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Abstract: This paper explores the application of automated reasoning tools, specifically
those implemented in GeoGebra Discovery, to the perimeter-area inequality in triangles.
Focusing on the computational complex and real algebraic geometry methods behind
these tools, this study analyzes a geometric construction involving a triangle with arbitrary
side lengths and area, investigating the automated derivation of the relationship between
the area and perimeter of a triangle, and showing that only equilateral triangles satisfy
the exact perimeter-area equality. The main contribution of this work is to describe the
challenges, and potential ways to approach their solutions, still posed by the use of such
automated, symbolic computation, methods in dynamic geometry, in particular concerning
the discovery of loci of points that satisfy specific geometric conditions, suggesting relevant
improvements for the future development of these symbolic AI-based educational tools
in geometry.

Keywords: perimeter-area inequality; triangle inequality; GeoGebra Discovery; Maple;
computer algebra system; automatic reasoning tools; locus computation; dynamic geometry
software

MSC: 51M04; 14Q10; 14P05

1. Introduction
The aim of this work is to present and analyze some of the issues that arise when

approaching Euclidean geometry problems by means of the computational algebraic geom-
etry algorithms that are behind the automated reasoning (aka ART, in what follows) tools
of the popular, freely available, dynamic mathematics software GeoGebra (see [1]).

We start with a quite simple construction: a triangle ABC, with side lengths a = BC,
b = AC, and c = AB. In addition, we consider the length h = CD as the altitude of
the triangle from the vertex C to the opposite side AB, where point D is the foot of the
perpendicular drop from C to AB (Figure 1). Our investigation will revolve around the
following problem:

Problem 1. What is the relationship between the area and the perimeter of a generic triangle?

More precisely, in this work we address, through the automated reasoning tools we
have developed in GeoGebra, and expanded in the fork, experimental version GeoGebra
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Discovery (aka GGD, in what follows) (see [2]), the discovery of the general inequality
that holds between these two magnitudes (area, perimeter), that is, one that applies to
any Euclidean triangle, and, as our main objective, to analyze for which triangles the
corresponding equality holds.

Let us emphasize here that the goal of our work is not to contribute to the solution of
Problem 1, a classical, well-known question, as we will document in the next paragraphs,
but rather to use this elementary context to experiment, understand, and exhibit mathemat-
ical solutions to singular issues that arise in some special cases, concerning the performance
of these GGD automated reasoning tools.

Figure 1. The basic construction for a generic triangle in GeoGebra.

Tools that are summarily introduced in Sections 2 and 2.1, mentioning that presently
they include not only computer algebra algorithms to approach geometric queries through
complex algebraic geometry methods, as is the case of the basic GeoGebra-ART tools [1],
but also real geometry algorithms that can deal with algebraic inequalities through real
quantifier elimination. In particular, we will exemplify in that Section their performance by
asking GGD to answer Problem 1. GGD immediately outputs (less than 10 s using the GGD
app GGD–2024Nov05 version, based on GeoGebra Classic 5.0.641.0-d and on the software
Tarski [3], version 1.37, 19 October 2023), on a personal laptop, that (a + b + c)2 ≥ 6

√
3 ch,

see Figure 1) is the perimeter-area inequality.
We consider that this inequality is both non-trivial and well known to geometers.

Thus, it appears as inequality 4.2 in the classical book [4] (where we refer the interested
reader to find a “human-made” approach, and further references on this topic), which
corresponds to the perimeter-area inequality that GGD ART has quickly discovered. In this
book [4], the inequality is traced back to H. Hadwiger [5] and to L.A. Santaló [6]. But in the
realm of classic plane geometry, it is often difficult to pursue a geometric statement up to its
authentic origins. Indeed, [5] is not exactly the perimeter-area inequality, but a refinement,
and [6] provides proof of this inequality in the context of the isoperimetric inequality, which
is, in fact, another form of stating the perimeter-area inequality for triangles.

Detailed, basic information about the classic isoperimetric inequality, formulated, for
example, as “among all curves in the plane with a given perimeter, find the one enclosing
the greatest area”, appears in Chapter 18, pp. 104–108 (https://doi.org/10.5948/UPO9
780883859537.020 (accessed on 1 January 2025)) of [7]. Likewise, Chapter 3, pp. 13–17
(https://doi.org/10.5948/UPO9780883859537.005 (accessed on 1 January 2025)), of the
same book, brings information about this inequality for the case of triangles. Moreover, we
can remark here that the isoperimetric inequality has attracted a lot of interest in various
forms from ancient times, and we can connect the specific case of triangles to the work by

 https://doi.org/10.5948/UPO9780883859537.020
 https://doi.org/10.5948/UPO9780883859537.020
https://doi.org/10.5948/UPO9780883859537.005
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Zenodorus on the polygons that maximize their areas for a fixed perimeter [8]. All these
illustrious precedents contribute, in some sense, to support our appreciation of the interest
in exemplifying the approach to this inequality with automated reasoning tools.

Although there is now an extensive body of literature on computational methods for
proving geometric statements (see, for example, [9,10]), our contribution stands out in two
key aspects. First, we address the perimeter-area inequality and explore the equality case
entirely through automated means. Second, we achieve this using GeoGebra Discovery,
a widely accessible application available even on smartphones. Second, we analyze the
mathematical, intrinsic, reasons related to the algebraic geometry framework that are
behind the apparent inconsistencies or counterintuitive outputs that these automated
methods produce in some singular statements, such as in this perimeter-area equality.

This second goal can be perceived as part of the ongoing work to enhance the algo-
rithmic approaches implemented in GeoGebra Discovery, trying to improve the outputs
that can appear when dealing with inputs that involve real algebraic geometry issues
(as in this case, dealing with segment lengths), while addressing them with much better
performing, complex algebraic geometry algorithms that GeoGebra Discovery uses for
locus computation.

In fact, it is worth noting that, in general, GGD-ART uses the Relation(F,G) command
for finding the ratio m = F/G between two geometric objects or expressions, and this ratio
is obtained by performing first a standard elimination over the m variable of the ideal gen-
erated by the construction equations and by F − m · G = 0. The output of such elimination
is a collection of equations generating the elimination ideal. This set of equations defines
the constraints that must be satisfied by the possible values of the ratio m (e.g., m2 − 1 = 0,
thus m = 1 or m = −1). But, if the elimination does not yield a sound result, a real
quantifier elimination (RQE) is performed (see [11] for details), to detect a possible interval
describing m. As ideal elimination is usually much quicker than RQE, choosing elimination
first is a kind of heuristics, but a good performing one (see, for instance, the compari-
son benchmark at https://prover-test.risc.jku.at/job/GeoGebra_Discovery-comparetest/
lastSuccessfulBuild/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.
html (accessed on 1 January 2025)), for a large list of successful outputs of the Relation
command, each formulating a non-trivial equality holding between two given expressions
involving side lengths of polygons.

Finally, the advantages of using elimination vs. RQE are also behind the current
GeoGebra and GGD algorithms for LocusEquation, which find the locus of a certain
point subject to some constraints, only through the elimination of the ideal generated
by these conditions, over the variables representing the coordinates of the selected point.
The absence of an alternative RQE algorithm for computing the LocusEquation when
real algebraic geometry is clearly in context (e.g., when dealing with lengths) is not just
a question of speed, but it is also related to the potential complexity and difficulty of
interpretation of the output of an RQE in a dimension two space.

In summary, our main topic of study here is not exactly related to the perimeter-area
inequality, but to investigate with GGD, and thus through LocusEquation() and elimination
algorithms, in a complex algebraic geometry context, the cases in which this inequality
becomes an equality, trying to gain understanding that could be exported to other instances,
about the way to interpret complex algebraic geometry outputs to real geometry locus
equation inputs.

The structure of this paper is as follows: In Section 2 we introduce GGD-ART and
describe in some detail, through simple examples, the inherent difficulties concerning locus
computation, both for the complex and the real geometry settings. In Section 3 we initiate
the approach to the perimeter-area equality locus computation in the standard computer

https://prover-test.risc.jku.at/job/GeoGebra_Discovery-comparetest/lastSuccessfulBuild/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html
https://prover-test.risc.jku.at/job/GeoGebra_Discovery-comparetest/lastSuccessfulBuild/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html
https://prover-test.risc.jku.at/job/GeoGebra_Discovery-comparetest/lastSuccessfulBuild/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html
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algebra way, i.e., with the coordinates of the vertices as main variables of our computation,
yielding quite unexpected results that are thoroughly analyzed there. In Section 4 we
develop an alternative approach, still using elimination algorithms, in a more coordinate-
free way, focusing on the sides of △ABC as main working variables. An approach that
ends up being related to the MEP polynomials we will mention in Section 2.2. Thus, our
work contributes to supporting the relevance of MEP as a major tool for the interpretation
of outputs obtained within a complex algebraic geometry framework when searching for
real geometry locus regarding equality of expressions dealing with interval lengths. The
last Section of conclusions includes some final reflections on the new ways that ART, such
as those implemented in GGD, can play when tackling geometry problems of this kind,
either in a research, or in an educational environment.

2. GeoGebra Discovery and Locus Computation
2.1. GeoGebra Discovery

GeoGebra Discovery (GGD) is a freely available program that can be used on a wide
variety of devices such as smartphones, tablets, laptops, computers, etc. GGD is accessible
in several offline release versions [12] for different OS (Mac, Windows, Linux, RaspberryPi),
as well as in online versions [13]. As a fork version of GeoGebra (that already integrates a
Dynamic Geometry (DGS) and a Computer Algebra System (CAS), see Section 3 in [14]),
it is a sort of “dynamic mathematics” software, including dynamic geometry, calculus,
plotting, statistics, etc. features, and, more relevant here, embedding the Giac computer
algebra system [15] (to deal with polynomial equalities in a complex algebraic setting) and
the Tarski system (to deal with inequalities, and possibly also with equalities from the
real geometry point of view) which incorporates real algebraic geometry tools such as real
quantifier elimination RQE and cylindrical algebraic decomposition (CAD). See [16] and
the references therein for more details on the integration of Tarski and GGD.

Both CAS, Giac and Tarski, are behind GeoGebra Discovery automated reasoning
tools (ART) for dealing with different questions involving elements on a construction im-
plemented through the dynamic geometry features of GGD, and displayed in the graphics
window of the program. A typical session using GGD-ART begins by drawing in the GGD
graphics window a geometric construction, and then dragging the free objects created
while observing some geometric facts that seem to hold in all cases, or while trying to find
a specific position for some points in the figure for a certain property to be verified. Then,
as a result of this inspection, the user is prone to formulate the following questions:

• Does this conjectured property hold between these elements?
• What property, if any, holds between these elements?
• Show properties that hold true, involving this particular element of the construction.
• Show all properties of a certain kind (e.g., parallelism) that are satisfied by all the

elements of the figure.
• Where should I place this point, so that a certain property holds true on the resulting

figure?

To deal with such queries, the algorithms behind the automated reasoning tools in
GeoGebra Discovery begin, very roughly speaking, by assigning to the initially given points
some symbolic coordinates, and then translating the different steps of the construction
(hypotheses) and the posed questions (thesis) into algebraic equations with these symbolic
coordinates as variables. The corresponding polynomials are then considered as generators
of certain commutative algebraic ideals (hypotheses, thesis ideals). Subsequently, the solu-
tion of the above-mentioned questions is formulated in terms of the projection/elimination
of certain variables in ideals that are built performing some operation with the hypotheses



Axioms 2025, 14, 40 5 of 23

and thesis ideals (e.g., adding both ideals, or adding to the hypotheses ideal the negation
of the thesis, etc.).

More specifically, GGD includes the following ART tools and commands, that we
enumerate here in an order corresponding to the above proposed questions:

• Prove and ProveDetails commands: to prove the truth or failure of a conjectured or
given statement formulated as an algebraic equality or inequality. It includes the auto-
mated formulation of non-degeneracy conditions that are required for the statement
to be true, obtained (roughly speaking) by elimination of the ideal of hypotheses plus
the negation of the thesis over the set of independent variables with respect to the hy-
potheses ideal, i.e., the free coordinates of the points in the construction. The enhanced
statement with the non-degeneracy conditions is, then, true over the components of
the hypotheses ideal where the independent variables remain so, that are considered
as collecting the non-degenerate instances of the statement. See [17], subsection 1.3,
and [18], chapter 3, section 3 (“Formulation F3”), for detailed discussions about the
elusive (and many times not-intuitive) concept of degeneracy, precise definitions,
algorithmic proposals, and proofs of the related mathematical statements.

• Relation tool and command: to automatically discover the relation holding among
some concrete elements of the given figure. For example, this point lies in the line
defined by these other two, these two lines are perpendicular, etc. Or, these two
expressions involving quantities are equal, or they are not equal but they have such
ratio between them, or their ratio verifies this inequality, etc. The first output of
the command (expressing the relation holding at least numerically) is followed by
the verification of the symbolic, general truth (except for degenerate cases) of the
formulated statement, via the internal performance of algorithms similar to those of
the Prove, ProveDetails commands.

• Discover tool and command: to automatically find all statements (of a certain type,
such as equality of lengths, perpendicularity, etc.) holding true and involving one
element in the figure selected by the user.

• ShowProof command: it displays in the GeoGebra Discovery CAS window the dif-
ferent algebraic steps internally performed by the program to confirm or deny a
given statement. It also provides a measure of the complexity of the proved statement.
Currently available only for statements involving equalities.

• LocusEquation command (with two variants): roughly speaking, its output describes
the equations that should be verified by a selected point on a figure that it is assumed
to be placed corresponding either to the different positions of another point in the
figure, or in such a way that the figure observes a given property. In this latter case,
the output (that can be interpreted as yielding necessary conditions) contributes to the
discovery of some sufficient conditions for the truth of such property. For example,
given an arbitrary triangle △ABC, find where to place C so that the triangle is right at
C. Further details about this command are provided in the next Section 2.2.

If the commands Relation or Discover provide (possibly) unknown thesis actually
holding on a figure verifying certain hypotheses (represented by the constraints involved
in the steps of its geometric construction), and Prove or ProveDetails confirm (through
a proof-certificate exhibited by the ShowProof command) or deny thesis conjectured by
humans, we can say that the LocusEquation suggests new hypotheses needed for the truth
of a thesis that humans want to achieve. In this way, the output of the LocusEquation
command should be part of the formulation of a new statement, whose truth has to be
verified using the Prove or ProveDetails commands.

In summary: Relation and Discover provide new thesis derived from a given set
of hypotheses, while the LocusEquation proposes new hypotheses contributing to the
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possible truth of a considered thesis over the figure satisfying such hypotheses, a truth that
should be confirmed using Prove or ProveDetails. Let us finally remark that, since the
LocusEquation suggests changes in the initial construction, and the concept of degeneracy
of a statement is bound to the final geometric figure, and the independent variables of
its algebraic description, the LocusEquation does not provide any non-degeneracy infor-
mation, although the user can intuitively consider that some of the conditions described
by the LocusEquation output could be regarded as degenerate cases (e.g., equation g1 in
Section 3).

The reader is referred to [17,19] for the foundational algorithmic protocols involved in
these GGD tools in the realm of computational complex algebraic geometry and to [11,16]
for some recent developments in the context of real algebraic geometry, which allows
the manipulation of geometric inequalities. Further references related to each specific
command can be found in the documentation located on the main developer’s GitHub
project site [2]).

2.2. Locus Computation

In order to illustrate the performance of these GGD-ART in the specific issues we
are dealing with in this paper, let us address GGD-ART Problem 1, about finding, if
there is one, the relationship between the area and the perimeter of a generic triangle.
A quick consideration of the list of tools and commands described above, leads us to
conclude that the Relation command seems a good way to discover the existence of any
possible relation. Thus, we start by drawing a triangle ABC with side lengths a, b, c and its
altitude h (see Figure 1), then we introduce in GeoGebra Discovery command line the text
Relation(a + b + c, c · h), and we obtain the well-known inequality between the area and
the perimeter (a + b + c)2 ≥ 6

√
3 · c · h (see Figure 2).

Figure 2. The relationship between the area and the perimeter of a generic triangle.

Yet, as mentioned in the Introduction Section in this paper we are particularly inter-
ested in the LocusEquation command, for several reasons. It is well known that locus
computation is a characteristic feature of Dynamic Geometry programs, much before the
consideration of this command as part of automated reasoning tools. See [20] or [21],
for a survey of the locus computation historical relation with DGS, as well as a detailed
description of current issues concerning DGS and CAS cooperation for locus computation.
As already mentioned, locus computation is available in GGD through the LocusEquation
command which calculates the equation of the locus, and plots it as an implicit curve. It
includes two kinds of approaches:
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• The classical, or explicit, locus computation (the syntax is LocusEquation(<Tracer
point Q>,<Mover point P>)), that computes the locus by using as input a number of
different positions of P within the construction, and the corresponding positions of Q
(a point depending on P), and adjusting—as output—an implicit curve that includes
all the obtained positions of Q, a curve that, because of this sampling methodology,
cannot guarantee the inclusion of all the possible locations of the tracer for any mover
point input within the constraints of the figure where both points lay.

• The implicit one, that calculates the constraints that a selected point Q must verify,
assuming that a certain boolean condition holds in the given construction. The syntax
is LocusEquation(<Boolean expression>,<Point Q>).

As already described in the previous section, this second locus computation command
is a basic ingredient in the automated reasoning tools. Again, as a simple but illustrative
example of this feature, let us consider a triangle △ABC, with point D as the feet of the
altitude from vertex C (see Figure 3). Such point D yields three segments: altitude j = CD,
and segments h = AD, i = DB, from D to the extremes of the side AB. Now, it might occur
that the user vaguely remembers that it might be true that j2 = h · i (the Altitude Theorem).
But neither the Relation(j2, h · i) nor the Prove(j2 = h · i) confirm such conjecture. As a
consequence, the user asks GGD where to place point C so that the thesis j2 = h · i holds,
through the LocusEquation(j2 == h · i, C) command. The answer is displayed in the
red, degree-four curve in Figure 3. But its interpretation, from the human point of view, in
terms of triangles △ABC, is not immediate; we also suggest the reader, as a reasonable, but
not obvious task, to describe, for example, the triangles that happen when placing A in the
output of LocusEquation(j2 == h · i, A). See [22] for some curious answers.

Figure 3. Finding with GeoGebra Discovery the locus of C such that the Altitude Theorem holds,
i.e., CD2 = DB ∗ DA.

In this context some subtle (and not yet well—solved) issues arise:

• Does it mean that if the thesis j2 == h · i holds, vertex C must belong to the curve eq1?
• Does it mean that placing vertex C in any/all points of the curve eq1, the thesis j2 = h · i

holds?
• The standard mathematical interpretation of the statement behind a locus computation

(i.e., “if a triangle △ABC verifies such and such property, then the altitude from C is the
geometric mean of line segments formed by altitude on the opposite side”) considers
it holds for all triangles with generic vertices A = (a1, a2), B = (b1, b2) verifying the
discovered requirements, not just to the triangles with vertices A = (0, 0), B = (1, 0), as
displayed in the figure. How to handle this generic vs specialized locus computation?
Should we perform elimination considering coordinates of free points as parameters



Axioms 2025, 14, 40 8 of 23

(i.e., as elements of the coefficient field), or as variables that should be eliminated to
yield the locus? And, what is the relation of specializing the result of the elimination
by assigning some specific values to the free points (as happens when one displays a
figure in GGD) compared with performing the elimination starting with specialized
values of the free points?

• Locus computation deals with the positions of C in the figure displayed in the
complex?/real? plane, so that the corresponding thesis j2 == h · i holds, for
complex?/real? values of j, h, i, or for real values with some other restrictions
j > 0, h > 0, i > 0?

Let us briefly mention, referring the reader to the citations mentioned in the previous
subsection for further details, that in GGD the LocusEquation is performed through an
elimination algorithm that outputs the generators of the ideal of polynomials, exclusively
in the variables of the locus point C, that belong to the ideal of equations involved in the
construction of the figure and of the sought thesis. So, from the complex algebraic point of
view, the output curve or algebraic variety of the LocusEquation command is the Zariski
closure (see The Closure Theorem, p. 123 of [23]) of the set of positions for C where the
imposed thesis holds.

As already mentioned, we must recall that such output does not take into consideration
any non-degeneracy conditions, among other more subtle reasons, because these kind of
conditions could involve their formulation of other points of the construction (e.g., vertex C
of a triangle should not be aligned with the other two vertices A, B), but no other variables
than the ones of the selected locus point are regarded in the current, straightforward
elimination algorithm that performs the LocusEquation. See [20] for a much more precise
protocol, involving both the elimination over the coordinates of the chosen point and, for
each element in this projection, a new elimination of the construction ideal, specialized
in this element, over the remaining variables. This is achieved through a Gröbner Cover
algorithm [24], which, due to its demanding performance and complexity, is not yet
implemented in the GGD-CAS.

Even disregarding the omission of degeneracy conditions, other relevant problems
arise from the strict dependency of the LocusEquation command on a simple elimination
algorithm. Indeed, by the Closure Theorem, the output of this command is the closure
of the projection of the complex positions of points C verifying the construction plus the
thesis, so it could happen that the “real locus” (real points of the projection of real points
verifying the thesis) is just a subset of such curve. The alternative for dealing with these
issues, quite relevant regarding our main problem, is, on the one hand, to perform a “real
projection” by means of a quantifier elimination, as follows (for the locus in Figure 3):

> with(RegularChains):

> with(SemiAlgebraicSetTools):

> p:=&E[j,h,i],((j^2-y^2=0) &and (h^2-(x^2)=0) &and (i^2-(x-1)^2=0)

&and (j^2-i*h=0) &and (y<>0) &and (j>0) &and (i>0) &and (h>0)):

> out := QuantifierElimination(p);

out := &or((x < 0) &and (x^2 - y^2 - x = 0), (0 < x - 1)
&and (x^2 - y^2 - x = 0), &and(0 < x, x < 1, x^2 + y^2 - x = 0))

yielding the displayed circle and the parabola. But, as already remarked, the quantifier
elimination is much more costly than elimination, so an alternative, practical approach, is
to start with the GGD command LocusEquation and analyze carefully its output from the
real point of view, as we will explore in the next sections for which triangles the inequality
in Problem 1 is an equality.
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This analysis involves, in particular, avoiding the use of square roots for describing
segment lengths or distances (to keep in the realm of polynomial ideals) and, thus, trying
to formulate expressions that handle lengths or distances using only even powers. This is
an issue that has been already approached in [25], where they define the so-called MEP
(Minimal Euclidean Polynomials) of a given polynomial expression, the smallest multiple
of this polynomial but involving the special variables only with even powers, and where
an algorithm for computing the MEP is provided, addressing the interpretation of the MEP
zero set over the reals, through the concepts of “degenerate” and “essential conditions”
(see [25] for details and examples). An algorithm that we have mimicked in Section 4 and
that can be described as a result of multiplying the given polynomial by itself, but with
different signs in the special variables, although it can be also computed via an elimination
algorithm, introducing new variables representing the squares of the special ones.

A final source of problems for interpreting the GGD output for the LocusEquation in
our problem, has to do, as already mentioned, with the consistency of the obtained result
for generic inputs. Indeed, it is quite straightforward to approach problems formulated for
all triangles, such as Problem 1, by introducing free variables associated to the coordinates
of the three vertices A, B, C, and to develop the locus computation in this general context.
But, as the elimination complexity depends on the number of involved variables, GGD
usually begins by internally assigning (although this fact does not affect the displayed plots),
without loss of generality, some specific numerical values to some vertices, such as A, B, and
then performs an elimination involving only the coordinates of C. In order to address and
compare both approaches, in the next sections we have turned to Maple© Computer Algebra
System (CAS) (version 2022, Maplesoft, at Waterloo, ON, Canada) to obtain a generic result,
for arbitrary values of A, B, and then confirm that the specialization of the elimination of the
generic result coincides with the elimination of the specialization. See Lemma 2.3 and 2.4
in [21] for some technical details and general results in the same direction.

3. The Equality Case: A Coordinate Approach
Now let us turn our attention to the key issues concerning these GGD-ART tools for

the main problem that we would like to address in this paper, namely:

Problem 2. For what triangles ABC the perimeter-area inequality becomes the equality

(a + b + c)2 = 6
√

3ch ? (1)

The automated solution to Problem 2 can be split into two steps, using a kind of “abductive”
reasoning (The general form of an abduction is: “a fact A is observed; if C was true, then
A would certainly be true; so, it is reasonable to assume C is true.” [26], p. 372), which is
quite popular in mathematical exploration [27]. In the first step, we look for families of
triangles that satisfy the proposed equality; in the second step, we try to decide if these
families are the only ones, which involves, strictly speaking, a locus computation. And,
as in many cases where triangle inequalities are investigated, the first natural candidates
for checking whether the corresponding equality holds are equilateral triangles. Now, let
us assume our triangle △ABC is equilateral and let us ask GGD about the relationship
between its area and perimeter. Figure 4 shows that equality ch =

√
3

18 (a + b + c)2 is the
output after introducing the command Relation(c*h,a+b+c) in the algebraic view of
GGD. This confirms our suspicion for equilateral triangles, as these satisfy the equality.
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Figure 4. The case of an equilateral triangle.

Then we go for the second step of our approach, and we start by wondering whether
equilateral triangles are the only ones answering positively Problem 2 (abductive thinking:
if equality (1): ch =

√
3

18 (a + b + c)2 is assumed, as we know that “equilateral triangles”
verify such equality, it is reasonable to consider that if the equality holds on a triangle, the
triangle must be equilateral). How could we rigorously prove such an assertion?

With the help of GGD and one of its ART commands we have a direct way to con-
front this question: Let us assume that vertices A, B are fixed. Then the command
LocusEquation(<Boolean Expression>,<Point>) allows us to determine the geometric
locus of all points satisfying the given Boolean Expression. In particular, we can set as
condition the equality ch =

√
3

18 (a + b + c)2 and as the distinguished point the vertex C,
obtaining as output the locus of all possible positions of C satisfying the equality. In case
only equilateral triangles comply with it we should only see two symmetric points with
respect to the line AB, conforming the four possible equilateral triangles with AB as one of
the sides. Now, because of technical reasons to avoid the presence of square roots in our
expressions and in order to deal only with polynomials, as GGD-ART LocusEquation algo-
rithms are complex algebraic geometry based, we rather introduce the following command,
after squaring both sides of the equality:

LocusEquation(c^2*h^2==(3/18^2)(a+b+c)^4, C)

and we examine the unexpected result, both visually (see Figure 5) and algebraically.
Indeed, for A = (0, 0) and B = (1, 0) we obtain the algebraic curve L with equation

l(x, y) :=729x8y3 − 108x8y − 2916x7y3 + 432x7y + 2916x6y5 + 4050x6y3 − 648x6y

− 8748x5y5 − 1944x5y3 + 432x5y + 4374x4y7 − 702x4y5 + 1107x4y3

− 108x4y − 8748x3y7 + 15984x3y5 − 2376x3y3 + 2916x2y9 − 13986x2y7 (2)

− 27810x2y5 + 4266x2y3 − 2916xy9 + 18360xy7 + 18360xy5 − 2916xy3

+ 729y11 − 9126y9 + 8851y7 − 9126y5 + 729y3 = 0.
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Figure 5. The locus obtained by GGD.

Where does this 11th-degree curve come from? Notice also that in the graphic view
(see Figure 5) GGD does show none of the expected points we were considering, includ-
ing those that correspond to the positions of C that make △ABC equilateral. For those
acquainted with computing the equations of geometric loci with a real algebraic geometry
background, by using algebraic methods, the appearance of high-degree polynomials can
be not such a big surprise, but it is always a challenge to give a geometric significance to
the computational outputs obtained, especially when they differ substantially from the
intuitively expected results, such as here, where we expected to obtain just a couple of
points as the sought locus. See a simpler, but illustrative example, of the approach through
a locus computation to the discovery of the Altitude Theorem, that we have developed in
the previous section.

The following describes our approach to gaining some understanding of this situa-
tion, an approach that could establish the guidelines for a more systematic and general
protocol. Firstly, we resort now to carry out personally the algebraic computations that are
supposedly performed internally by GGD, but this time with the aid of Maple. Let us set
coordinates A = (a1, a2), B = (b1, b2), C = (c1, c2). Then we have the relations

a2 = (c1 − b1)
2 + (c2 − b2)

2 (3)

b2 = (c1 − a1)
2 + (c2 − a2)

2 (4)

c2 = (b1 − a1)
2 + (b2 − a1)

2 (5)

The point D where the altitude through C intersects line AB is given by the relations

(d1 − a1)(b2 − a2)− (d2 − a2)(b1 − a1) = 0 (6)

(d1 − c1)(b1 − a1) + (d2 − c2)(b2 − a2) = 0 (7)



Axioms 2025, 14, 40 12 of 23

and the height h satisfies

h2 = (d1 − c1)
2 + (d2 − c2)

2 (8)

Relations (3)–(8) lead to the polynomial ideal associated to the geometric construction

CS :=⟨a2 − ((c1 − b1)
2 + (c2 − b2)

2), b2 − ((c1 − a1)
2 + (c2 − a2)

2),

c2 − ((b1 − a1)
2 + (b2 − a2)

2), h2 − ((d1 − c1)
2 + (d2 − c2)

2),

(d1 − a1)(b2 − a2)− (d2 − a2)(b1 − a1), (d1 − c1)(b1 − a1) + (d2 − c2)(b2 − a2)⟩,

which is contained in C[a1, a2, b1, b2, c1, c2, d1, d2, a, b, c, h]. Notice here that CS can not
distinguish between positive/negative values of the lengths a, b, c, and h, as they
appear always squared in the generators fo this ideal. This is a key observation
that explains the fact that the ideal CS presents certain symmetries, in the sense
that if a polynomial p(a1, a2, b1, b2, c1, c2, d1, d2, a, b, c, h) ∈ CS, then the polynomials
p(a1, a2, b1, b2, c1, c2, d1, d2,±a,±b,±c,±h) also belong to CS. Notice also that CS is sym-
metrical, and does not change if A, B are switched, or if C is replaced by its symmetrical
regarding the line AB, since the perimeter or the height from vertex C to side AB do not
change by permuting A by B or C by its opposite with respect to line AB. If we ask Maple
for the prime components of its radical ideal that strictly contain the ideal CS, we obtain
16 prime components (see Table 1) that in fact contain redundancies, which reduce to just
four of them, so that √

CS = CS1 ∩ CS2 ∩ CS3 ∩ CS4.

Geometrically speaking, these components can be associated with the geometric
configurations described below. In order to give these descriptions in such a way that the
difference among the components CS1 − CS4 becomes clearer, we assume implicitly that
the distances a, b, c, and h appearing in the expressions can have arbitrary real values,
including negative ones. This assumption will be used along the text whenever it helps
distinguish, from a geometrical perspective, the algebraic expressions under study.

(i) CS1 corresponds to constructions where the signs of ch and the signed area (we define
here signed area of a triangle with vertices A = (a1, a2), B = (b1, b2), C = (c1, c2)

by the expression [(b1 − a1)(c2 − a2)− (b2 − a2)(c1 − a1)]/2 = (a1b2 − a1c2 − a2b1 +

a2c1 + b1c2 − b2c1)/2) of triangle ABC coincide;
(ii) CS2 corresponds to constructions where the signs of ch and the signed area of triangle

ABC are opposite;
(iii) CS3 corresponds to degenerate constructions where vertices A, B coincide and lengths

a, b have the same sign and point D is arbitrary;
(iv) CS4 corresponds to degenerate constructions where vertices A, B coincide and lengths

a, b have opposite signs and point D is arbitrary.

Descriptions (i) and (ii) come from realizing, by inspecting the generators of CS1 and
CS2, that any construction corresponding to a point in V(CS1) has a specular one in V(CS2)

with the sign of its height h reversed (and vice versa). In particular, the seventh generator
of the corresponding ideals in Table 1 helps to provide the aforementioned characterization
with respect to the signed areas. Descriptions (iii) and (iv) are straightforwardly deduced
from the list of generators of CS3 and CS4 (see [28] for further evidence).
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Table 1. Maple output for prime components of
√

CS.

Ideals Set of Generators

CS1

⟨−a1h + b1h − cc2 + cd2, a2h − b2h − cc1 + cd1,−a1b2 + a1d2 + a2b1 − a2d1 − b1d2 +
b2d1, a2 − b2

1 + 2b1c1 − b2
2 + 2b2c2 − c2

1 − c2
2,−a2

1 + 2a1c1 − a2
2 + 2a2c2 + b2 − c2

1 − c2
2,−a2

1 +

2a1b1 − a2
2 + 2a2b2 − b2

1 − b2
2 + c2,−a1b2 + a1c2 + a2b1 − a2c1 − b1c2 + b2c1 + ch, a1c1 −

a1d1 + a2c2 − a2d2 − c1d1 − c2d2 + d2
1 + d2

2, a1c1 − a1d1 + a2c2 − a2d2 − b1c1 + b1d1 −
b2c2 + b2d2, a1c1 − a1d1 + a2c2 − a2d2 − c2

1 + c1d1 − c2
2 + c2d2 + h2, a2

1h− 2a1b1h− a1b2c+
a1cc2 + a2

2h + a2b1c − 2a2b2h − a2cc1 + b2
1h − b1cc2 + b2

2h + b2cc1⟩

CS2

⟨a1h − b1h − cc2 + cd2,−a2h + b2h − cc1 + cd1,−a1b2 + a1d2 + a2b1 − a2d1 − b1d2 +
b2d1, a2 − b2

1 + 2b1c1 − b2
2 + 2b2c2 − c2

1 − c2
2,−a2

1 + 2a1c1 − a2
2 + 2a2c2 + b2 − c2

1 − c2
2,−a2

1 +

2a1b1 − a2
2 + 2a2b2 − b2

1 − b2
2 + c2, a1b2 − a1c2 − a2b1 + a2c1 + b1c2 − b2c1 + ch, a1c1 −

a1d1 + a2c2 − a2d2 − c1d1 − c2d2 + d2
1 + d2

2, a1c1 − a1d1 + a2c2 − a2d2 − b1c1 + b1d1 −
b2c2 + b2d2, a1c1 − a1d1 + a2c2 − a2d2 − c2

1 + c1d1 − c2
2 + c2d2 + h2,−a2

1h + 2a1b1h −
a1b2c + a1cc2 − a2

2h + a2b1c + 2a2b2h − a2cc1 − b2
1h − b1cc2 − b2

2h + b2cc1⟩

CS3
⟨c, b− a, b1 − a1, b2 − a2, a2 − a2

1 + 2a1c1 − a2
2 + 2a2c2 − c2

1 − c2
2,−c2

1 + 2c1d1 − c2
2 + 2c2d2 −

d2
1 − d2

2 + h2⟩

CS4
⟨c, a+ b, b1 − a1, b2 − a2, a2 − a2

1 + 2a1c1 − a2
2 + 2a2c2 − c2

1 − c2
2,−c2

1 + 2c1d1 − c2
2 + 2c2d2 −

d2
1 − d2

2 + h2⟩

CS5
⟨c, a + b, b1 − a1, b2 − a2, d1 − a1, a2 − a2

1 + 2a1c1 − a2
2 + 2a2c2 − c2

1 − c2
2,−a2

1 + 2a1c1 −
c2

1 − c2
2 + 2c2d2 − d2

2 + h2⟩

CS6 ⟨c, a + b, b1 − a1, b2 − a2, d1 − c1,−c2 + d2 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS7 ⟨c, a + b, b1 − a1, b2 − a2, d1 − c1, c2 − d2 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS8
⟨c, a + b, b1 − a1, b2 − a2, d2 − a2, a2 − a2

1 + 2a1c1 − a2
2 + 2a2c2 − c2

1 − c2
2,−a2

2 + 2a2c2 −
c2

1 + 2c1d1 − c2
2 − d2

1 + h2⟩

CS9 ⟨c, a + b, b1 − a1, b2 − a2, d2 − c2,−c1 + d1 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS10 ⟨c, a + b, b1 − a1, b2 − a2, d2 − c2, c1 − d1 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS11
⟨c, b − a, b1 − a1, b2 − a2, d1 − a1, a2 − a2

1 + 2a1c1 − a2
2 + 2a2c2 − c2

1 − c2
2,−a2

1 + 2a1c1 −
c2

1 − c2
2 + 2c2d2 − d2

2 + h2⟩

CS12 ⟨c, b − a, b1 − a1, b2 − a2, d1 − c1,−c2 + d2 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS13 ⟨c, b − a, b1 − a1, b2 − a2, d1 − c1, c2 − d2 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS14
⟨c, b − a, b1 − a1, b2 − a2, d2 − a2, a2 − a2

1 + 2a1c1 − a2
2 + 2a2c2 − c2

1 − c2
2,−a2

2 + 2a2c2 −
c2

1 + 2c1d1 − c2
2 − d2

1 + h2⟩

CS15 ⟨c, b − a, b1 − a1, b2 − a2, d2 − c2,−c1 + d1 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

CS16 ⟨c, b − a, b1 − a1, b2 − a2, d2 − c2, c1 − d1 + h, a2 − a2
1 + 2a1c1 − a2

2 + 2a2c2 − c2
1 − c2

2⟩

We now proceed to consider the condition of the perimeter-area equality, which can
be stated in the following form:

f := (18ch)2 − 3(a + b + c)4 = 0. (9)

This equation is not symmetrical with respect to the variables a, b, and c, a fact that
will be taken into consideration later. Imposing this condition (9) translates algebraically
into the ideal CD = CS + ⟨ f ⟩. In order to see for what triangles ABC the equality (9)
holds, we should begin by computing the elimination ideal of CD with respect to the
variables involved in the coordinates of A, B, and C. The output is a very large 16th-degree
polynomial with thousands of monomials, in the six variables {a1, a2, b1, b2, c1, c2}, so that
its zeroes seem impossible to analyze in detail.
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Thus, a reasonable alternative could be to proceed with the elimination of the ideals
associated with the components of the variety CS, as they represent just smaller “parts” of
the ideal CS. We noticed that, in general, it is not true (a trivial counterexample: (⟨x⟩ ∩
⟨y⟩) + ⟨y − x2⟩ = ⟨x ∗ y, y − x2⟩, while (⟨x⟩+ ⟨y − x2⟩) ∩ (⟨y⟩+ ⟨y − x2⟩) = ⟨y, x2⟩). that
the ideal

√
CS + ⟨ f ⟩ = (CS1 ∩ CS2 ∩ CS3 ∩ CS4) + ⟨ f ⟩ is equal to (CS1 + ⟨ f ⟩) ∩ (CS2 +

⟨ f ⟩) ∩ (CS3 + ⟨ f ⟩) ∩ (CS4 + ⟨ f ⟩).
Luckily, at an algebraic geometry level, considering the set of zeroes (denoted by

V(I) of the corresponding ideal I), we have V(
√

CS + ⟨ f ⟩) = V(
√

CS) ∩ V(⟨ f ⟩) =

V(CS1 ∩CS2 ∩CS3 ∩CS4)∩V(⟨ f ⟩) = (V(CS1)∪V(CS2)∪V(CS3)∪V(CS4))∩V(⟨ f ⟩) =
(V(CS1) ∩ V(⟨ f ⟩)) ∪ (V(CS2) ∩ V(⟨ f ⟩)) ∪ (V(CS3) ∩ V(⟨ f ⟩)) ∪ (V(CS4)) ∩ V(⟨ f ⟩)) =

V(CS1 + ⟨ f ⟩) ∪ V(CS2 + ⟨ f ⟩) ∪ V(CS3 + ⟨ f ⟩) ∪ V(CS4 + ⟨ f ⟩). Moroever, the projection of
a union of varieties is the union of the projections, and the Zariski closure of a finite union
is the union of the corresponding Zariski closures.

Thus, since the variety V(Elim(I)) of zeroes of the elimination of an ideal I (keeping
just some special variables), is the Zariski closure of the projection of V(I) over the space of
distinguished variables, we conclude that, from a geometric point of view, the locus variety
defined by projecting V(CD) = V(CS + ⟨ f ⟩) can be studied just by considering the loci
associated to CSi + ⟨ f ⟩, by projecting the corresponding varieties.

Following this approach, let us label as CFi := (CSi + ⟨ f ⟩) ∩C[a1, a2, b1, b2, c1, c2] for
i = 1, . . . , 4, to obtain the conditions that the coordinates of the vertices A, B, and C must
satisfy so that the perimeter-area equality holds. Certainly, this procedure allows us to
obtain some results about the sought locus. We refer the reader to the Maple code in [28],
where the following facts are verified:

• CF3 = ⟨b1 − a1, b2 − a2, ((c1 − a1)
2 + (c2 − a2)

2)2⟩. The triangles in this ideal reduce
to the case A = B = C.

• CF4 = ⟨b1 − a1, b2 − a2⟩ holds, so that all configurations with A = B and a + b = 0
satisfy the equality.

• The equality CF1 = CF2 = ⟨g⟩ holds, where g ∈ C[a1, a2, b1, b2, c1, c2] is a pretty large
16th degree polynomial.

In fact, the inclusions CF1 ⊂ CF4 ⊂ CF3 hold, so the projection of V(CD) is equal
to V(CF1) ∪ V(CF2) ∪ V(CF3) ∪ V(CF4) = V(CF1) and the ideal relevant to us is CF1.
Unfortunately, in this case, we observe that splitting the computation of the projection
between the components of CS does not simplify the final output, as computing directly
the elimination ideal CD ∩C[a1, a2, b1, b2, c1, c2], we obtain again CF1, so our “first find the
components, then eliminate” approach is not always operative. Thus, in this case, we are
forced to pay closer attention to the generator g of this last ideal. A first observation is that
the polynomial g factorizes in the form g = g2

1g2, where

g1 = a1b2 − a1c2 − a2b1 + a2c1 + b1c2 − b2c1

g2 = A big polynomial of degree 12.

Notice here that the polynomial g1 corresponds to the collinearity condition of points A,
B, and C, a case of degeneracy (according to human intuition, not through any algorithmic
definition) that is displayed in this particular case since we are computing the joint locus of
the three vertices, whose coordinates are the only free variables of the whole construction.
This means that if the equality (9) holds, then either the triangle collapses to a line, or it
verifies g2 = 0.
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But even this partial and trivial interpretation of the output does not seem to help
much concerning the initial question about which triangles verify equality (9). For example,
after adding g1 = 0 to the generators of ideal CS, we observe (see computational details
in [28]) that it is not true that, under the extended set of hypotheses, the equality (9) always
holds. Indeed, a detailed analysis of this situation shows that the new ideal of hypotheses,
i.e., the degenerate triangles that verify V(CS + ⟨g1⟩), decompose into 29 prime ideals, of
which only the first two are non-degenerate (i.e., with the same set of free variables than
that of the ideal CS + ⟨g1⟩) and the thesis (9) holds on the first one, but not on the second.
The (algebraic) reason behind this fuzzy behavior is that in the first component, c = as
ABC are aligned, and a and b take opposite values, something not intuitive, since both are
lengths, although algebraically possible, since our set of hypotheses described a, b, and c
as square roots, without fixing any sign for them. And, on the other hand, on the second
component c = 0, a = b, so the equality (9) is a = 0, but the length a of segment AB does
not have to be always zero when ABC are aligned.

Because of this failure concerning g1 = 0, and it seems impossible to interpret geomet-
rically, the triangles whose vertices verify the equation g2 = 0, the standard protocol turns,
without loss of generality, to search for answers in a simpler context.

Thus, we now specialize the polynomial g setting A = (0, 0), B = (1, 0), which, in
this geometric context about perimeter and areas of triangles, keeps in all generality the
analysis of the locus of triangles verifying the equality. The resulting polynomial

gg(c1, c2) := g(0, 0, 1, 0, c1, c2) = c2l(c1, c2),

coincides (here with coordinates {c1, c2} instead of {x, y}) with the same GGD polynomial
(see Formula (2)) we found by means of the LocusEquation(,) command for this particular
case, an output that GGD obtains by performing the elimination on the specialized version
of the input ideal (CS + ⟨ f ⟩), as already pointed out in Section 2.2.

We can use Maple to obtain a graphical representation of the algebraic curve defined
by gg(c1, c2) = 0 to compare it with the GeoGebra output. Figure 6 shows how the
locus includes two isolated points that correspond to

(
1
2 ,±

√
3

2

)
, that is, the points that

correspond to the equilateral triangles ABC.
Notice that, as expected, the curve in Figure 6 is symmetrical with respect to both the

x-axis, i.e., the AB line, and with respect to the bisector line x = 1/2 of the segment AB,
since such symmetries for positioning vertex C do not affect the perimeter or area of the
corresponding triangle.

Now we can proceed as previously, analyzing the statement that has as hypotheses the
generators of CD and one of the two factors of the polynomial gg(c1, c2) = c2l(c1, c2) = 0,
and as thesis the isoperimetric equality (9). We compute the dimension and free variables
for each of the two hypotheses ideals CD + ⟨c2⟩, CD + ⟨l(c1, c2)⟩, and then we observe,
after computing in both cases a prime decomposition, and after checking that all their
components are non-degenerate (in the context of the new ideals of hypotheses), that the
corresponding statement is only true on some prime components of the considered ideal,
and fails in some others. It is easy to observe that some “non-real” issues are involved
in the components (e.g., negative lengths, sum of lengths equal zero, etc.). See the Maple
worksheet available in [28] for details.
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Figure 6. Maple image for the geometric locus when A = (0, 0), B = (1, 0).

Therefore, despite all the developed work, both with and without specializing the
input vertices A, B, the main question remains, that is, which other real triangles, if any,
in addition to the equilaterals, satisfy g = 0 (or gg = 0, after specialization)? We have
seen that placing vertex C in such a curve does not imply that the isoperimetric equality
is generally true, only true on some components and false in others. Which of these are
real? It is hard to continue in this direction without becoming involved in the use of real
quantifier elimination algorithms (that in this specialized context are able to solve in a
reasonable time the locus problem, see [28]), something not available, for practical issues,
in the current LocusEquation commands in GGD.

At least we have learned about the key role of the signs of the lengths, namely a, b,
and c, for the interpretation of the results. Perhaps the reason behind the failure of the
thesis (equality (9)) for the triangles with vertex C verifying gg = 0, is due to the need
to extend the thesis, by considering not only the given Equation (9), but the product of
variants of such equation for different choices of signs for a, b, and c, that is, the associated
MEP polynomial [25]. Thus, we will proceed in the next section to approach the problem
by changing our perspective, and working with the lengths of sides a, b, c as main variables,
instead of the coordinates of vertices A, B, and C.

4. The Equality Case: A Coordinate-Free Approach
In this section, we deal with the problem from a more intrinsic perspective, focusing

on the variables a, b, and c that correspond to the sides of triangle △ABC and ruling out
the specific coordinates of the vertices of the triangle. This translates algebraically into
dealing with the elimination ideals CGi := (CSi + ⟨ f ⟩) ∩C[a, b, c], i = 1, . . . , 4 (recall that
f , defined in (9), represents the perimeter-area equality condition). In this case, we obtain
with Maple the following results:
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• CG3 = ⟨c, b4,−b + a⟩. The triangles in this component reduce to those with a = b =

c = 0.
• CG4 = ⟨c, a + b⟩. The triangles are those with c = 0 and with a = −b.
• CG1 = CG2 = ⟨r(a, b, c)⟩,
where

r(a, b, c) =7a4 + a3b + a3c − 12a2b2 + 3a2bc − 12a2c2 + ab3 + 3ab2c + 3abc2 + ac3

+ 7b4 + b3c − 12b2c2 + bc3 + 7c4.

Maple can verify that
√

CG1 ⊂
√

CG4 ⊂
√

CG3, and therefore, the relevant ideal here
is CG1. Let us now focus on the polynomial r(a, b, c), which can be factorized and rewritten
in the following form:

r(a, b, c) = (a + b + c)(−6(−a + b + c)(a − b + c)(a + b − c) + (a3 + b3 + c3) + 3abc).

This last expression is interesting, because it can be related to the well known Heron’s
formula for the area of a triangle in terms of its sides. Indeed,

r(a, b, c) = −108

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

16

2

+
(a + b + c)4

4
,

and so

r(a, b, c) = −108(ch/2)2 +
(a + b + c)4

4
.

Thus, except for a constant, r(a, b, c) can be interpreted geometrically as an equivalent
form of Formula (9), f (a, b, c, h) = (18ch)2 − 3(a + b + c)4 = 324c2h2 − 3(a + b + c)4 =

−12r(a, b, c), expressed just in terms of the sides of △ABC. This can be considered both
negatively, since it means that the computed polynomial r is just another version of the
starting locus constraint, or positively, since it is easier to interpret geometrically as it deals
with only three variables, as we will show next. For example, the triangles that satisfy the
equality given by f = 0 must satisfy r(a, b, c) = 0. From this, two possibilities arise: either
a + b + c = 0, or

r1(a, b, c) := −6(−a + b + c)(a − b + c)(a + b − c) + (a3 + b3 + c3) + 3abc = 0. (10)

The first option leads to the unique possibility a = b = c = 0 (considering all sides
of the triangle non-negative). The second option drives us to find out which real triangles
satisfy (10). Here, Maple gives us a clean response. By typing

> r1 := 7*c^3 - 6*c^2*b - 6*c^2*a - 6*c*b^2 + 15*c*b*a

- 6*c*a^2 + 7*b^3 - 6*b^2*a - 6*b*a^2 + 7*a^3;

> solve([r1=0, a>=0, b>=0, c>=0],[a,b,c]);

we readily obtain
[[b = a, c = a, 0 ≤ a]],

so that equilateral triangles are the only ones that satisfy (10).
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What is the connection between the polynomial r(a, b, c), of degree 4, and the polyno-
mial g(a1, a2, b1, b2, c1, c2), of degree 16? Let us set

sa :=
√
(c1 − b1)2 + (c2 − b2)2 (11)

sb :=
√
(c1 − a1)2 + (c2 − a2)2 (12)

sc :=
√
(b1 − a1)2 + (b2 − a2)2. (13)

From the definition of our variables a1, a2, b1, b2, c1, c2, a, b, c in (3)–(5) we have
the relations

a = ±sa, b = ±sb, c = ±sc

and we claim now that the following identity holds:

16g(a1, a2, b1, b2, c1, c2) = r(sa, sb, sc)r(−sa, sb, sc)r(sa,−sb, sc)r(sa, sb,−sc). (14)

We can verify this statement with the following sequence of commands in Maple:

> r:=7a^4+a^3b+a^3c-12a^2b^2+3a^2bc-12a^2c^2+ab^3

+3ab^2c+3abc^2+ac^3;

> sa := sqrt((c1 - b1)^2 + (c2 - b2)^2);

> sb := sqrt((c1 - a1)^2 + (c2 - a2)^2);

> sc := sqrt((a1 - b1)^2 + (a2 - b2)^2);

> rs1 := subs([a = x, b = y, c = z], r);

> rs2 := subs([a = -x, b = y, c = z], r);

> rs3 := subs([a = x, b = -y, c = z], r);

> rs4 := subs([a = x, b = y, c = -z], r);

> rs:=expand(rs1*rs2*rs3*rs4);

> rg:=expand(subs([x=sa,y=sb,z=sc],rs));

> rg-16g;

The output of the last prompt is zero, confirming the validity of the identity.
We can interpret this equality by considering r(a, b, c) as an equivalent of the locus

condition f , and then proceeding to compute—by multiplying different versions of r(a, b, c)
changing signs for the involved variables—the smallest multiple of such condition in-
volving only even powers of a, b, and c, i.e., the already mentioned in Section 2.2 MEP
polynomial. An alternative method to compute rg, following the elimination algorithms
described in [25], is performed in [28]. We refer the reader to [25] for details on how
algebraic geometry provers implemented in software such as GGD work with Euclidean
positive measures (distances, lengths) by computing the corresponding MEP to handle
better the problems with signs, while keeping complex algebraic geometry computations,
usually much simpler than the real geometry counterparts.

Indeed, the identity (14) helps to provide a full understanding of the locus we are
dealing with, since it decomposes the locus into a union of four different semialgebraic
subsets, each with a distinctive geometric meaning:

• The set L1 of points with r(sa, sb, sc) = 0 just consists of two points that correspond to
the positions of C that form equilateral triangles with A, B.

• The set L2 of points with r(−sa, sb, sc) = 0 correspond to the triangles satisfying the
perimeter-area equality, assuming a ≤ 0 and b, c ≥ 0.

• The set L3 of points with r(sa,−sb, sc) = 0 correspond to the triangles satisfying the
perimeter-area equality, assuming b ≤ 0 and a, c ≥ 0.
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• The set L4 of points with r(sa, sb,−sc) = 0 correspond to the triangles satisfying the
perimeter-area equality, assuming c ≤ 0 and a, b ≥ 0.

To visualize better the situation we can specialize these subsets in the case A = (0, 0)
and B = (1, 0) by setting

ŝa :=
√
(c1 − 1)2 + c2

2, ŝb :=
√

c2
1 + c2

2 and ŝc := 1.

Figure 7 shows the result in this particular case. It is worth point out here the dif-
ficulties that the software has in representing with precision these semialgebraic sets.
In particular, nor L1 nor the segments {c1 ≤ 0, c2 = 0} in L2, {c1 ≥ 1, c2 = 0} in L3

and {0 ≤ c1 ≤ 1, c2 = 0} in L4 appear in the Maple graphical output when using the
implicitplot() command.

(a) (b)

Figure 7. The partition of L into L1 ∪ L2 ∪ L3 ∪ L4. Maple version versus real version. (a) Maple
output. (b) Corrected locus.

As a final verification, let us notice that, in this specialized situation in which A = (0, 0),
B = (1, 0) so that c = 1, our polynomial r(a, b, c) becomes r̂(a, b) := r(a, b, 1), and we can
plot the algebraic curve R with equation r̂(a, b) = 0 describing the set of triangles (with
c = 1) satisfying the perimeter-area equality in terms of their (signed) sides a and b,
obtaining Figure 8. Then, let us set

R1 = R ∩ {a ≥ 0, b ≥ 0}, R2 = R ∩ {a ≤ 0, b ≥ 0},
R3 = R ∩ {a ≥ 0, b ≤ 0}, R4 = R ∩ {a ≤ 0, b ≤ 0}.

If we think now about the maps R2 → R2 given by

h1 : (c1, c2) 7→ (ŝa, ŝb), h2 : (c1, c2) 7→ (−ŝa, ŝb),
h3 : (c1, c2) 7→ (ŝa,−ŝb), h4 : (c1, c2) 7→ (−ŝa,−ŝb),

we can verify that actually h−1
i (Ri) = Li (see [28] for more details on this verification).
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Figure 8. Algebraic curve R = R1 ∪ R2 ∪ R3 ∪ R4 given by r(a, b, 1) = 0.

5. Conclusions
This study has explored the application of automated tools in investigating relevant

geometric statements, such as the perimeter-area inequality in triangles. As a pertinent test
for detecting different issues that could be required to improve GGD automated reasoning
tools, we attempted to confirm with GGD and Maple, but always with the concourse of the
symbolic computation algorithms that are behind such GGD-ART, that the equality case
holds exclusively for equilateral triangles. The approaches undertaken, both coordinate-
based and coordinate-free, provided complementary insights into the problem, showcasing
both the remaining difficulties and the versatility of computational methods in tackling
geometric inequalities.

We consider that this work contributes to a deeper understanding of the perimeter-
area inequality and highlights the evolving role of computational tools in mathematical
research and education. In fact, although our work here is not directly related to mathe-
matics education, it is clearly driven by the relevant role of education in the development
of the software GeoGebra, a freely available, dynamic geometry, algebra, spreadsheets,
graphing, statistics, calculus, etc. software, accessible over a variety of devices (laptops,
smartphones, tablets. . .) and operating systems, on and offline. It is known to have more
than 100 million users worldwide (data confirmed by GeoGebra’s CEO, personal commu-
nication, June 2024), mostly students or teachers, and it is, in many countries, the “de facto”
standard in classrooms to visualize mathematics in a dynamic way. A software whose
characteristics (type of users, multiplicity and simplicity of some supporting devices) have
constrained our context for performing the isoperimetric–equality locus analysis, looking
for approaches that could be more efficient and adequate to be implemented on future
versions of GGD-ART than those directly requiring real quantifier elimination, as argued in
the Introduction Section.

However, as we have illustrated in this paper, an innocent and natural geometry
question such as Problem 1, can pose a series of challenging issues to the currently quite
performing GGD-ART, a collection of tools capable to successfully deal, as can be perceived
in the previously mentioned GGD-ART benchmark, with geometric statements with a much
more complex formulation. Challenging questions that have required human intervention,
with the help of computer software, to be visualized and fully understood. Of course, we
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consider that these human-driven techniques we have exhibited in this paper and that we
have created along our development of GGD-ART (see [17,19,25] for some basic references):
computing a generic locus through elimination; checking truth, or truth on parts, by
prime decomposition; performing a specialization of the problem and repeating the same
steps over this less complex formulation; addressing the locus interpretation through the
minimum euclidean polynomial of the sides-only version of the isoperimetric-equality, etc.,
could be applied to other geometric situations where a locus is involved.

However, the study also reveals certain existing limitations of automated tools for
dealing with geometric loci involving real algebraic geometry. In particular, the deficiencies
observed in the graphic outputs of mathematical software can be attributed to the difficulty
of devising algorithms to display faithfully real algebraic plane curves (see [29]). Thus,
we have highlighted and applied using this example some commutative algebra issues
that, although theoretically developed, are still not fully implemented in GGD, such as the
handling of specializations, the use of component-wise loci protocols, and the advantages of
performing some sign-sensitive avoidance computations by translating the locus constraint
to one with even powers when dealing with distances. Other issues, such as interpreting
high-degree polynomial loci and ensuring precise graphical representations, underscore
the need for continued refinement of these systems. In addition, human insight remains
indispensable for interpreting results, defining problems, and contextualizing findings
within larger mathematical theories.

But we are not sure if, when the algebraic complexity of the statement grows, even
sophisticated software such as Maple, which has been the key here to apply the mentioned
techniques and to interpret the GGD-ART output of the perimeter-area equality, could
become stuck in the involved computations. For a simple, yet seemingly challenging
example, we dare to propose the reader to consider extending our Problem 2, asking the
following parametric variant:

Problem 3. Let k be a real number with k ≥ 12
√

3. For what triangles ABC the relation
(Perimeter(ABC))2 = k · Area(ABC)?

Future studies could extend this approach to other geometric inequalities or problems
involving higher-dimensional figures. Moreover, the integration of advanced algorithms
for symbolic and numerical computation in the automated reasoning tools, such as the
ones we have exhibited when dealing with this example, could further enhance their
efficiency and scope, paving the way for more widespread adoption in classrooms and
research environments.

In general terms, we consider the achieved results to emphasize the growing impor-
tance of dynamic geometry software integrated with computer algebra systems. Such tools
not only streamline complex algebraic manipulations but also allow users to visualize and
interact with geometric configurations, thereby enhancing intuition and understanding.
For example, the ability of GGD to compute loci and handle inequalities demonstrates
its potential as an educational and research tool, enabling users to explore mathematical
relationships that might otherwise remain inaccessible.

Ultimately, this investigation underscores the synergistic relationship between human
intuition and computational power. As tools like GGD become increasingly sophisti-
cated, they will continue to complement traditional approaches, fostering innovation and
discovery in both theoretical and applied mathematics.
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