Sn√
n1−r ln n

Law−−−→
n→∞

√
(1 − r)Σ N (0, 1),

where the random variables Σ and N (0, 1) are independent.
3. If pr > 3/4 (superdiffusive regime), then

Sn

n2p+r−1
Prob−−−→

n→∞
M,

where M is a non Gaussian and non-degenerate random variable.

Proof. Assume that 0 < pr < 3/4. Following [2], we have Sn = Tn + Hn where

Tn =
n

∑
k=1

Xk and Hn =
n

∑
k=1

Xk(Zk − 1).

Let t and n be a fixed real number and a fixed positive integer, respectively, and let

φn(t) = E
[

exp
(

itSn√
n1−r

)]
.

Using the decomposition of Sn, the characteristic function φn(t) can be decomposed as

φn(t) = E
[

exp
(

it
Tn + Hn√

n1−r

)]
= E

[
exp

(
it

Tn√
n1−r

)
exp

(
it

Hn√
n1−r

)]
.

To study the asymptotic distribution of the normalized walk, we proceed as follows:

• At the first step, in the last equation, in order to separate between Hn and Tn, we
condition with respect to Fn;

• In the second step, we use the fact that I{Xk ̸=0}X2 = I{Xk ̸=0} ;
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• In the last step, we observe that, conditionally with regard to Fn, the random variable
Xk(Zk − 1) is centered at zero with variance equal to σ2I{Xk ̸=0}.

In conclusion, if we denote by Z̃k = (Zk − 1) and by ψ, the characteristic function of
Z̃1 which is centered at zero, for a large n, we have

φn(t) = E
[

exp
(

it
Tn√
n1−r

)
E
[

exp
(

it
Hn√
n1−r

)]
|Fn

]
= E

[
exp

(
it

Tn√
n1−r

) n

∏
k=1

E
[

exp
(

it
Xk(Zk − 1)√

n1−r

)]
|Fn

]

= E
[

exp
(

it
Tn√
n1−r

) n

∏
k=1

E
[

exp
(

it
Xk(Zk − 1)√

n1−r

)]
|Fn

]

= E
[

exp
(

it
Tn√
n1−r

) n

∏
k=1

ψ

(
tXk√
n1−r

)]

= E
[

exp
(

it
Tn√
n1−r

) n

∏
k=1

(
1 − I{Xk ̸=0}

t2σ2

2n1−r + o
(

1
n1−r

))]

≈ E
[

exp
(

it
Tn√
n1−r

)(
1 − t2σ2

2n1−r

)Σn
]

≈ E
[

exp
(

it
Tn√
n1−r

)
exp

(
Σn

n1−r
−t2σ2

2

)]
.

But, by Lemma 3, Σn/n1−r converges almost surely to Σ and, by (Theorem 3.3, [8]),
converges to a suitable normal distribution.

Finally, we conclude the proof using Slutsky’s theorem.
Now, we assume that pr = 3/4, the critical case. The behavior is very close to

the critical case for the classic elephant random walk model [6] . In order to study the
asymptotic distribution of the walk Sn, we employ the characteristic function ϕn(t) defined,
for all t ∈ R and for all positive integers n, by

ϕn(t) = E
[

exp
(

itSn√
n1−r ln n

)]
= E

[
exp

(
it

Tn + Hn√
n1−r ln n

)]
= E

[
exp

(
it

Tn√
n1−r ln n

)
exp

(
it

Hn√
n1−r ln n

)]
.

Using the same arguments as in the previous case, given Fn and for a large n, we can write

ϕn(t) = E
[

exp
(

it
Tn√

n1−r ln n

)
E
[

exp
(

it
Hn√

n1−r ln n

)]
|Fn

]
= E

[
exp

(
it

Tn√
n1−r ln n

) n

∏
k=1

E
[

exp
(

it
Xk(Zk − 1)√

n1−r ln n

)]
|Fn

]

≈E
[

exp
(

it
Tn√

n1−r ln n

) n

∏
k=1

(
1 + I{Xk ̸=0}E

[(
it

Xk(Zk − 1)√
n1−r ln n

)
− t2(Zk − 1)2

2n1−r ln n

])
|Fn

]

= E
[

exp
(

it
Tn√

n1−r ln n

) n

∏
k=1

(
1 − I{Xk ̸=0}

t2σ2

2n1−r ln n

)]

= E
[

exp
(

it
Tn√

n1−r ln n

)(
1 − t2σ2

2n1−r ln n

)Σn
]

≈E
[

exp
(

it
Tn√

n1−r ln n

)
exp

(
−t2σ2

2
Σn

n1−r
1

ln n

)]
.



Axioms 2024, 13, 629 6 of 9

Again, we conclude the proof using (Theorem 3.6, [8]) and Slutsky’s theorem.
For the case where pr > 3/4, we have

Sn

n2p+r−1 =
Tn

n2p+r−1 +
Hn

n2p+r−1 .

By (Theorem 4, [3]), (Theorem 3.7, [8]), and (Theorem 2, [7]), we have

Tn

n2p+r−1
a.s−−−→

n→∞
M,

where M is a non-Gaussian and non-degenerate random variable.
On the other hand, for all ε > 0, we have

P
(∣∣∣ Hn

n2p+r−1

∣∣∣ ≥ ε

)
≤ σ2E[Σn]

ε2n4p+2r−2 ≤ σ2n1−rE[Σ]
ε2n4p+2r−2 =

σ2E[Σ]
ε2n4p+3r−3 .

Since pr > 3/4, then 4p + 3r − 3 > 0, and since E[Σ] is finite, we deduce that

Hn

n2p+r−1
Prob−−−→

n→∞
0

3. Asymptotics When the Elephant Has Increasing Memory

In this section, we assume that the elephant has a gradually increasing memory.

Theorem 3. Let θ ∈ [0, 1], such that m/n → θ as n goes to infinity, and let Σ be a Mittag-Leffler
random variable with parameter 1 − r. Consider the notation pr := p

1−r .

1. If 0 < pr < 3/4 (diffusive regime), then

mn

n
Sn√
Σm

Law−−−→
n→∞

N
(

0,
(1 − r)(1 + θ + (p − q))2

1 − r − 2(p − q)
+ (1 − r)θ(1 − θ) + σ2θr+1

)
.

2. If pr = 3/4 (critical regime), then

mn

n
Tn√

Σm ln Σm

Law−−−→
n→∞

N
(

0,
(

θ + (1 − r)
(1 − θ)

2

)2
)

.

3. If pr > 3/4 (superdiffusive regime), then

Sn

n
1

m2(p−1)+r
L2

−−−→
n→∞

(θ + (1 − θ)(2p + r − 1))M

where M is a non-Gaussian and non-degenerate random variable and the asymptotic distribu-
tion of the fluctuations, around L, is given by

Sn
n

1
m2(p−1)+r − M(mn + (1 − mn)(2p + r − 1))m2p+r−1

n√
Σm

Law−−−→
n→∞

N
(

0, λ2 + θr+1σ2
)

,

where

λ2 =
(θ + (2p + r − 1)(1 − θ))2

4
(

pr − 3
4
) + (1 − r)θ(1 − θ).

Proof. Assume that pr < 3/4 and denote φn(t) = E
[

eit Snm
n
√

Σm

]
for any t ∈ R. Since Zk − 1 is

centred at zero, we have
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φn(t) = E
[
E
[

exp
(

it
Snm

n
√

Σm

)
|Fn

]]
= E

[
exp

(
it

Tnm
n
√

Σm

)
E
[

exp
(

it
Hnm

n
√

Σm

)
|Fn

]]
= E

[
exp

(
it

Tnm
n
√

Σm

) n

∏
k=1

E
[

exp
(

it
Xk(Zk − 1)m

n
√

Σm

)
|Fn

]]

≈ E
[

exp
(

it
Tnm

n
√

Σm

) n

∏
k=1

E
[(

1 + it
Xk(Zk − 1)m

n
√

Σm
− t2

2
m2(Zk − 1)2

n2Σm

)
|Fn

]]

= E
[

exp
(

it
Tnm

n
√

Σm

) n

∏
k=1

(
1 − I{Xk ̸=0}

t2σ2

2
m2

n2Σm

)]

= E
[

exp
(

it
Tnm

n
√

Σn

)(
1 − t2σ2

2
m2

n2Σm

)Σn
]

≈ E
[

exp
(

it
Tnm

n
√

Σn

)
exp

(
− t2σ2

2
m2

n2
Σn

Σm

)]
≈ E

[
exp

(
it

Tnm
n
√

Σn

)
exp

(
− t2σ2

2
θr+1

)]
.

The last approximation is due to the fact that
Σn

Σm

a.s−−−→
n→∞

θr−1

On the other hand, by (Theorem 2.1, [10]), we know that

m
n

Tn√
Σm

Law−−−→
n→∞

N
(

0,
(1 − r)(1 + θ + (p − q))2

1 − r − 2(p − q)
+ (1 − r)θ(1 − θ)

)
,

This concludes the proof in the case of pr < 3/4.
Assume that pr = 3/4. Using similar arguments as in the previous case, we have

ϕn(t) := E
[

exp
(

it
mn

n
Sn

ln Σm
√

Σm

)]
= E

[
exp

(
it

mn

n
Tn

ln Σm
√

Σm

)
exp

(
it

mn

n
Hn

ln Σm
√

Σm

)]
= E

[
exp

(
it

mn

n
Tn

ln Σm
√

Σm

)
E
[

n

∏
k=1

exp
(

it
mn

n
Xk(Zk − 1)
ln Σm

√
Σm

)
|Fn

]]

= E
[

exp
(

it
mn

n
Tn

ln Σm
√

Σm

) n

∏
k=1

E
[

exp
(

it
mn

n
Xk(Zk − 1)
ln Σm

√
Σm

)
|Fn

]]

≈ E
[

exp
(

it
mn

n
Tn

ln Σm
√

Σm

) n

∏
k=1

E
[(

1 + it
mn

n
Xk(Zk − 1)
ln Σm

√
Σm

− t2 m2
n

2n2
X2

k (Zk − 1)2

Σm ln2 Σm

)
|Fn

]]

= E
[

exp
(

it
mn

n
Tn

ln Σm
√

Σm

) n

∏
k=1

(
1 − I{Xk ̸=0}t2 m2

n
2n2

σ2

Σm ln2 Σm

)]

= E
[

exp
(

it
mn

n
Tn

ln Σm
√

Σm

)(
1 − t2 m2

n
2n2

σ2

Σm ln2 Σm

)Σn
]

≈ E
[

exp
(

it
mn

n
Tn

ln Σm
√

Σm

)
exp

(
−t2 m2

n
2n2

σ2Σn

Σm ln2 Σm

)]
≈ E

[
exp

(
it

mn

n
Tn

ln Σm
√

Σm

)]
.



Axioms 2024, 13, 629 8 of 9

By (Theorem 2.1, [10]), we know that

mn

n
Tn

ln Σm
√

Σm

Law−−−→
n→∞

N
(

0,
(

θ + (1 − r)
(1 − θ)

2

)2
)

,

and we obtain the desired result.
Now, assume pr > 3/4. By (Theorem 2.1, (iii), [10]), we have

Tn

n
1

m2(p−1)+r
L2

−−−→
n→∞

L(θ + (1 − θ)(1 − r)).

On the other hand, since Z1 − 1 is centred around zero, we obtain

E
[(

Hn

n
1

m2(p−1)+r

)2
]
=

σ2

n2m4(p−1)+2r
E[Σn] ≤

σ2n1−r

ε2n2m4(p−1)+2r
→ 0.

consequently
Hn

n
1

m2(p−1)+r
L2

−−−→
n→∞

0.

As before, this is sufficient in order to get the desired result.

The following result is given in (Theorem 5.3, [10]) but we provide a new proof.

Theorem 4. We have
lim

n

Σn

n1−r =
(
(1 − r)θ−r + rθ1−r

)
Σ

where Σ is the Mittag-Leffler random variable given in [8].

Proof. Keeping in mind the notation Σn = ∑n
k=1 X2

k for any n ⩾ 1, we have

Σn

n1−r =
Σm

n1−r +
1

n1−r

n

∑
k=m+1

X2
k =

(m
n

)1−r Σm

m1−r +
(m

n

)1−r 1
m1−r

n

∑
k=m+1

X2
k ,

and from (Lemma 2.1, [8]), we know that limn Σm/m1−r = Σ, where Σ has a Mittag-Leffler
distribution with parameter 1 − r. So, we deduce

lim
n

(m
n

)1−r Σm

m1−r = θ1−rΣ.

On the other hand, using the strong law of large numbers, for a sufficiently large n, we have

(m
n

)1−r 1
m1−r

n

∑
k=m+1

X2
k =

(m
n

)1−r n − m
m1−r

1
n − m

n

∑
k=m+1

X2
k

≈ θ1−r n − m
m1−r (p + q)

Σm

m

≈ θ1−r
( n

m
− 1
)
(p + q)

Σm

m1−r

≈ θ−r(1 − θ)(p + q)
Σm

m1−r .

Finally, we deduce that

lim
n

Σn

n1−r =
(
(1 − r)θ−r + rθ1−r

)
Σ.
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Remark 1. Note that Theorem (3) generalizes many previous results already published in the
literature. Actually,

• for θ = 1 and σ = 0, it contains results obtained in [8],
• for θ = σ = 0, it contains results obtained in (Theorem 4.1, [4]),
• for r = σ = 0 and θ = 1, we find the result already obtained in (Theorems: 3.3, 3.6, 3.7, [6]),
• for r = 0 and θ = 1, we obtain results of (Theorem 1-iii, Theorem 2, [2]),
• for r = σ = 0 and θ ∈ (0, 1), it contains results obtained in (Theorem 2, [7]),
• it coincides with (Theorems 2.1–2.3, [3]) when r = 0.

4. Conclusions

In this work, we established new results on the asymptotic normality for a variation
of the elephant random walk (ERW) introduced by [4] in 2022. The ERW model we were
interested in is the so-called elephant random walk with gradually increasing memory for
which a random step size is allowed. Our main results (Theorems 3 and 4) contain previous
results established in [2–4,6–8]. In a future work, it will be interesting to investigate the
question of the validity of the law of the iterated logarithm for this ERW model, but also to
provide a method for the estimation of the parameters p, q, and r. Another very interesting
and more natural variation of the model would be to consider that the elephant remembers
only its steps from time n − m to time n − 1 instead of the steps 1 to m.
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