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Abstract: The estimation of unknown quantities from multiple independent yet non-homogeneous
samples has garnered increasing attention in various fields over the past decade. This interest is
evidenced by the wide range of applications discussed in recent literature. In this study, we propose
a preliminary test estimator for the common mean (µ) with unknown and unequal variances. When
there exists prior information regarding the population mean with consideration that µ might be
equal to the reference value for the population mean, a hypothesis test can be conducted: H0 : µ = µ0

versus H1 : µ ̸= µ0. The initial sample is used to test H0, and if H0 is not rejected, we become more
confident in using our prior information (after the test) to estimate µ. However, if H0 is rejected, the
prior information is discarded. Our simulations indicate that the proposed preliminary test estimator
significantly decreases the mean squared error (MSE) values compared to unbiased estimators such
as the Garybill-Deal (GD) estimator, particularly when µ closely aligns with the hypothesized mean
(µ0). Furthermore, our analysis indicates that the proposed test estimator outperforms the existing
method, particularly in cases with minimal sample sizes. We advocate for its adoption to improve
the accuracy of common mean estimation. Our findings suggest that through careful application to
real meta-analyses, the proposed test estimator shows promising potential.

Keywords: common mean; pretest; shrinkage; meta-analysis
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1. Introduction

As medical knowledge continues to expand rapidly, healthcare providers face sig-
nificant challenges in thoroughly evaluating and analyzing the necessary data to make
well-informed decisions [1–3]. The complexity of these challenges is further heightened
by the variety of findings, presented in different studies, which are sometimes conflicting.
Meta-analysis, along with research synthesis or integration, has become an effective tool for
addressing these issues. This method achieves its objective by applying rigorous statistical
techniques to aggregate the results from multiple individual studies, thereby combining
their findings [2,4]. Additionally, meta-analysis has gained widespread attention across
numerous scientific fields, such as education, social sciences, and medicine. For example, in
education has been used to consolidate research on the effectiveness of coaching in improv-
ing Scholastic Aptitude Test (SAT) scores in both verbal and mathematical sections [5]. In
social sciences, it has been used to synthesize studies on gender differences in quantitative,
verbal, and visual-spatial abilities [6]. In healthcare, meta-analysis has been particularly
valuable during the COVID-19 pandemic, enhancing our understanding of the virus and
informing public health strategies [7,8].
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The challenge of combining two or more unbiased estimators is a common issue in
applied statistics, with significant implications across various fields. A notable example
of this problem occurred when Meier [9] was tasked with making inferences about the
mean albumin level in plasma protein in human subjects using data from four separate
experiments. Similarly, Eberhardt et al. [10] faced a scenario where they needed to draw
conclusions about the mean selenium content in non-fat milk powder by integrating results
from four different methods across four experiments.

Most of the early research on drawing inferences about the common mean (µ) focuses
on point estimation and theoretical decision rules regarding µ. Graybill and Deal were the
first among a few researchers to research about estimating µ [11]. Since then, numerous
works have been building upon and expanding upon their initial work [12–18], along
with the related references. Conversely, Meier [9] developed a method for estimating the
confidence interval for µ. In addition, refs. [19,20] have devised approximate confidence
intervals. The properties of such estimators have accumulated substantial attention in the
literature. Sinha et al. [2] derived an unbiased estimator of the variance for the Graybill-
Deal estimator, and Krishnamoorthy and Moore [21] considered this in the prediction
problem of linear regression.

In some cases, researchers find situations where prior information (θ0) on the mean
population is available, whether through pre-test information or historical data. Pretest or
preliminary tests or shrinkage estimators involve the concept of leveraging preliminary
information to improve parameter estimation accuracy. These estimators work with the idea
of borrowing strength from both sample data and pre-test information, resulting in higher
efficiency and reliability than traditional estimators. Bancroft [22] and Stein [23] introduced
and extensively examined the preliminary test shrinkage estimator. Their method has
influenced numerous advancements and applications in statistics and has established
a basis for the use of shrinkage estimators in contemporary statistical practice [24–26].
Thompson [27] proposed a shrinkage technique given as

ω = qθ0 + (1 − q)θ, (1)

where q = 0 (accept H0), q = 1 (reject H0) and θ0 as prior guess. This was aimed at
improving the current estimator of a parameter θ to estimate the mean, thereby reducing the
mean square error (MSE) of the uniform minimum-variance unbiased estimator (UMVUE)
for the population mean. It has been observed that the shrinkage estimator performs better
than the conventional estimator when the assumed value of q aligns closely with the prior
guess. Consequently, instead of treating q as a constant value in the shrinkage estimator, it
is advisable to regard it as a weight ranging between 0 and 1 [27]. In this context, q can be
viewed as a continuous function dependent on certain pertinent statistics, anticipating that
its value will decrease consistently as the deviation (θ − θ0) from a reference value increases.

This preliminary test has been widely used in statistics [24–26]. Khan et al. [24]
deployed a preliminary test for estimating the mean of a univariate normal population
with an unknown variance. Shih et al. [25] proposed a class of general pretest estimators
for the univariate normal mean which included numerous existing estimators, such as
pretest, shrinkage, Bayes, and empirical Bayes estimators. In the context of meta-analysis,
Taketomi et al. [26] proposed simultaneous estimation of individual means using the
James–Stein shrinkage estimators, which improved upon individual studies’ estimators.
Literature has observed that when prior information is available, shrinkage estimators for
parameters of various distributions tend to outperform standard estimators in terms of
MSE, especially when the estimated value is close to the true value [22,27,28].

The use of prior information in estimating the common mean has several significant
advantages. For example, it allows researchers to leverage significant past knowledge,
which could be from historical data, expert opinion, or preliminary investigations, improv-
ing the accuracy of the estimation process. Secondly, they tend to strike a compromise
between bias and variance, resulting in estimates that are both unbiased and more efficient
than traditional estimators, particularly in circumstances with small sample sizes. However,
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there are limited research studies on point estimation of µ proposing preliminary test-based
estimators. It is therefore, in this study we propose a preliminary test estimator for the
common mean with unknown and unequal variances. In order to find the ideal estimator,
the properties of the proposed preliminary test estimator will be examined, which includes
its theoretical basis and performance-based criteria such as bias and MSE.

2. Background

To define the current problem, we assume there are k independent normal popula-
tions with a common mean (µ), but with unknown and potentially unequal variances
σ2

1 , . . . , σ2
k > 0. We assume we have independent and identically distributed (i.i.d) observa-

tions Xi1, . . . , Xini from N(µ, σ2
i ), i = 1, 2, · · · , k and we define Xi and S2

i as

Xi =
ni

∑
j=1

Xij

ni
, (2)

S2
i =

ni

∑
j=1

(Xij − Xi)
2/(ni − 1), (3)

where Xi ∼ N(µ, σ2
i /ni), (ni − 1)S2

i ∼ σ2
i χ2

ni−1. Note that these statistics {Xi, S2
i , i = 1, 2}

are all mutually independent. Again, it can be noted that {X1, S2
1, X2, S2

2, · · · , Xk, S2
k} are

minimal sufficient statistics for (µ, σ2
1 , σ2

2 , · · · , σ2
k ) but not complete [29]. As a result, one

cannot get the uniformly minimum variance unbiased estimator (UMVUE) if it exists using
the standard Rao-Blackwell theorem on an unbiased estimator for estimating µ. For the
case of k when the population variances are fully known, µ can be readily estimated as

µ̂ =

(
k

∑
i=1

ni

σ2
i

Xi

)
/

(
k

∑
i=1

ni

σ2
i

)
, (4)

Var(µ̂) =
1

∑k
i=1
(
ni/σ2

i
) . (5)

This estimator, µ̂, is the UMVUE, the best linear unbiased estimator (BLUE), and the
maximum likelihood estimator (MLE). In the context of our current problem, where the
population variances are unknown and possibly unequal, the most appealing unbiased
estimator for µ is the Graybill-Deal (GD) estimator [11], which is

µ̂GD =

(
k

∑
i=1

ni

S2
i

Xi

)
/

(
k

∑
i=1

ni

S2
i

)
, (6)

Var(µ̂GD) = E

 k

∑
i=1

(
niσ

2
i

S4
i

)
/

(
k

∑
i=1

ni

S2
i

)2
. (7)

In the case of two samples, GD [11] first demonstrated that an unbiased estimator µ̂GD
in Equation (6) has a lower variance compared to either sample mean, provided that both
sample sizes exceed 10.

Khatri and Shah [30] proposed an exact variance formula for µ̂GD which is complex
and not easily applied. To tackle this inference issue, Meier [9] derived a first-order
approximation of the variance of µ̂GD, given by

Var(µ̂GD) =

[
k

∑
i=1

ni

σ2
i

]−1[
1 + 2

k

∑
i=1

1
ni − 1

ci(1 − ci) + O

(
k

∑
i=1

1

(ni − 1)2

)]
,

where ci =
ni/σ2

i
∑k

j=1 nj/σ2
j

.
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A few years later, Sinha [31] developed an unbiased estimator for the variance of µ̂
that takes the form of a convergent series. A first-order approximation of this estimator is

V̂ar(1)(µ̂GD) =
1

∑k
i=1 ni/s2

i

1 +
k

∑
i=1

4
ni + 1

 ni/s2
i

∑k
j=1 nj/s2

j

−
n2

i /s4
i(

∑k
j=1 nj/s2

j

)2


.

The above estimator is comparable to Meier’s [9] approximate estimator, defined as

V̂ar(2)(µ̂GD) =
1

∑k
i=1 ni/s2

i

1 +
k

∑
i=1

4
ni − 1

 ni/s2
i

∑k
j=1 nj/s2

j

−
n2

i /s4
i(

∑k
j=1 nj/s2

j

)2


.

The “classical” meta-analysis variance estimator, V̂ar(3) is given as

V̂ar(3)(µ̂GD) =
1

∑k
i=1 ni/s2

i

.

Approximate variance estimator proposed by Hartung [32], V̂ar(4) is given as

V̂ar(4)(µ̂GD) =
1

k − 1

k

∑
i=1

ni/s2
i

∑k
j=1 nj/s2

j

(
Xi − µ̂GD

)2.

3. Proposed Preliminary Test Estimator

It is reasonable to test a null hypothesis when uncertain non-sample prior informa-
tion is available. A preliminary test estimator is a two-step process that estimates a key
parameter using the results of a preliminary test. To estimate µ, we consider the hypothesis

H0 : µ = µ0 vs. H1 : µ ̸= µ0. (8)

Our proposed preliminary test estimate for µ is as follows:

µ̂PT =

µ0 , if H0 is accepted

µ̂GD =

(
∑k

i=1
ni
s2

i
Xi

)
/
(

∑k
i=1

ni
s2

i

)
, if H0 is rejected

(9)

where µ̂GD is unbiased estimator of µ. Shih et al. [25] defined a : R 7→ [0, 1] be a test func-
tion with a = 0 (accept H0), a = 1 (reject H0), and 0 < a < 1 (reject H0 with probability a).
For 0 ≤ α1 ≤ α2 ≤ 1, then randomized test is defined as

a(X) =


1 , if |tobs| > tα1/2,n−1,
q(X) , if tα2/2,n−1 < |tobs| ≤ tα1/2,n−1,
0 , if |tobs| ≤ tα2/2,n−1.

The rejection or failure to reject H0 will be based on the t statistic. A standard notation
for a t statistic based on a sample of size n is tobs =

√
n(x̄ − µ0)/s. We can refer to this t

computed from a specific set of data as the observed value of our test statistic, and reject
H0 when |tobs| > tα/2,ν, where ν is n − 1 degrees of freedom and α is Type-I error level. A
test for H0 based on a p-value on the other hand is based on Pobs = P[|tν| > |tobs|], and
we reject H0 at level α if Pobs < α. We let t0,ν ≡ ∞ as usual. Then tν stands for the central
t variable with ν degrees of freedom, and tα/2,ν stands for the upper α/2 percentile of tν.
The general preliminary test estimator [33] can be defined as

µ̂GPT = a(X)µ̂GD + [1 − a(X) ]µ0.
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The estimator can also be written as

µ̂GPT = µ0 + (µ̂GD − µ0 )I (|tobs| > tα1/2,n−1 ) +

q(X)I (tα2/2,n−1 < |tobs| ≤ tα1/2,n−1 ). (10)

In this study, we focus only on the case where α1 = α2 = α. We can define our
proposed preliminary test estimator with unknown variance as

µ̂PT = µ0 + (µ̂GD − µ0 )I (|tran| > tα/2,n−1 ), (11)

where I(·) is the indicator function defined as I(A) = 1 if A is true and I(A) = 0 if A is
false. A random p-value which has a Uni f orm(0, 1) distribution under H0 is defined as
Pran = P[|tν| > |tran|], where tran =

√
n(X̄ − µ0)/s. Most suggested tests for H0 are based

on Pobs and tobs values. To simplify the notation, we will denote Pobs by small p and Pran by
large P. In our context, we have independent t statistics, t1, . . . , tk, and also independent
p-values, P1, . . . , Pk. In the following, we suggest various test procedures for testing µ = µ0
based on suitable combinations of t′is and P′

i s [34]. Depending on the test procedure we use,
the rejection set A will be defined and used to compute the Bias and MSE of the preliminary
test estimator of the common mean µ.

3.1. P-Value Based Exact Tests

Suppose P(1), · · · , P(k) are independent p-values obtained from k continuous distri-
butions of test statistics, then when individual hypothesis H0i is true, Pi is uniformly
distributed over the interval [0, 1]. Testing the joint null hypothesis H0 : µ = µ0 versus
H1 : µ ̸= µ0. Five p-value-based exact tests based on tobs and p-value from k independent
studies as available in the literature are listed below.

3.1.1. Tippett’s test

Suppose P(1), · · · , P(k) are independent and ordered p-values. Then H0 is rejected

if P(1) < α′. If the overall significance level is α then α′ = 1 − (1 − α)
1
k . Interestingly,

this test is equivalent to the test based on MT = max1≤i≤k | ti | suggested by Cohen and
Sackrowitz [35]. This ST = min (P(1), · · · , P(k) ) test was proposed by Tippet et al. [36] also
called the union-intersection.

3.1.2. Wilkinson’s Test

Wilkinson [37] provided a generalization of Tippett’s test, where P(1) ≤ P(2) ≤ · · · ≤
P(k) are ordered p-values with rth the smallest p-value, P(r) as a test statistic. The common
mean null hypothesis H0 : µ = µ0 will be rejected if P(r) < dr, α, where P(r) follows
a beta distribution with parameters r and k − r + 1 under the null hypothesis and dr, α
satisfies Pr (P(r) < dr, α | H0 ) = α. This generates a series of tests for various values of
r = 1, 2, · · · , k.

3.1.3. Inverse Normal Test

Stouffer et al. [38], reported that the Inverse Normal test procedure involves trans-
forming the p-values to the corresponding standard normal distributions. The test statistic
is defined as Z = 1√

k ∑k
i=1 ϕ−1(Pi), where ϕ is the standard normal cumulative distribution

function (CDF). The common mean null hypothesis H0 : µ = µ0 will be rejected if Z < −zα,
where zα denotes the upper α level cut-off point of the standard normal distribution.

3.1.4. Fisher’s Inverse χ2-Test

Fisher [39] noted that the test statistic tF = −2 ∑k
i=1 ln(Pi) = −2ln ∏k

i=1 Pi has a χ2

distribution with 2k degrees of freedom when H0 is true. This procedure uses the ∏k
i=1 Pi to

combine the k independent p-values. The common mean null hypothesis H0 : µ = µ0 will
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be rejected if tF > χ2
2k,α, where χ2

2k,α denotes the upper α critical value of χ2-distribution
with 2k degrees of freedom.

3.1.5. The Logit Test

This exact test procedure which involves transforming each p-value into a logit
was proposed by Mudholker and George [40]. The test statistic is defined as
G = −∑k

i=1 ln (Pi/ [1 − Pi ] ) (3/kπ2 )1/2, where G follows student’s t-distribution with
5k + 4 degrees of freedom. The common mean null hypothesis H0 : µ = µ0 is rejected if
G > z1−α.

3.2. Exact Tests
3.2.1. Modified t

Fairweather [41] suggested using a weighted linear combination of the t′is namely,

T1 = ∑k
i=1 w1i | ti |, where w1i =

(Var(ti))
−1

∑k
i=1(Var(ti))

−1 , with Var (| ti | ) = [ (νi (νi − 2 )−1 )−

( [Γ
(

νi−1
2

)√
νi ]
[
Γ
( νi

2
)√

π
]−1

)2 ]. The null hypothesis H0 : µ = µ0 is rejected if T1 > d1α,
where Pr[T1 > d1α | H0] = α with d1α computed by simulation.

3.2.2. Modified F

Jordan and Krishnamoorthy [42] suggested using linear combinations of the Fi’s

namely, T2 = ∑k
i=1 w2iFi, where w2i =

(Var (Fi ) )
−1

∑k
i=1(Var(Fi))

−1 , with Var (Fi ) = [2ν2
i (νi − 1 ) ] [ (νi −

2 )2(νi − 4) ]−1 for νi > 4. The null hypothesis H0 : µ = µ0 will be rejected if T2 > d2α,
where Pr[T2 > d2α | H0] = α with d2α computed by simulation.

3.3. Properties of the Proposed Preliminary Test Estimator
3.3.1. Bias

Bias of the proposed preliminary test estimator is equal to E [µ̂PT − µ ], where

E(µ̂PT) = E [µ̂PT ]− µ

= E [µ0 + (µ̂GD − µ0 )I (A ) ]− µ

= µ0E [(1 − I (A )) ] + E [µ̂GDI (A ) ]− µ. (12)

Given that the rejection of H0 and µ̂GD are dependent upon sample mean and sample
variance Xi and S2

i , respectively, it may be concluded that µ̂GD and I(·) are not mutually
independent.

3.3.2. Mean Square Error

The MSE of µ̂PT can be expressed as

MSE(µ̂PT) = E[(µ̂PT − µ)2]

= Var(µ̂PT − µ) + (E[µ̂PT − µ])2

= Var(µ̂PT) + (µ0E[(1 − I(A))] + E[µ̂GDI(A)]− µ)2

= µ2
0Var[I(Ac)] + Var[µ̂GDI(A)] + (µ0E[I(Ac)] + E[µ̂GDI(A)]− µ)2. (13)

4. Simulation Study
Bias and Mean Squared Error

We will now assess the effectiveness of the proposed preliminary test estimator (µ̂PT)
performs in terms of bias and MSE. To achieve a high level of accuracy, each simulated bias
and MSE value was calculated using Q = 105 replications, resulting in an exceptionally
large simulation. It should be noted that MSE and relative efficiency (RE) of the proposed
preliminary test estimator are functions of n1, n2 and δ = σ2

1 /σ2
2 . Among these parameters,

n represents the sample size, and δ is the estimated value of the parameter used in the
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proposed preliminary test estimator. These extensive computations were carried out using
statistical software R [43]. The procedure for our proposed preliminary test estimator of
common mean is defined as:

1. Select two positive integers n1 and n2.
2. Generate independent random observations X1i, i = 1, . . . , n1 and X2i, i = 1, . . . , n2.
3. Test H0 : µ = µ0 versus H1 : µ ̸= µ0 at significance level α using p-value and exact

based tests in Section 3 for H0 versus H1.
4. If we fail to reject H0, we take the estimator of µ̂PT = µ0. However, if H0 is rejected

we take the estimator of µ̂PT as µ̂GD.
5. The effectiveness of this proposed estimator is assessed using the simulated bias as

Q−1 ∑Q
q
(
µ̂q − µ

)
and simulated MSE as Q−1 ∑Q

q
(
µ̂q − µ

)2.

The expression provided in Equation (12) for bias, can be computed for various values of
δ = (0.6, 1.0, 1.2 and 2.0), µ = (−1.0, 0.0 and 1.0), and n1, n2 = (10, 15, 20, 25, 50, 60 and 100).
Without loss of generality, in our computed simulated bias and MSE, we set α = 0.05, µ0 = 0
and σ2

2 = 1.

Remark 1. Tables 1–3 provide some illustrative values. Generally, it is observed that as δ increases,
the bias increases in magnitude for unequal sample sizes. Ultimately, for a value of δ close to 1, the
bias approaches zero. Furthermore, the comparison of tables reveals that as the sample size increases,
the magnitude of bias decreases. Furthermore, as µ deviates further from µ0, the bias becomes larger
and is dependent on n2. In particular, when n > 25 and δ < 2, the bias of our proposed test
estimator appears to approach zero. Furthermore, as µ deviates further from µ0, the MSE becomes
larger and independent on n2 when µ = µ0.

Remark 2. Tables 1–3 illustrate the changes in MSE with respect to both δ and sample size.
Specifically, an increase in δ leads to a corresponding increase in MSE. Furthermore, the comparison
across the tables shows that as the sample size grows, the MSE decreases accordingly. The minimum
MSE is consistently observed when the estimated value is close to the true value µ = µ0, regardless
of the test performed. It is also noteworthy that the MSE values are nearly identical across all
p-value-based tests, except for the Inverse Normal test. On the other hand, the modified exact tests
tend to produce higher MSE values compared to their P-value-based counterparts.

Remark 3. To evaluate the performance of the proposed preliminary test estimator (µ̂PT) in compar-
ison to the conventional single-stage estimator (µ̂GD) using equal sample sizes (n1 = n2 = n) and
a fixed significance level (α = 0.05), it is observed that as the sample size (n) increases, the MSE
generally decreases. Notably, when µ is closer to the hypothesized mean (µ0), the preliminary test
estimator outperforms the unbiased estimator across various values of δ. This range of values where
the preliminary test estimator excels can be referred to as its effective interval. After reaching a mini-
mum at µ = 0, a slight rise in MSE is observed as µ deviates further from µ0. This trend is evident
in the results depicted in Figure 1a,b, indicating that for δ = 1.2 and δ = 0.6, the proposed estimator
performs better than the unbiased estimator when −0.2 ≤ µ ≤ 0.2. Conversely, for δ = 1.2 and
δ = 0.6, the proposed estimator outperforms the unbiased estimator when −0.12 ≤ µ ≤ 0.12 and
−0.08 ≤ µ ≤ 0.08, respectively (as shown in Figure 1c,e for n = 30). Again, for δ = 1.2 and
δ = 0.6, the proposed estimator outperforms the unbiased estimator when −0.12 ≤ µ ≤ 0.12
and −0.06 ≤ µ ≤ 0.06, respectively (as shown in Figure 1d,f for n = 60). The preliminary test
estimator, employing Tippett, Wilkinson (r = 2), Fisher’s inverse χ2, logit, and modified t tests,
demonstrates satisfactory performance within its effective interval, as indicated by MSE values.
These findings are consistent with the conclusions drawn by Kifle et al. (2021) regarding the efficacy
of Fisher’s inverse χ2 and modified t tests across various sample sizes and significance levels [33].
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Table 1. Simulated bias (MSE) of the proposed estimator µ̂PT for different choices of δ (n < 25).

δ µ (n1, n2) Tippett Wilkinson
r = 2

Inverse
Normal Fisher Logit Modified

t
Modified
F

0.6 −1.0 (10, 10) −0.0013 −0.0325 −0.0010 −0.0036 −0.0027 0.0006 0.0028
(0.0105) (0.0414) (0.0067) (0.0078) (0.0079) (0.0079) (0.0066)

(15, 15) 0.0003 −0.0386 −0.0014 −0.0002 −0.0013 0.0032 0.0004
(0.0111) (0.0431) (0.0067) (0.0074) (0.0076) (0.0080) (0.0067)

(20, 20) −0.1368 −0.0344 −0.0028 −0.0018 0.0012 0.0017 0.0011
(0.0989) (0.0431) (0.0067) (0.0075) (0.0073) (0.0078) (0.0067)

0.0 (10, 10) 0.0004 0.0013 −0.0003 −0.0018 −0.0014 −0.0018 −0.0021
(0.0003) (0.0003) (0.0063) (0.0003) (0.0003) (0.0005) (0.0058)

(15, 15) 0.0001 0.0007 0.0001 0.0015 0.0000 0.0003 0.0021
(0.0003) (0.0003) (0.0063) (0.0003) (0.0003) (0.0005) (0.0058)

(20, 20) 0.0219 0.0004 0.0009 −0.0001 0.0001 −0.0004 0.0004
(0.0330) (0.0003) (0.0063) (0.0003) (0.0003) (0.0006) (0.0058)

1.0 (10, 10) −0.0002 0.0011 −0.0012 −0.0004 −0.0029 0.0002 0.0003
(0.0067) (0.0075) (0.0067) (0.0067) (0.0067) (0.0067) (0.0067)

(15, 15) −0.0028 0.0019 −0.0002 0.0008 −0.0038 0.0000 −0.0003
(0.0066) (0.0076) (0.0067) (0.0067) (0.0067) (0.0066) (0.0067)

(20, 20) −0.0174 0.0017 0.0018 −0.0015 −0.0001 −0.0011 0.0011
(0.0416) (0.0085) (0.0067) (0.0067) (0.0067) (0.0067) (0.0066)

1.0 −1.0 (10, 10) −0.0116 −0.0362 −0.0001 −0.0068 −0.0051 −0.0103 −0.0016
(0.0429) (0.0540) (0.0110) (0.0195) (0.0186) (0.0330) (0.0114)

(15, 15) −0.0206 −0.0346 −0.0044 −0.0069 −0.0002 −0.0072 −0.0011
(0.0397) (0.0532) (0.0111) (0.0195) (0.0181) (0.0295) (0.0112)

(20, 20) −0.2090 −0.0375 0.0020 −0.0059 −0.0008 −0.0075 0.0007
(0.1394) (0.0536) (0.0111) (0.0209) (0.0187) (0.0296) (0.0111)

0.0 (10, 10) 0.0016 −0.0030 −0.0009 −0.0007 0.0007 −0.0026 −0.0021
(0.0005) (0.0005) (0.0106) (0.0004) (0.0004) (0.0009) (0.0092)

(15, 15) 0.0003 −0.0002 0.0024 0.0003 −0.0009 0.0035 −0.0014
(0.0005) (0.0005) (0.0105) (0.0004) (0.0004) (0.0009) (0.0092)

(20, 20) 0.0746 0.0026 −0.0001 0.0006 −0.0006 0.0006 −0.0010
(0.1027) (0.0005) (0.0105) (0.0005) (0.0004) (0.0009) (0.0092)

1.0 (10, 10) −0.0021 −0.0006 0.0000 0.0016 0.0004 0.0019 −0.0031
(0.0116) (0.0121) (0.0111) (0.0111) (0.0111) (0.0114) (0.0111)

(15, 15) −0.0055 −0.0016 −0.0010 0.0027 0.0004 0.0034 −0.0029
(0.0111) (0.0121) (0.0111) (0.0116) (0.0111) (0.0114) (0.0112)

(20, 20) −0.0868 0.0023 0.0038 −0.0019 0.0004 −0.0020 −0.0033
(0.1464) (0.0122) (0.0111) (0.0111) (0.0111) (0.0113) (0.0111)

2.0 −1.0 (10, 10) −0.0770 −0.0643 0.0012 −0.0297 −0.0292 −0.0798 −0.0024
(0.1472) (0.1301) (0.0222) (0.0805) (0.0738) (0.1763) (0.0289)

(15, 15) −0.0835 −0.0624 0.0021 −0.0295 −0.0216 −0.0727 −0.0026
(0.1475) (0.1311) (0.0221) (0.0712) (0.0763) (0.1786) (0.0271)

(20, 20) −0.2676 −0.0461 0.0008 −0.0324 −0.0307 −0.0726 −0.0007
(0.1764) (0.1277) (0.0221) (0.0720) (0.0730) (0.1830) (0.0273)

0.0 (10, 10) −0.0028 0.0005 0.0044 0.0000 0.0011 −0.0045 0.0003
(0.0009) (0.0009) (0.0210) (0.0009) (0.0008) (0.0019) (0.0169)

(15, 15) −0.0001 0.0020 0.0033 −0.0014 −0.0012 0.0032 0.0038
(0.0009) (0.0010) (0.0210) (0.0009) (0.0009) (0.0018) (0.0170)

(20, 20) 0.1862 0.0027 −0.0068 0.0002 −0.0002 0.0032 −0.0012
(0.2115) (0.0009) (0.0210) (0.0008) (0.0008) (0.0018) (0.0170)

1.0 (10, 10) 0.0015 −0.0005 −0.0027 0.0038 −0.0033 0.0058 −0.0029
(0.0279) (0.0304) (0.0222) (0.0226) (0.0225) (0.0537) (0.0221)

(15, 15) −0.0035 −0.0003 −0.0006 0.0007 0.0026 0.0049 −0.0003
(0.0301) (0.0299) (0.0222) (0.0226) (0.0227) (0.0484) (0.0222)

(20, 20) −0.1904 0.0075 0.0026 −0.0035 −0.0053 0.0096 0.0000
(0.2784) (0.0291) (0.0222) (0.0228) (0.0229) (0.0470) (0.0227)
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Table 2. Simulated bias (MSE) of the proposed estimator µ̂PT for different choices of δ (n > 25).

δ µ (n1, n2) Tippett Wilkinson
r = 2

Inverse
Normal Fisher Logit Modified

t
Modified
F

0.6 −1.0 (25, 25) 0.0007 −0.0015 −0.0018 −0.0030 −0.0005 −0.0002 −0.0002
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

(50, 50) −0.0012 0.0012 −0.0009 0.0003 0.0006 −0.0006 −0.0014
(0.0017) (0.0018) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

(100, 100) 0.0024 0.0018 0.0010 0.0011 −0.0016 −0.0010 −0.0008
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

0.0 (25, 25) −0.0002 −0.0001 −0.0005 −0.0007 0.0001 0.0011 0.0009
(0.0001) (0.0001) (0.0016) (0.0001) (0.0001) (0.0001) (0.0016)

(50, 50) −0.0004 0.0008 −0.0003 −0.0008 0.0004 −0.0001 −0.0001
(0.0001) (0.0001) (0.0016) (0.0001) (0.0001) (0.0001) (0.0016)

(100, 100) 0.0001 −0.0004 0.0012 0.0001 −0.0002 −0.0001 0.0015
(0.0001) (0.0001) (0.0016) (0.0001) (0.0001) (0.0001) (0.0016)

1.0 (25, 25) −0.0010 −0.0002 0.0000 0.0009 0.0001 0.0006 −0.0013
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

(50, 50) −0.0012 0.0004 −0.0004 0.0000 −0.0004 −0.0003 0.0019
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

(100, 100) 0.0002 0.0016 −0.0018 0.0013 −0.0008 0.0015 0.0007
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

1.0 −1.0 (25, 25) 0.0001 −0.0011 −0.0019 0.0007 0.0023 0.0022 0.0010
(0.0029) (0.0031) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029)

(50, 50) −0.0010 −0.0036 −0.0024 −0.0005 0.0007 −0.0002 −0.0027
(0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029)

(100, 100) −0.0014 −0.0015 0.0003 0.0026 0.0003 0.0001 −0.0005
(0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029)

0.0 (25, 25) 0.0002 −0.0005 0.0002 −0.0001 −0.0006 0.0005 0.0006
(0.0001) (0.0001) (0.0027) (0.0001) (0.0001) (0.0002) (0.0027)

(50, 50) 0.0002 0.0007 0.0013 −0.0005 −0.0010 0.0015 −0.0050
(0.0001) (0.0001) (0.0027) (0.0001) (0.0001) (0.0002) (0.0027)

(100, 100) −0.0010 0.0000 −0.0012 0.0005 0.0013 0.0002 −0.0013
(0.0001) (0.0001) (0.0027) (0.0001) (0.0001) (0.0002) (0.0027)

1.0 (25, 25) −0.0020 0.0004 −0.0008 0.0011 0.0005 −0.0012 −0.0001
(0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029)

(50, 50) 0.0001 −0.0025 −0.0007 −0.0001 0.0009 0.0003 −0.0016
(0.0028) (0.0029) (0.0029) (0.0029) (0.0028) (0.0029) (0.0029)

(100, 100) 0.0003 −0.0018 0.0017 −0.0014 −0.0006 −0.0007 0.0017
(0.0029) (0.0029) (0.0029) (0.0028) (0.0028) (0.0029) (0.0029)

2.0 −1.0 (25, 25) −0.0028 −0.0015 −0.0002 0.0018 −0.0014 −0.0002 0.0017
(0.0057) (0.0061) (0.0057) (0.0057) (0.0057) (0.0065) (0.0057)

(50, 50) −0.0029 0.0022 0.0006 0.0006 −0.0026 0.0011 0.0011
(0.0057) (0.0059) (0.0057) (0.0057) (0.0057) (0.0064) (0.0057)

(100, 100) 0.0007 −0.0007 −0.0009 0.0022 0.0037 −0.0027 −0.0029
(0.0057) (0.0060) (0.0057) (0.0057) (0.0057) (0.0064) (0.0057)

0.0 (25, 25) 0.0010 0.0012 0.0016 0.0009 −0.0004 −0.0014 0.0003
(0.0003) (0.0003) (0.0054) (0.0003) (0.0003) (0.0004) (0.0052)

(50, 50) 0.0008 −0.0002 −0.0017 −0.0010 0.0010 −0.0025 −0.0019
(0.0003) (0.0003) (0.0054) (0.0003) (0.0003) (0.0004) (0.0051)

(100, 100) −0.0011 −0.0010 0.0006 0.0000 0.0008 −0.0001 −0.0031
(0.0003) (0.0003) (0.0054) (0.0003) (0.0003) (0.0004) (0.0051)

1.0 (25, 25) −0.0021 0.0015 −0.0017 −0.0005 0.0022 −0.0040 0.0005
(0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057)

(50, 50) 0.0018 0.0001 0.0002 −0.0018 0.0034 −0.0012 0.0006
(0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057)

(100, 100) −0.0028 0.0023 −0.0012 0.0002 0.0000 −0.0024 −0.0003
(0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057)
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Table 3. Simulated bias (MSE) of the proposed estimator µ̂PT for different choices of δ (n1 ̸= n2).

δ µ (n1, n2) Tippett Wilkinson
r = 2

Inverse
Normal Fisher Logit Modified

t
Modified
F

0.6 −1.0 (10, 25) 0.0018 −0.0380 −0.0004 −0.0007 0.0005 0.0016 0.0043
(0.0070) (0.0422) (0.0071) (0.0071) (0.0071) (0.01) (0.0135)

(10, 50) 0.0003 −0.0373 0.0022 0.0004 0.0007 0.0018 0.0039
(0.0070) (0.0410) (0.0071) (0.0070) (0.0071) (0.0100) (0.0133)

(25, 10) −0.0035 −0.0016 0.0009 0.0057 −0.0003 −0.0068 0.0013
(0.0143) (0.0173) (0.0133) (0.0133) (0.0134) (0.0358) (0.0172)

0.0 (10, 25) 0.0014 0.0010 −0.0015 0.0005 0.0013 0.0015 0.0030
(0.0003) (0.0003) (0.0067) (0.0003) (0.0003) (0.0007) (0.0104)

(10, 50) −0.0005 0.0010 0.0003 0.0003 −0.0003 −0.0006 −0.0069
(0.0003) (0.0003) (0.0067) (0.0003) (0.0003) (0.0007) (0.0105)

(25, 10) −0.0012 −0.0004 0.0030 0.0006 0.0002 −0.0004 −0.0034
(0.0005) (0.0005) (0.0127) (0.0005) (0.0005) (0.0012) (0.0132)

1.0 (10, 25) 0.0010 −0.0006 0.0010 0.0004 −0.0033 0.0004 −0.0001
(0.0070) (0.0082) (0.0071) (0.0071) (0.0070) (0.0100) (0.0133)

(10, 50) −0.0003 0.0037 −0.0019 0.0006 0.0025 0.0012 0.0005
(0.0071) (0.0079) (0.0071) (0.007) (0.0070) (0.0100) (0.0134)

(25, 10) −0.0006 0.0005 0.0006 0.0009 −0.0003 −0.0020 −0.0016
(0.0133) (0.0134) (0.0133) (0.0133) (0.0133) (0.0172) (0.0171)

1.0 −1.0 (10, 25) −0.0012 −0.0403 0.0033 −0.0007 −0.0980 −0.0044 −0.0078
(0.0142) (0.0476) (0.0117) (0.0121) (0.0123) (0.0179) (0.0234)

(10, 50) 0.0026 −0.0343 −0.0002 −0.0005 −0.0964 0.0013 0.0039
(0.0143) (0.0466) (0.0118) (0.0122) (0.0122) (0.0176) (0.0235)

(25, 10) −0.0012 −0.0094 −0.0032 −0.0031 −0.0010 −0.0499 0.0015
(0.0240) (0.0525) (0.0221) (0.0226) (0.0227) (0.1254) (0.0309)

0.0 (10, 25) 0.0009 −0.0006 −0.0003 −0.0001 0.0093 0.0032 −0.0017
(0.0005) (0.0006) (0.0112) (0.0005) (0.0005) (0.0011) (0.0164)

(10, 50) 0.0004 −0.0005 0.0003 0.0009 0.0038 −0.0018 0.0001
(0.0005) (0.0005) (0.0112) (0.0005) (0.0005) (0.0011) (0.0162)

(25, 10) 0.0009 0.0014 −0.0026 0.0012 0.0015 −0.0033 0.0010
(0.0009) (0.0009) (0.0209) (0.0008) (0.0008) (0.0018) (0.0203)

1.0 (10, 25) −0.0030 0.0003 −0.0015 −0.0018 −0.0033 −0.0002 0.0084
(0.0117) (0.0122) (0.0117) (0.0118) (0.0117) (0.0167) (0.0222)

(10, 50) −0.0002 0.0041 −0.0018 −0.0010 0.0025 −0.0012 0.0010
(0.0118) (0.0126) (0.0117) (0.0118) (0.0117) (0.0166) (0.0223)

(25, 10) 0.0055 −0.0030 −0.0011 0.0035 0.0046 −0.0004 −0.0011
(0.0224) (0.0239) (0.0222) (0.0221) (0.0223) (0.0367) (0.0286)

2.0 −1.0 (10, 25) −0.0204 −0.0374 −0.0004 −0.0157 −0.0092 −0.0181 0.0036
(0.0641) (0.0706) (0.0235) (0.0375) (0.0346) (0.0797) (0.0705)

(10, 50) −0.0251 −0.0396 −0.0012 −0.0062 −0.0130 −0.0190 −0.0013
(0.0638) (0.0671) (0.0236) (0.0372) (0.0352) (0.0805) (0.0713)

(25, 10) −0.0008 −0.0688 0.0003 0.0142 −0.0092 −0.1897 −0.0054
(0.0477) (0.2115) (0.0444) (0.0467) (0.0476) (0.3748) (0.0889)

0.0 (10, 25) 0.0060 0.0011 0.0019 0.0007 −0.0009 0.0000 −0.0001
(0.0010) (0.0011) (0.0224) (0.0010) (0.0011) (0.0022) (0.0282)

(10, 50) −0.0016 0.0016 −0.0018 −0.0007 0.0019 −0.0035 −0.0054
(0.0010) (0.0010) (0.0225) (0.0011) (0.0010) (0.0024) (0.0285)

(25, 10) 0.0001 −0.0002 0.0006 −0.0004 0.0019 0.0046 0.0018
(0.0016) (0.0018) (0.0422) (0.0017) (0.0017) (0.0037) (0.0341)

1.0 (10, 25) −0.0031 0.0060 −0.0025 −0.0013 −0.0059 −0.0029 0.0047
(0.0238) (0.0243) (0.0234) (0.0235) (0.0235) (0.0349) (0.0489)

(10, 50) 0.0012 −0.0016 0.0019 0.0031 −0.0013 −0.0020 0.0045
(0.0235) (0.0254) (0.0235) (0.0236) (0.0235) (0.0353) (0.0498)

(25, 10) 0.0011 0.0069 0.0027 0.0047 −0.0013 0.0642 0.0008
(0.0445) (0.0982) (0.0444) (0.0447) (0.0446) (0.2225) (0.0619)
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(c) (d)
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Figure 1. Efficiency of estimator µ̂PT based on p-value and modified exact tests with respect to µ̂GD.

5. Application in Biological Research

To demonstrate the practical applicability of the proposed preliminary test estimator,
we analyzed data from four experiments used to estimate the percentage of albumin in
plasma protein of normal human subjects. This dataset is reported in Meier [9] and appears
in Table 4. For this dataset, previous studies focusing on the test problem [44,45], have
compared the various test procedures for testing H1 : µ = 59.50 versus H2 : µ ̸= 59.50.

Table 4. Albumin in plasma protein.

Experiment ni Mean Variance

A 12 62.30 12.99
B 15 60.30 7.84
C 7 59.50 33.43
D 16 61.50 18.51

In our scenario, we could consider 59.50 as our non-sample prior information and
apply our proposed preliminary test estimator to address this issue. According to the
findings presented in Table 5, the estimated mean (µ̂PT) derived from p-value based tests
(including Tippett’s, Wilkinson (r = 3 and r = 4), Inverse normal, and Fisher’s tests)
notably integrates the non-sample prior information.
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Table 5. The proposed test estimator for albumin in plasma protein with µ0 = 59.50.

µ̂GD µ̂T
PT µ̂

W(r=2)
PT µ̂

W(r=3)
PT µ̂

W(r=4)
PT µ̂IN

PT µ̂F
PT µ̂L

PT µ̂Mt
PT µ̂MF

PT

60.99 59.5 60.99 59.50 59.50 59.50 59.50 60.99 60.99 60.99

T: Tippett’s test, W: Wilkinson’s test, IN: Inverse normal test, F: Fisher’s inverse χ2-test. L: The logit test, Mt:
Modified t test, MF: Modified F test.

In our second application of the proposed preliminary test estimator, we analyzed
the data from four experiments about non-fat milk powder. This data set is reported by
Eberhardt et al. [10] and appears in Table 6. We can compute values of µPT for different
values of µ0 with fixed sampling values, based on P-value and modified exact tests. The
resulting values are shown in Table 7.

Table 6. Selenium in non-fat milk powder.

Methods ni Mean Variance

Atomic absorption spectrometry 8 105.00 85.71
Neutron activation:
(1.) Instrumental 12 109.75 20.75
(2.) Radiochemical 14 109.50 2.73
Isotope dilution mass spectrometry 8 113.25 33.64

The findings presented in Table 7 suggest that when µ0 is below 110.00, µ̂PT = µ̂GD.
However, when µ0 falls within the range of 110.00 to 110.50, tests including Tippett’s,
Wilkinson’s (r = 2, r = 3, and r = 4), Fisher’s, and the logit tests do not reject the null
hypothesis (H0), indicating an estimated common mean (µ) of equal to 110.00, whereas
other tests reject H0, estimating the common mean µ equal to 109.60. For µ0 = 111.00, tests
based on Wilkinson’s (r = 2 and r = 3) and the modified F tests also fail to reject H0, with
an estimated µ equal to 110.00. Both the Inverse normal test and the Modified t test accepted
the null hypothesis for various values of µ0. This may be because the Inverse normal test
transforms p-values into z-scores and combines them, whereas the Modified t test adjusts
the traditional t test procedure to address specific issues such as heteroscedasticity or small
sample sizes.

Table 7. The proposed test estimator for selenium in non-fat milk powder for various values of µ0.

µ0 µ̂GD µ̂T
PT µ̂

W(r=2)
PT µ̂

W(r=3)
PT µ̂

W(r=4)
PT µ̂IN

PT µ̂F
PT µ̂L

PT µ̂Mt
PT µ̂MF

PT

90.00 109.60 109.60 109.60 109.60 109.60 109.60 109.60 109.60 109.60 109.60
100.00 109.60 109.60 109.60 109.60 109.60 109.60 109.60 109.60 109.60 109.60
110.00 109.60 110.00 110.00 110.00 110.00 109.60 110.00 110.00 109.60 109.60
110.50 109.60 110.50 110.50 110.50 110.50 109.60 110.50 110.50 109.60 109.60
111.00 109.60 109.60 111.00 111.00 109.60 109.60 109.60 109.60 109.60 111.00

T: Tippett’s test, W: Wilkinson’s test, IN: Inverse normal test, F: Fisher’s inverse χ2-test. L: The logit test, Mt:
Modified t test, MF: Modified F test.

From the above results, we do not intend to make any broad conclusions here, but our
simulation results suggest that our proposed preliminary test estimator based on Tippett’s,
Wilkinson’s (r = 2, r = 3, and r = 4), Fisher’s, and the logit tests are feasible and could be
applied to this specific case if prior information about the population mean is available.

6. Conclusions

The past decade has witnessed increased interest in estimating unknown quantities
using data from multiple independent yet non-homogeneous samples. This approach finds
application across various domains, as evidenced by the diverse range of applications
discussed in the most recent book by Sinah et al. [2]. In this study, we introduce a
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preliminary test estimator that integrates non-sample prior information. Our simulations
indicate that this proposed estimator exhibits distinct advantages in certain scenarios,
particularly when dealing with very small sample sizes and situations where σ2

2 exceeds σ2
1 .

Notably, the proposed estimator significantly reduces MSE values compared to traditional
unbiased estimators, especially when µ is in proximity to µ0. Moreover, the performance
of the proposed estimator, when based on Tippett’s, Wilkinson’s (r = 2, r = 3, and r = 4),
Fisher’s, and logit tests, surpasses that of µ̂GD, particularly in cases involving very small
sample sizes. For substantial sample sizes, the effectiveness of the suggested estimator,
deploying Inverse normal and modified F tests, appeared to demonstrate consistent and
dependable performance, MSE discrepancy of less than 0.02 compared to the MSE of the
unbiased estimator. Consequently, we advocate for the adoption of the proposed estimator
to enhance the accuracy of µ estimation. Nevertheless, no universally optimal estimator
performs best across all scenarios. Consequently, it becomes crucial to select an appropriate
estimator tailored to each specific scenario. The decision on which estimator to employ
relies on the objectives of the research, making it challenging to devise a purely statistical
strategy for selection. Our findings in this article suggest that through careful application
to real meta-analyses, the proposed estimator exhibits promising potential.

This article primarily considered the scenario under the general preliminary test
estimator whereby α1 = α2 = α. Extensions of this work could explore cases where α1 = 0
and α2 = 1 through the introduction of a randomized test, where the probability function
q(·) is treated as a shrinkage parameter. Consequently, the proposed estimator would
transition to a non-randomized form [25]. Additionally, it’s pertinent to highlight that this
study focuses on the univariate common mean of multiple normal populations. Future
extensions could broaden the scope to encompass multiple responses, such as bivariate
common mean.
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