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Abstract: In this study, we investigate the concept of I∗-statistical convergence for sequences of fuzzy
numbers. We establish several theorems that provide a comprehensive understanding of this notion,
including the uniqueness of limits, the relationship between I∗-statistical convergence and classical
convergence, and the algebraic properties of I∗-statistically convergent sequences. We also introduce
the concept of I∗-statistical pre-Cauchy and I∗-statistical Cauchy sequences and explore its connection
to I∗-statistical convergence. Our results show that every I∗-statistically convergent sequence is
I∗-statistically pre-Cauchy, but the converse is not necessarily true. Furthermore, we provide a
sufficient condition for an I∗-statistically pre-Cauchy sequence to be I∗-statistically convergent,
which involves the concept of I∗ − lim in f .
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1. Introduction

There has been considerable progress in the convergence theory concerning fuzzy
number sequence due to seminal works and innovative extensions that have taken place.
Matloka [1] introduced the primary definition of convergence of sequences of fuzzy num-
bers and defined its limit and discussed its algebraic properties, while Nanda [2] studied
the spaces of bounded and convergent sequences of fuzzy numbers and showed that
they are complete metric spaces which furthered its theoretical background. Variations
are manifested by sequences that do not converge under classical convergence conditions.
Most mathematical problems involve sequences that are not convergent in the usual sense.
There is now a realization of the necessity of considering more classes of sequences for de-
termining or discussing their convergences. One of the approaches is to consider sequences
that converge when we restrict our attention to large subsets of natural numbers in some
meaningful sense. For example, if we define an important subset as all natural numbers
apart from those with finitely many, then we get the traditional concept of convergence. On
the other hand, recourse may be made to subsets having zero natural density. The natural
density of a subset A ofN is formally expressed as δ(A), and it is defined as follows:

δ(A) = lim
n→∞

1
n
|{k < n : k ∈ A}|,

which will lead us to a type of convergence namely, statistical convergence. The concept of
statistical convergence for sequences of real numbers was independently introduced by
Fast [3] and Schoenberg [4]. This foundational idea was later expanded by Savaş [5], who
discussed alternative conditions for sequences of fuzzy numbers to be statistically Cauchy.
Subsequent research further explored the nuances of this area, notably by Connor [6], who
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introduced the concept of statistically pre-Cauchy sequences and demonstrated that sta-
tistically convergent sequences are inherently statistically pre-Cauchy. The exploration of
statistical convergence from a sequence space perspective and its connection to summability
theory was advanced by researchers like Fridy [7] and Salát [8]. For a foundational under-
standing of statistical convergence, we recommend consulting works such as [9–13]. Some
of the applications of statistical convergence can be found in [14,15]. Kostyrko et al. [16]
extended the concept of statistical convergence by introducing I-convergence and I∗-
convergence, which utilize ideals in metric spaces. They discussed several basic properties
of these new types of convergence. For a detailed examination of I-convergence, we suggest
referring to [17–21].

Kumar and Kumar [22] applied the concepts of I-convergence, I∗-convergence, and
I-Cauchy sequences to sequences of fuzzy numbers, with further developments in this area
discussed in works such as [23,24].

Savaş and Das [25] later extended I-convergence to I-statistical convergence, aim-
ing to unify λ-statistical and A-statistical convergence using ideals. They introduced
the notion of I-statistically pre-Cauchy sequences, which were further investigated by
Debnath et al. [26]. Later on, Debnath et al. [27] discussed I-statistical convergence, intro-
ducing I-statistical limit points and cluster points, and exploring their basic properties.
They extended I-statistical convergence and proved that I∗-statistical convergence implies
I-statistical convergence. In recent years, various authors have studied different kinds of
convergence by generalising statistical convergence via ideals in different spaces and for
different types of sequences, for example, [28–30]. However, the properties and conse-
quences of I∗-statistical convergence have not been thoroughly discussed, which motivated
our current research.

This article investigates the concept of I∗-statistical convergence for sequences of fuzzy
numbers in metric space. We have proved that under I∗-statistical convergence the limit
of the sequence is unique. We established several theorems that comprehensively under-
stand this notion, which include the relationship between I∗-statistical convergence and
classical convergence and the algebraic properties of I∗-statistically convergent sequences.
We also defined I∗-statistically pre-Cauchy sequences and I∗-statistical Cauchy sequences
and explored their connection to I∗-statistical convergence. Our results show that every
I∗-statistically convergent sequence is I∗-statistically pre-Cauchy, but the converse is not
necessarily true. Furthermore, we provide a sufficient condition for an I∗-statistically
pre-Cauchy sequence to be I∗-statistically convergent, which involves the concept of
I∗− lim in f .

2. Preliminaries

In the theory of fuzzy numbers, we start by considering intervals denoted by A with
endpoints A and A . The set D comprises all closed, bounded intervals on the real lineR,
represented as:

D = {A ⊂ R : A = [A , A ]}.

For any A , B in D, we define A ⩽ B iff A ⩽ B and A ⩽ B, with the distance function
d(A , B) being the maximum of |A − B| and |A − B|.

The metric d establishes a Hausdorff metric on D, rendering (D, d) a complete metric
space. Moreover, ⩽ acts as a partial order on D.

Definition 1 ([22]). A fuzzy number is a function X fromR to [0, 1], which satisfy the following
conditions:

(i) X is normal, i.e., there exists an X0 ∈ R such that X (X0 ) = 1;
(ii) X is fuzzy convex, i.e., for any x, y ∈ R and λ ∈ [0, 1], X (λx+(1−λ)y) ⩾ min{X (x), X (y)};
(iii) X is upper semi-continuous;
(iv) The closure of the set {x ∈ R : X (x) > 0}, denoted by X 0 is compact.

The properties (i)–(iv) imply that for each α ∈ (0, 1], the α-level set:
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X α = {x ∈ R : X (x) ⩾ α} =
[
X α, X α].

where X α represents a non-empty, compact, and convex subset of the real numbersR.

The set of all fuzzy numbers is denoted by L(R), and the set comprising all sequences
of fuzzy numbers is represented by L(S). We define a mapping, denoted as d, which takes
pairs of fuzzy numbers from L(R)× L(R) and maps them to the real numbersR. Formally,
this mapping d can be expressed as follows:

d(X , Y ) = sup
α∈[0,1]

d(X α, Y α).

where d(X , Y ) computes the supremum of the distance, d, between the α-level sets of fuzzy
numbers X and Y across all values of α within the interval [0, 1].

Puri and Ralescu [31] demonstrated that the space (L(R), d̄) constitutes a complete
metric space: “We define the relation X ⩽ Y for X , Y ∈ L(R) if X α ⩽ Y α and X α ⩽ Y α for
each α ∈ [0, 1]. Furthermore, we define X < Y if X ⩽ Y and there exists some α0 ∈ [0, 1]
such that X α0 < Y α0 or X α0 < Y α0 . If neither X ⩽ Y nor Y ⩽ X holds, we say that X and Y
are incomparable fuzzy numbers”. Moreover, they continue that in the metric space L(R),
“we can define addition X + Y and scalar multiplication λX , where λ is a real number, in
terms of α-level sets as follows:

[X + Y ]α = [X ]α + [Y ]α

for each α ∈ [0, 1], and
[λX ]α = λ[X ]α

for each α ∈ [0, 1], respectively”.
Regarding fuzzy integers within a subset S of L(R), if there exists a fuzzy integer

denoted by µ such that X ⩽ µ holds for every X in the subset S, we designate S as having
an upper bound, with µ serving as the upper bound for the set. Similarly, we define the
lower bound.

For each α ∈ [0, 1], if we define Zα := X α
+ Y α and Zα := X α + Y α, we can express Z

as the sum of X and Y , denoted as Z = X + Y . Similarly, following a comparable pattern,
we represent Z as the difference of X and Y , expressed as Z = X − Y , iff Zα := X α − Y α

and Zα := X α − Y α for each α ∈ [0, 1].

Definition 2 ([22]). A sequence X = (Xn) of fuzzy numbers are said to be convergent to a fuzzy
number X0 if, for every ε > 0, there exists a positive integer m such that d(Xn, X0 ) < ε for every
n ⩾ m. The fuzzy number X0 is referred to as the ordinary limit of the sequence (Xn), denoted as
limn→∞ Xn = X0 .

Definition 3 ([22]). A sequence X = (Xn) of fuzzy numbers are regarded as a Cauchy sequence if,
for every ε > 0, there exists a positive integer n0 such that d(Xn, Xm) < ε for all n, m ⩾ n0 .

Definition 4 ([22]). A sequence X = (Xn) of fuzzy numbers are categorized as a bounded sequence
if the set {Xn : n ∈ N}, comprising all the fuzzy numbers in the sequence is itself a bounded set of
fuzzy numbers.

Definition 5 ([22]). A sequence X = (Xn) of fuzzy numbers are considered to be statistically
convergent to a fuzzy number X0 if, for any ε > 0, the set A(ε) = {n ∈ N : d(Xn, X0) ⩾ ε}
exhibits a natural density of zero. In this context, the natural density of a set refers to the proportion
of natural numbers within the set concerning the whole set of natural numbers. The fuzzy number
X0 is termed the statistical limit of the sequence (Xn), denoted as st − limn→∞ Xn = X0.
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Definition 6 ([22]). A sequence X = (Xn) of fuzzy numbers are termed statistically Cauchy if, for
any ε > 0, there exists a positive integer m = m(ε) such that the set {n ∈ N : d(Xn, Xm) ⩾ ε} has
a natural density of zero. In this context, the term “natural density” pertains to the proportion of
natural numbers within the set concerning the entire set of natural numbers.

Throughout this paper, we will useR andN to represent, respectively, the set of real
numbers and positive integers. We will denote the power set of any set X as P(X ), and the
complement of the set A will be denoted as Ac.

Definition 7 ([22]). Let X be a non-empty set, then a collection of subsets I contained in the power
set of X denoted as P(X) is said to be ideal iff it satisfies the following conditions:

(i) The empty set belongs to I, i.e., ∅ ∈ I;
(ii) For any set A and B belonging to I, A ∪ B also belongs to I;
(iii) If A ∈ I and B ⊂ A then B ∈ I.

Definition 8. Let X be a non-empty set. A non-empty family of sets F contained within the power
set P(X) is denoted as a filter on X iff it adheres to the following criteria:

(i) The empty set ∅ is not an element of the filter, meaning ∅ /∈ F;
(ii) For any two sets A and B that belong to the filter, their intersection denoted as A ∩ B is also a

part of the filter formally expressed as A ∩ B ∈ F;
(iii) If a set A is a member of the filter and B is a super set of A , then B is also an element of the

filter, i.e., B ∈ F.

Conditions (i), (ii), and (iii) jointly define the properties of a filter on set X.

An ideal I is termed non-trivial if it satisfies two conditions: it is not an empty set
(I ̸= ∅), and it does not contain the entire set X (X /∈ I). Notably, a non-trivial ideal
I ⊂ P(X) corresponds to a filter, denoted as F(I), which is formed by taking the set
complement of each element of I with respect to the entire set X. The filter F(I) is referred
to as the filter associated with the ideal I.

An ideal I in X is considered admissible iff it includes all singleton sets, i.e.,{{x} : x ∈ X}.

Definition 9 ([22]). Suppose I ⊂ P(N) is a non-trivial ideal. We define a sequence X = (Xn)
of fuzzy numbers as I-convergent to a fuzzy number X0 if, for any ϵ, the set A(ϵ) = {n ∈ N :
d(Xn, X0 ) ⩾ ϵ} ∈ I.

The fuzzy number X0 is then referred to as the I-limit of the sequence (Xn), and this is denoted
as limn→∞ Xn = X0 .

The set of fuzzy number sequences that are both convergent and I-convergent can be
denoted by ℓ1. These sequences exhibit both conventional convergence and convergence
according to the ideal I, providing a rich framework for the study of their convergence
properties. Throughout the paper, we consider I as an admissible ideal.

Definition 10 ([22]). A sequence X = (Xn ) ∈ L(S) of fuzzy numbers is said to be I∗-convergent
to a fuzzy number X0 iff there exists a set K = {m1 < m2 < m3 < · · · < mk < . . . } ⊂ N such that

K ∈ F(I) and d
(

Xmk , X0

)
→ 0 as n → ∞.

3. I∗-Statistical Convergence of Sequence of Fuzzy Numbers

Definition 11. A sequence X = (Xn ) ∈ L(S) is said to be I∗-statistically convergent to a fuzzy
number X0 if and only if there exists a set K = {m1 < m2 < m3 · · · < mk < . . . } ⊂ N and for

each ϵ > 0 we have limn→∞
1
n
|{mk < n : d(Xmk , X0 ) < ϵ} ∈ F(I)| = 1. X0 is the I∗-statistical

limit of Xn and is denoted by I∗ − st − limn→∞Xn = X0 .
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Example 1. Consider the sequence X = (Xn ), which is defined as follows:

X = (Xn ) =

{
0 for n = k 2 where k ∈ N
1
n otherwise

which is I∗-statistically convergent to 0. Let K = {m1 < m2 < m3 < · · · < mk < . . .} ⊂ N,
where m1, m2, m3, . . . , mk, . . . are all non-perfect square natural numbers. Then, for each ϵ > 0,
we have:

lim
n→∞

1
n

∣∣∣{mk < n : d(Xmk , 0) < ϵ
}
∈ K

∣∣∣ = 1.

It is trivial to show that I is an ideal if it is the collection of subsets of the set X = {n ∈ N :
n = k2}. This implies that K ∈ F(I). Therefore:

lim
n→∞

1
n

∣∣∣{mk < n : d(Xmk , 0) < ϵ
}
∈ F(I)

∣∣∣ = 1.

Theorem 1. If I is an admissible ideal, then a sequence X = (Xn ) ∈ L(S) that is I∗-statistically
convergent will converge to a unique limit.

Proof. Let X = (Xn ) ∈ L(S) be an I∗-statistically convergent sequences to two different
fuzzy numbers X0 and Y0 . Without the loss of generality, suppose that X0 and Y0 are
comparable fuzzy numbers. Consequently, there exists α0 ∈ [0, 1] such that:

X α0
0 < Y α0

0 and X α0
0 > Y α0

0 (1)

or
X0

α0 > Y0
α0 and X0

α0 < Y0
α0 . (2)

We will prove that (1) and (2) can be performed in a similar manner.
Let us assume that (1) is valid. Choose ξ1 = Y0

α0 − X0
α0 and ξ2 = X0

α0 − Y0
α0 . Clearly

ξ1 > 0 and ξ2 > 0. Let ξ
′
= min{ξ1, ξ2}. Select ϵ such that 0 < ϵ < ξ

′
. Given that (Xn ) is

I∗-statistical convergent to both X0 and Y0 therefore, we have M = {m1 < m2 < m3 < · · · <
mk < . . . } ⊂ N and K = {n1 < n2 < n3 < · · · < nk < . . . } ⊂ N such that for every ϵ > 0:

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1 and

limn→∞
1
n
|{nk < n : d(Xnk , Y0 ) ⩽ ϵ} ∈ F(I)| = 1

(3)

since F(I) is a filter onN therefore, by the definition of filter M ∩ N ̸= ϕ.
Let m ∈ M ∩ N then by (3) there exists positive integers k1 and k2 such that:

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1 for every mk ∈ M

withmk > K1 and

limn→∞
1
n
|{nk < n : d(Xnk , Y0 ) ⩽ ϵ} ∈ F(I)| = 1 for every nk ∈ N

with nk > K2 .

(4)

Let k = max{k1, k2} the (4) follows for m ∈ M ∩ N with nk , mk > k . For each α ∈ [0, 1]

and m = max{mk , nk } we have, limn→∞
1
n
|{m < n : d(X α0

m , X0 ) ⩽ ϵ} ∈ F(I)| = 1 and

limn→∞
1
n
|{m < n : d (X α0

m , Y0 ) ⩽ ϵ} ∈ F(I)| = 1. Now the definition of d implies:

∣∣X α0
m − X α0

0
∣∣ < ε and

∣∣X α0
m − Y α0

0

∣∣ < ε,∣∣X α0
m − X α0

0
∣∣ < ε and

∣∣X α0
m − Y α0

0
∣∣ < ε.
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X α0
m ∈

(
X α0

0 − ε, X α0
0 + ε

)
∩
(

Y α0
0 − ε, Y α0

0 + ε
)
= Φ. Thus, a contradiction arises, implying

the comparability of fuzzy numbers X0 and Y0 . Consider X0 ⩽ Y0 and the neighborhoods
A =

{
n ∈ N : d(Xn, X0 ) < ε

}
and B =

{
n ∈ N : d(Xn, Y0 ) < ε

}
of X0 and Y0 , respectively,

are disjoint for ε = d(X0 ,Y0 )
3 > 0. By Definition (8), both the sets A , B ∈ F(I) so that

A ∩ B ̸= Φ. A contradiction has arrived that the neighborhoods of X0 and Y0 are disjoint.
Hence, X0 is determined uniquely.

Theorem 2. Let X = (Xn ) and Y = (Yn ) ∈ L(S) then:

(i) limn→∞Xn = X0 implies I∗ − st − limn→∞Xn = X0 ;
(ii) I∗ − st − limn→∞Xn = X0 and c ∈ R, then I∗ − st − limn→∞cXn = cX0 ;
(iii) If I∗ − st − limn→∞ = X0 and I∗ − st − limn→∞Yn = Y0 then I∗ − st − limn→∞(Xn +

Yn ) = (X0 + Y0 ).

Proof.

(i) Let limn→∞Xn = X0 , then for each ϵ > 0 there exists a positive integer m(say) such that
d(Xn , X0 ) < ϵ for every n ⩾ m. Then, for ϵ > 0 let A(ϵ) = {mk : d(Xmk , X0 ) < ϵ}
for set K = {m1 < m2 < . . .< mk < . . . } ⊂ N is an infinite set then there exists a set
H = {n1, n2, n3, . . . , nk} such that N− H = K and H is a finite set, and therefore,
H ∈ I as I is an admissible ideal. This implies that K ∈ F(I) and δ(K ) = 1. Thus,

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1. Hence, limn→∞Xn = X0 implies

I∗ − st − limn→∞Xn = X0 .
(ii) Let α ∈ [0, 1] and c ∈ R. Let K = {m1 < m2 < . . .< mk < . . . } ⊂ N and ϵ > 0 be

given. Since d(cXn
α, cX0

α) = |c|d(Xn
α, X0

α). Therefore, d(cXmk , cX0 ) = |c|d(Xmk , X0 ).
As I∗ − st − limn→∞Xn = X0 . Therefore, the set A(ϵ) = {mk : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)
and δ(A(ϵ)) = 1. Let B(ϵ) = {mk : d(cXmk , cX0 ) ⩽ ϵ}. We will show that B(ϵ) is
contained in A(ϵ1) for some 0 < ϵ1 < ϵ. Let mp ∈ B(ϵ), then d(cXmk , cX0 ) ⩽ ϵ, which
implies that |c|d(Xmk , X0 ) ⩽ ϵ, that is, d(Xmk , X0 ) ⩽ ϵ

|c| = ϵ1(say). Therefore, m ∈ A(ϵ1).
Since Xn is I∗-statistically convergent therefore, A(ϵ1) ∈ F(I) and by this B(ϵ) ∈ F(I).
Hence, I∗ − st − limn→∞cXn = cX0 .

(iii) For α ∈ [0, 1], let Xn
α, Yn

α, X0
α, and Y0

α be the α level sets of Xn , Yn , X0 , and Y0 ,
respectively. Since d(Xn

α + Yn
α, X0

α + Y0
α) ⩽ d(Xn

α, X0
α) + d(Yn

α, Y0
α), therefore,

d(Xn + Yn , X0 + Y0 ) ⩽ d(Xn , X0 ) + d(Yn , Y0 ). Let ϵ > 0 be given. Since Xn and Yn are I∗-
statistically convergent, therefore, there exists K = {m1 < m2 < · · · < mk < . . . } ⊂ N
such that limn→∞

1
n |{mk < n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1 and limn→∞

1
n |{mk <

n : d(Ymk , Y0 ) ⩽ ϵ} ∈ F(I)| = 1. Take A( ϵ
2 ) = {mk : d(Xmk , X0 ) <

ϵ
2}, B( ϵ

2 ) = {mk :
d(Ymk , Y0 ) <

ϵ
2} and C(ϵ) = {mk : d(Xmk + Ymk , X0 + Y0 ) < ϵ}. Since, A( ϵ

2 ) ∈ F(I) and
B( ϵ

2 ) ∈ F(I), therefore, A( ϵ
2 ) ∩ B( ϵ

2 ) ̸= ϕ and belongs to the filter; thus, we have for
all n ∈ A( ϵ

2 ) ∩ B( ϵ
2 ) ⊂ C( ϵ

2 ) ∈ F(I), i.e., limn→∞
1
n |{mk < n : d(Xmk + Ymk , X0 + Y0 ) ⩽

ϵ} ∈ F(I)| = 1. Hence, I∗ − st − lim(Xn + Yn ) = (X0 + Y0 ).

Theorem 3. For any sequence X = (Xn ) ∈ L(S) if there exists two sequences Y = (Yn ),
Z = (Zn ) ∈ L(S) of fuzzy numbers such that X = Y + Z, d(Yn , X0 ) → 0 as n → 0 and
SuppZ = {n ∈ N : Zn ̸= 0} ∈ I and δ(SuppZ) = 0, then X is I∗-statistically convergent.

Proof. Let Y = (Yn ), Z = (Zn ) ∈ L(S) such that X = Y + Z, d(Yn , X0 ) → 0 as n → 0 and

limn→∞
1
n
|{n ∈ N : Zn ̸= 0} ∈ I| = 0.

Let K = {n ∈ N : Zn = 0}. Since SuppZ belongs to I then K ∈ F(I) with δ(K ) = 1 and
also K is an infinite set as otherwise K ∈ I. Let K = {m1 < m2 < m3 · · · < mk < . . . } ⊂ N

such that δ(k) = 1 then Xmk = Ymk for each n ∈ N. Since Zn = 0 for all n ∈ K. It is given
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that d(Yn , X0 ) → 0. Therefore, d(Xmk , X0 ) → ∞. Thus, limn→∞
1
n
|{mk < n : d(Xmk , X0 ) ⩽

ϵ} ∈ F(I)| = 1. This proves that X is I∗-statistically convergent.

4. I∗-Statistically Cauchy and I∗-Statistically Pre-Cauchy Sequences

Definition 12. A sequence X = (Xn ) is said to be I∗-statistically Cauchy if there exists a set
K = {m1 < m2 < m3 < . . .< mk < . . . } ⊂ N and for each ϵ > 0, there exists mp ∈ N(ϵ) such

that limn→∞
1
n
|{mk < n : d(Xmk , Xmp ) ⩽ ϵ} ∈ F(I)| = 1. I∗ca denotes the collection of all

I∗-statistically Cauchy sequences.

Definition 13. A sequence X = (Xn ) is said to be I∗-statistically pre-Cauchy if there exists a set

K = {m1 < m2 < m3 < . . .< mk < . . . } ⊂ N and for each ϵ > 0 we have limn→∞
1
n2 |{(mk , mp) :

d(Xmk , Xmp ) ⩽ ϵ; mk , mp ⩽ n} ∈ F(I)| = 1.

Theorem 4. Every I∗-statistically convergent sequence is I∗-statistically Cauchy.

Proof. Let X = (Xn ) be I∗-statistically convergent to X0 . Then, there exists a set K =

{m1 < m2 < m3 · · · < mk < . . . } ⊂ N and for each ϵ > 0 we have limn→∞
1
n
|{mk <

n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1. Let C = {mk < n : d(Xmk , X0 ) ⩽ ϵ
2} ∈ F(I) and

δ(C) = 1. Since I is an admissible ideal, therefore, we can choose d(Xmk , X0 ) ⩽ ϵ
2 . Define

B = {mk < n : d(Xmk , X0 ) ⩽ ϵ}. We need to show that C ⊂ B. Let d(Xmk , X0 ) be any arbitrary
element of C, then d(Xmk , X0 ) <

ϵ
2 , d(Xmk , X0 ) + d(Xmp , X0 ) ⩽ ϵ

2 + ϵ
2 , and d(Xmk , Xmp ) ⩽ ϵ,

which shows that every element of C is as element of B. Therefore, C ⊂ B. According to
the Definition (8) B ∈ F(I) and since δ(C) = 1, this implies that δ(B) = 1. Hence, we have

limn→∞
1
n
|{mk < n : d(Xmk , Xmp ) ⩽ ϵ} ∈ F(I)| = 1.

Theorem 5. Every I∗-statistically Cauchy sequence is I∗-statistically pre-Cauchy.

Proof. Let X = (Xn ) be any arbitrary sequence of I∗ca. Then, there exists a set K =

{m1 < m2 < m3 · · · < mk < . . . } ⊂ N and for each ϵ > 0 we have limn→∞
1
n
|{mk <

n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1. Let C = {mk < n : d(Xmk , X0 ) ⩽ ϵ
2} ∈ F(I) and δ(C) = 1.

Now without any loss of generality define T such that Xmp be any term of the sequence
Xn and T = {(mk , mp) : d(Xmk , Xmp ) ⩽ ϵ; mk , mp ⩽ n} and by Definition (8) T ∈ F(I) and

δ(K) = 1. That is, limn→∞
1
n2 |{(mk , mp) : d(Xmk , Xmp ) ⩽ ϵ; mk , mp ⩽ n} ∈ F(I)| = 1, which

shows that every I∗-statistically Cauchy sequence is I∗-statistically pre-Cauchy.

Remark 1. Every I∗-statistically pre-Cauchy sequence need not be I∗-statistically Cauchy.

To understand this we will consider the following example.

Example 2. Let X = (Xn ) be a sequence defined as:

Xn =

{
(0, 1, 2) if n is a odd,
(0, 0.5, 1) if n is a even.

where (a, b, c) denotes a triangular fuzzy number [32] with peak at b and support [a, c]. Let ϵ > 0
be arbitrary. Without the loss of generality, we can choose n0 ∈ N such that n ⩾ n0, we have:

1
n2 |{(mk , mp) : d(Xmk , Xmp ) ⩽ ϵ; mk , mp ⩽ n}|
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⩾
1
n2 |{(mk , mp) : d(Xmk , Xmp ) ⩽ ϵ; mk , mp ⩽ n0}|

Let K be the collection of all odd natural numbers, K = {m1 < m2 < m3 < . . . } ⊂ N(say).
This implies K ∈ F(I). Since mk, mp ⩽ n0 and belongs to K implies that mk, mp are both odd, and
therefore:

d(Xmk , Xmp ) = d((0, 1, 2), (0, 1, 2)) = 0 ⩽ ϵ

Let C = {(mk , mp) : d(Xmk , Xmp ) ⩽ ϵ; Xmk , Xmp ⩽ n0} and Cc denotes the compliment of C.
We will show that limn→∞

1
n2 |Cc| = 0. Since Cc contains all even numbers less than or equal to

n0. Thus, we have:

1
n2 |C

c| ⩽ n0/2
n2 ⩽

1
2n

.

Since n0 is fixed, the right-hand side approaches 0 as n → ∞. Therefore, we have

limn→∞
1
n2 |{(mk , mp) : d(Xmk , Xmp ) ⩽ ϵ; mk , mp ⩽ n} ∈ F(I)| = 1, which shows that X is

I∗-statistically pre-Cauchy.
However, X is not I∗-statistically Cauchy. Suppose for the sake of contradiction that X is

I∗-statistically Cauchy. Then, there exists a set K = {m1 < m2 < m3 < . . . } ⊂ N and for each
ϵ > 0, there exists mp ∈ N(ϵ) such that:

lim
n→∞

1
n
|{mk < n : d(Xmk , Xmp ) ⩽ ϵ} ∈ F(I)| = 1

Without the loss of generality we can choose n0 ∈ N such that n ⩾ n0, we have:

lim
n→∞

1
n
|{mk < n : d(Xmk , Xmp ) ⩽ ϵ}| ⩾ lim

n→∞

1
n
|{mk < n0 : d(Xmk , Xmp ) ⩽ ϵ}|

Let D = {mk ⩽ n0 : d(Xmk , Xmp ) ⩽ ϵ} and Dc denotes the compliment of D. We will show
that limn→∞

1
n |Dc| = 0. Since Dc contains all even numbers less than or equal to n0. Thus,

we have:
1
n
|Dc| ⩽ n0/2

n
⩽

1
2

which is a contradiction, so X is not I∗-statistically Cauchy.

Theorem 6. Every I∗- statistically convergent sequence is I∗-statistically pre-Cauchy.

Proof. The proof is trivial from Theorem 4 and 5. See the Appendix A.

To illustrate the concept of a sequence that is I∗-statistically pre-Cauchy but not
I∗-statistically convergent, we can consider the the following example. Understanding that
any I∗-statistically convergent sequence must contain a subsequence that converges in the
usual sense is crucial. Let us look at the example below.

Example 3. Let X = (Xk ) be a sequence. Consider the sequence X = (Xk ) defined such that
for (mk − 1)! < k < mk !, we have Xk = ∑mk

n=1
1
n . This sequence X = (Xk ) does not possess any

convergent subsequences, implying that X is not I∗-statistically convergent. However, despite the
lack of convergent subsequences, the sequence is I∗-statistically pre-Cauchy. This means that while
the entire sequence does not converge in the I∗-statistical sense, it still satisfies the pre-Cauchy
criterion under I∗-statistical conditions.

Let ϵ > 0 be given and let K = {m1 < m2 < m3 . . .< mk < . . . } ⊂ N ∈ F(I), mk ∈ N
satisfy 1

mk
< ϵ. Now, consider the case where mk ! < n < (mk + 1)! and (mk − 1)! < j , k <n, then

d(Xmj , Xmk ) ⩽
1

mk
< ϵ. It follows that, for mk ! < n < (mk + 1)!, 1

n2 |{(mj, mk ) : d(Xmj , Xmk ) <

ϵ, mj , mk ⩽ n)}|, we have ⩾ 1
n2 [n − (mk − 1)!]2, ⩾

[
1 − (mk −1)!

mk !

]2
, and = [1 − 1

mk
]2.
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Since limk→∞(1 − 1
mk
) = 1. As a result, X is I∗-statistically pre-Cauchy.

Before we present the next theorem, we need to introduce the definition of the
I∗ − lim in f . Let us first outline this concept.

Definition 14. Let I be an admissible ideal ofN and let X = (Xn ) ∈ L(S). Let Ax = {µ ∈ L(R) :
{k : xk < µ} ∈ F(I)} then the I∗ − lim in f is given by:

I∗ − lim in f X =

{
in f Ax if Ax ̸= ϕ

∞ if Ax = ϕ

It is known that “I∗ − lim in f X = η(finite) if and only if for arbitrary ϵ > 0 {k : xk <
η + ϵ} ∈ F(I) and {k : xk < η − ϵ} /∈ F(I)”.

Theorem 7. Suppose X = (Xk ) ∈ L(S) is I∗-statistically pre-Cauchy. If X has a subsequence
(Xpk ) that converges to X0 and 0 < I∗ − lim in f 1

n |{pk ⩽ n : k ∈ N}| < ∞ then X is
I∗-statistically convergent to X0 .

Proof. Let ϵ > 0 be given. Since limXpk = X0 choose r ∈ N such that d(Xj , X0 ) < ϵ
2

whenever j > r and j = pk for some k. Let A = {pk : pk > r, k ∈ N} and A(ϵ) = {k :

d(Xk , X0 ) ⩾ ϵ}. Now note that
1
n2 |{n ∈ N : d(Xmk , Xmp ) ⩽

ϵ
2 , mk , mp < n}|

⩽ 1
n2 ∑A(ϵ)×A (mj , mk )

= 1
n |{pk ⩽ n : pk ∈ A}|. 1

n |{k ⩽ n : d(Xk , X0 ) ⩾ ϵ}|.
Since X is I∗-statistically pre-Cauchy, then there exists a set K = {m1 < m2 < · · · < mk < . . . }

⊂ N and for each ϵ > 0 we have limn→∞
1
n2 |{(mk , mj ) : d(Xmk , Xmj ) ⩽ ϵ; mk , mp < n} ∈

F(I)| = 1. Let C = {(mk , mj ) : d(Xmk , Xmj ) ⩽ ϵ
2 ; mk , mp} ∈ F(I) and δ(C) = 1. Again,

since I∗ − lim in f 1
n |{pk ⩽: k ∈ N}| = b > 0(say). So, {n ∈ N : 1

n |{pk ⩽ n : k ∈ N}| >
b
2} = D(say) ∈ F(I). As C and D belongs to F(I) so, C ∩ D ∈ F(I), i.e., consequently

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) ⩽ ϵ} ∈ F(I)| = 1. This shows that X is I∗-statistically

convergent.

5. Conclusions

Our study has thoroughly examined the concept of I∗-statistical convergence for se-
quences of fuzzy numbers within a metric space. Our investigation confirms the uniqueness
of the limit under I∗-statistical convergence, establishing a firm foundation for understand-
ing this advanced mathematical concept. Through the development of several key theorems,
we have elucidated the relationship between I∗-statistical convergence and classical conver-
gence, alongside the algebraic properties intrinsic to I∗-statistically convergent sequences.

Additionally, our work has introduced and analyzed I∗-statistically pre-Cauchy and
I∗-statistically Cauchy sequences, highlighting their intricate connection to I∗-statistical
convergence. Notably, we demonstrated that while every I∗-statistically convergent se-
quence is necessarily I∗-statistically pre-Cauchy, the reverse does not universally apply.
To further enrich the theoretical framework, we provided a sufficient condition for an
I∗-statistically pre-Cauchy sequence to achieve I∗-statistical convergence, utilizing the
concept of I∗-lim inf. These findings contribute significantly to the broader understanding
of convergence in the context of fuzzy number sequences and open avenues for future
research in this area.

The future scope of this study includes examining the monotonicity and boundedness
of sequences of fuzzy numbers within the framework of I∗-statistical convergence. Ad-
ditionally, this concept can be extended to explore convergence in the context of double
and triple sequences, broadening the applicability of I∗-statistical convergence. Further
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research could also investigate these convergence properties in various other mathematical
spaces, potentially unveiling new theoretical insights and applications.
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Appendix A. Proof of Theorem 6.

Proof. From Theorem 4, we know that every I∗-statistically convergent sequence is
I∗-statistically Cauchy. Additionally, Theorem 5 establishes that every I∗-statistically
Cauchy sequence is I∗-statistically pre-Cauchy. Therefore, it follows that every I∗-statistically
convergent sequence is also I∗-statistically pre-Cauchy.
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