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Abstract: In this paper, a fractional-order eco-epidemiological model with two disease
strains in the predator population incorporating harvesting is formulated and analyzed. The
model assumes that the population is divided into a prey population, a susceptible predator
population, a predator population infected by the first disease, and a predator population
infected by the second disease. A mathematical analysis and numerical simulations are
performed to explain the dynamics and properties of the proposed fractional-order eco-
epidemiological model. The positivity, boundedness, existence, and uniqueness of the
solutions are examined. The basic reproduction number and some sufficient conditions for
the existence of four equilibrium points are obtained. In addition, some sufficient conditions
are proposed to ensure the local and global asymptotic stability of the equilibrium points.
Theoretical results are illustrated through numerical simulations, which also highlight the
effect of the fractional order.
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1. Introduction
The relationship between predators and their prey is a fundamental topic in math-

ematical ecology due to its widespread occurrence and ecological significance [1]. The
interactions between prey and predators were studied for the first time by the famous
mathematicians Lotka and Volterra [2]. After that, many predator–prey models have been
established and studied by mathematicians and ecologists, for example [3–7].

Investigating the spread of infections within populations is a crucial area of math-
ematical biology, offering insights into predicting the impacts of such infections [8–10].
An eco-epidemiological model studies the dynamics of predator–prey interactions in the
context of infectious diseases, which may affect either the prey population only [11,12],
the predator population only [13–15], or both simultaneously [16,17].

Fractional-order differential equations are a generalized form of classical ordinary
differential equations, extending their order to non-integer values [18]. Fractional-order
models offer advantages over integer-order models, including memory effects and hered-
itary dynamics, which better capture complex system behaviors [19]. Models based on
fractional-order differential equations may offer a more accurate representation of complex
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systems and elucidate the interactions between prey and predator species, particularly in
the context of infectious diseases affecting the predator population [20]. Fractional-order
derivatives have found widespread application across various scientific and engineering
disciplines [21]. For a more comprehensive understanding of fractional-order differential
equations, one can refer to [22–28] and the references contained therein. These references
explore the application of the fractional order in ecological, epidemiological, and biological–
economic models, emphasizing the analysis of stability, bifurcation, and memory effects to
understand complex dynamic systems.

In this paper, a fractional-order eco-epidemiological model incorporating two disease
strains within the predator population and the effects of harvesting is proposed and studied.
The population is assumed to consist of prey, susceptible predators, predators infected by
the first disease, and predators infected by the second disease. For instance, the black-footed
ferret relies exclusively on Prairie dogs as its primary food source. This black-footed ferret
population can be infected by the Sylvatic plague and the Canine distemper virus [29]. The
positivity, boundedness, existence, and uniqueness of the solutions for the fractional-order
model are examined. Additionally, the basic reproduction number is derived, along with
sufficient conditions for the existence of four equilibrium points. The main contribution of
this paper is establishing sufficient conditions to guarantee the local and global asymptotic
stability of the equilibrium points in the proposed model. The theoretical findings are
further illustrated through numerical simulations.

The structure of this paper is as follows. In the next section, the model formulation,
positivity, boundedness, existence, and uniqueness are proposed. In Sections 3, the equilib-
rium points, basic reproduction number, local stability, and global stability of the proposed
fractional-order model are investigated. Section 4 presents numerical simulations to illus-
trate the theoretical results obtained. Finally, the conclusions are provided in Section 5.

2. Model Formulation
Following [30], the eco-epidemiological model incorporating two disease strains

affecting the predator population can be described as follows.

dx
dt

= r̂
(

1 − x
k̂

)
x − âxy, x(0) = x0,

dy
dt

= êâxy − λ̂yz − β̂yw + γ̂z + φ̂w − m̂y, y(0) = y0,

dz
dt

= λ̂yz − γ̂z − d̂z + θ̂w, z(0) = z0,

dw
dt

= β̂yw − φ̂w − ν̂w − θ̂w, w(0) = w0.

(1)

The model (1) categorizes the populations into four classes: the prey population x(t),
the susceptible predator population y(t), the predator population infected with the first
disease z(t), and the predator population infected with the second disease w(t). It is
assumed that disease transmission occurs within the predator populations, while the
susceptible predators feed on the prey. All parameters in model (1) are non-negative for
t ≥ 0 and are detailed in Table 1.

This paper seeks to investigate the dynamic properties of a generalization of the eco-
epidemiological model described in (1) through the introduction of the Caputo fractional
derivative of order q (cDq) and prey harvesting (Ĥ) as follows.
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cDqx(t) = r̂
(

1 − x
k̂

)
x − âxy − Ĥx, x(0) = x0,

cDqy(t) = êâxy − λ̂yz − β̂yw + γ̂z + φ̂w − m̂y, y(0) = y0,
cDqz(t) = λ̂yz − γ̂z − d̂z + θ̂w, z(0) = z0,

cDqw(t) = β̂yw − φ̂w − ν̂w − θ̂w, w(0) = w0,

(2)

Table 1. Parameter descriptions.

Symbol Description

r̂ Intrinsic growth rate of prey
k̂ Prey carrying capacity
â Predation rate of susceptible predator
Ĥ Prey harvesting
ê susceptible predator conversion efficiency
λ̂ Transmission coefficient of the first disease in predator
β̂ Transmission coefficient of the second disease in predator
m̂ Natural mortality rate of susceptible predator
γ̂ First disease recovery rate
φ̂ Second disease recovery rate
d̂ Natural plus first disease mortality rate
ν̂ Natural plus second disease mortality rate
θ̂ Mutation factor of diseases.

For q ∈ (0, 1), the Caputo fractional derivative cDq is employed [18]. In model (2),
the right-hand-side terms have a dimension of (time)−1, while the left-hand-side terms
have a dimension of (time)−q. To ensure dimensional consistency, model (2) is reformulated
as follows:

cDqx(t) = r̂q
(

1 − x
k̂

)
x − âqxy − Ĥqx, x(0) = x0,

cDqy(t) = êâqxy − λ̂qyz − β̂qyw + γ̂qz + φ̂qw − m̂qy, y(0) = y0,
cDqz(t) = λ̂qyz − γ̂qz − d̂qz + θ̂qw, z(0) = z0,

cDqw(t) = β̂qyw − φ̂qw − ν̂qw − θ̂qw, w(0) = w0.

(3)

For simplicity, model (3) is redefined using new parameter representations [31]:

r̂q = r, k̂ = k, âq = a, Ĥq = H, ê = e, λ̂q = λ, β̂q = β, γ̂q = γ, φ̂q = φ, m̂q = m, d̂q = d,

θ̂q = θ, ν̂q = ν.

Then, the model (3) can be reformulated as follows:

cDqx(t) = r
(

1 − x
k

)
x − axy − Hx, x(0) = x0,

cDqy(t) = eaxy − λyz − βyw + γz + φw − my, y(0) = y0,
cDqz(t) = λyz − γz − dz + θw, z(0) = z0,

cDqw(t) = βyw − φw − νw − θw, w(0) = w0,

(4)

It is to be noted that the integer-order model (1) given in [30] cannot be sustained at a
stable coexistence equilibrium level. However, the fractional-order model (4) proposed
in this paper can be sustained at the stable coexistence equilibrium level. To the best of
our knowledge, no prior studies have explored the dynamics of a fractional-order eco-
epidemiological model with two disease strains in the predator population that incorporates
harvesting (4).
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2.1. Positivity and Boundedness

This subsection investigates the positivity and boundedness of the solutions for the
fractional-order eco-epidemiological model (4). The positivity of the solution of model (4)
with positive initial conditions is now investigated. Following model (4), one has

cDqx(t)|x=0 = 0,
cDqy(t)|y=0 = γz + φw ≥ 0,
cDqz(t)|z=0 = θw ≥ 0,

cDqw(t)|w=0 = 0.

Furthermore, the model satisfies the Lipschitz condition, as established in Theorem 2.
Based on the positivity property, Theorem 5 and Theorem 6 of [32], the solutions of the
fractional-order model (4) remain non-negative for t ≥ 0.

The boundedness of the solutions for model (4) is established in the following theorem:

Theorem 1. All the solutions of model (4) starting in R4
+ are uniformly bounded.

Proof. Let ϕ(t) = x(t) + y(t) + z(t) + w(t); then,

cDqϕ(t) = cDqx(t) + cDqy(t) + cDqz(t) + cDqw(t)

= r
(

1 − x
k

)
x + (e − 1)axy − Hx − my − dz − ν w

≤ r
(

1 − x
k

)
x − Hx − my − dz − ν w

≤ − rx2

k
+ rx − σ(x + y + z + w),

where σ = min{H, m, d, ν}; thus,

cDqϕ(t) + σϕ(t) ≤ − rx2

k
+ rx

≤ − r
k

(
x − k

2

)2
+

rk
4

≤ rk
4

.

By using the Lemma 9 in [33], then,

0 ≤ ϕ(t) ≤ ϕ(0)Eq(−σtq) +
rk
4

tqEq,q+1(−σtq),

Here, Eq denotes the Mittag–Leffler function. Using Lemma 5 and Corollary 6 from [33], it
is derived that

0 ≤ ϕ(t) ≤ rk
4σ

, as t → ∞.

As a result, all solutions of model (4) with initial conditions in R4
+ are uniformly bounded

within the region S, where

S =

{
(x, y, z, w) ∈ R4

+ : ϕ(t) ≤ rk
4σ

+ ϵ, ϵ > 0
}

. (5)
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2.2. Existence and Uniqueness

The existence and uniqueness of solutions for the fractional-order model (4) within
the region M × (0, T], where where

M =
{
(x, y, z, w) ∈ R4 : max(|x|, |y|, |z|, |w|) ≤ h

}
,

are investigated as follows:

Theorem 2. For each X0 = (x0, y0, z0, w0) ∈ M, there exists a unique solution X(t) ∈ M of
model (4) with the initial condition X0, which is defined for all t ≥ 0.

Proof. Consider a mapping L(X) = (L1(X), L2(X), L3(X), L4(X)), where

L1(X) = r
(

1 − x
k

)
x − axy − Hx,

L2(X) = eaxy − λyz − βyw + γz + φw − my,

L3(X) = λyz − ηz + θw,

L4(X) = βyw − ξw,

(6)

For any X, X̄ ∈ M, it follows from (6) that

∥L(X)− L(X̄)∥ =|L1(X)− L1(X̄)|+ |L2(X)− L2(X̄)|+ |L3(X)− L3(X̄)|+ |L4(X)− L4(X̄)|

=

∣∣∣∣r(1 − x
k

)
x − axy − Hx − r

(
1 − x̄

k

)
x̄ + ax̄ȳ + Hx̄

∣∣∣∣
+ |eaxy − λyz − βyw + γz + φw − my − eax̄ȳ + λȳz̄ + βȳw̄ − γz̄ − φw̄ + mȳ|
+ |λyz − ηz + θw − λȳz̄ + ηz̄ − θw̄|+ |βyw − ξw − βȳw̄ + ξw̄|

≤r|x − x̄|+ r
k |x − x̄||x + x̄|+ a(1 + e)|xy − x̄y + x̄y − x̄ȳ|

+ H|x − x̄|+ 2λ|yz − ȳz + ȳz − ȳz̄|
+ 2β|yw − ȳw + ȳw − ȳw̄|+ γ|z − z̄|+ φ|w − w̄|
+ m|y − ȳ|+ η|z − z̄|+ θ|w − w̄|+ ξ|w − w̄|

≤r|x − x̄|+ 2rh
k |x − x̄|+ a(1 + e)h|x − x̄|

+ a(1 + e)h|y − ȳ|+ H|x − x̄|+ 2λh|y − ȳ|+ 2λh|z − z̄|
+ 2βh|y − ȳ|+ 2βh|w − w̄|+ γ|z − z̄|+ φ|w − w̄|
+ m|y − ȳ|+ η|z − z̄|+ θ|w − w̄|+ ξ|w − w̄|

≤
(

r +
2rh
k

+ a(1 + e)h + H
)
|x − x̄|

+ (a(1 + e)h + 2λh + 2βh + m)|y − ȳ|
+ (2λh + γ + η)|z − z̄|
+ (2βh + φ + θ + ξ)|w − w̄|

≤U∥X − X̄∥,

where

U = max
{

r +
2rh
k

+ a(1 + e)h + H, a(1 + e)h + 2λh + 2βh + m, 2λh + γ + η, 2βh + φ + θ + ξ

}
.

Thus, L(X) satisfies the Lipschitz condition, proving the existence and uniqueness of solutions for
model (4) under the given initial conditions.
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3. Model Analysis
This section investigates the equilibrium points, basic reproduction number, local

stability, and global stability of the fractional-order eco-epidemiological model (4).

3.1. Equilibrium Points

This subsection and the next will utilize the basic reproduction number (ℜ0) of
model (4) to determine the existence and stability of its equilibrium points. The basic
reproduction number (ℜ0) can be obtained by using the next-generation method [34]. One
can rewrite the fractional-order model (4) as follows

cDqw(t) = βyw − ξw,
cDqz(t) = λyz − ηz + θw,
cDqy(t) = eaxy − λyz − βyw + γz + φw − my,

cDqx(t) = r
(

1 − x
k

)
x − axy − Hx,

(7)

where ξ = φ + ν + θ and η = γ + d. The model (7) can subsequently be expressed
as follows:

DqX(t) = f (X)− v(X),

where

f (X) =


f1

f2

f3

f4

 =


β yw
λ yz
eaxy

0

, v(X) =


v1

v2

v3

v4

 =


ξ w

ηz − θ w
λyz + βyw − γz − φw + my
−r

(
1 − x

k
)
x + axy + Hx

.

The matrices F(X) and V(X) are defined as

F(X) =


∂ f1
∂w

∂ f1
∂z

∂ f1
∂y

∂ f1
∂x

∂ f2
∂w

∂ f2
∂z

∂ f2
∂y

∂ f2
∂x

∂ f3
∂w

∂ f3
∂z

∂ f3
∂y

∂ f3
∂x

∂ f4
∂w

∂ f4
∂z

∂ f4
∂y

∂ f4
∂x

, V(X) =


∂v1
∂w

∂v1
∂z

∂v1
∂y

∂v1
∂x

∂v2
∂w

∂v2
∂z

∂v2
∂y

∂v2
∂x

∂v3
∂w

∂v3
∂z

∂v3
∂y

∂v3
∂x

∂v4
∂w

∂v4
∂z

∂v4
∂y

∂v4
∂x

.

Thus,

F(X) =


βy 0 βw 0
0 λy λz 0
0 0 aex aey
0 0 0 0

,

V(X) =


ξ 0 0 0
−θ η 0 0

βy − φ λy − γ βw + λz + m 0
0 0 ax r

( 2x
k − 1

)
+ ay + H

.

To obtain the eigenvalues of F · V−1, at equilibrium point E1

(
k(r−H)

r , 0, 0, 0
)

, the equation

∣∣∣F · V−1 − µI
∣∣∣ = 0,

can be solved. Based on Theorem 2 in [34], the basic reproduction number of Model 2 is
given as ℜ0 = ae(r−H)k

rm . Additionally, the threshold parameters will be utilized to establish
the conditions for the existence and stability of the equilibrium points of model (4):
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ℜ2 =
β(ae(r − H)k − rm)

ea2kξ
, ℜ22 =

λ(ae(r − H)k − rm)

ea2kη
, ℜ3 =

βη

ξλ
.

It is to be noted that the basic reproduction number (ℜ0) and the threshold parameters (ℜ2

and ℜ22) depend on the prey harvesting (H). This means that the prey harvesting (H) has
a crucial effect on the existence and stability conditions of equilibrium points of model (4).

The fractional-order eco-epidemiological model (4) has four equilibrium points:

1. E0 = (0, 0, 0, 0), which always exists.

2. E1 =
(

k
r (r − H), 0, 0, 0

)
, which exists if r > H.

3. E2 = (x2, y2, 0, 0) where

x2 =
m
ae

, y2 =
ae(r − H)k − rm

ea2k
=

rm
ea2k

(ℜ0 − 1).

Therefore, E2 exists if ℜ0 > 1.
4. E3 = (x3, y3, z3, 0) where

x3 =
k(r − H)

r
− aηk

rλ
= x1 −

aηk
rλ

, y3 =
η

λ
, z3 =

(ℜ22 − 1)eka2η2

r(η − γ)λ2 .

Then, E3 exists if x1 > aηk
rλ and ℜ22 > 1.

5. E4 = (x4, y4, z4, w4) where

x4 =
k(β(r − H)− aξ)

rβ
, y4 =

ξ

β
, z4 =

ea2kξ2(ℜ2 − 1)
C1

, w4 =
ea2kλξ3

βC1
(ℜ2 − 1)(ℜ3 − 1),

where C1 = rβ(λξ(θ + φ − ξ) + β(ξη − γθ − ηφ)). Therefore E4 exists if β > aξ
r−H ,

ℜ2 > 1, ℜ3 > 1 and C1 > 0.

3.2. Local Stability Analysis

In the following, the asymptotic stability of equilibrium points of model (4) is studied.
The Jacobian matrix (J(x, y, z, w)) of model (4) is as follows:

J(x, y, z, w) =


r − 2rx

k − ay − H −ax 0 0
aey aex − λz − βw − m γ − λy φ − βy
0 λz λy − η θ

0 βw 0 βy − ξ

. (8)

The stability analysis of the equilibrium point E0 is not considered, as this state signifies
the extinction of all populations. The E0 is unstable.

Lemma 1. If ℜ0 < 1, then E1 is locally asymptotically stable.

Proof. The J(E1) is

J(E1) =


H − r a(H−r)k

r 0 0
0 (ℜ0 − 1)m γ φ

0 0 −η θ

0 0 0 −ξ

. (9)

The eigenvalues of J(E1) are µ1 = H − r, µ2 = (ℜ0 − 1)m, µ3 = −ξ and µ4 = −η. Thus
|arg(µ1,3,4)| = π > qπ

2 . If ℜ0 < 1, then |arg(µ2)| = π > qπ
2 for all q ∈ (0, 1). As

demonstrated in [35,36], the proof is thus complete.
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Lemma 2. If y2 < min
{

ξ
β , η

λ

}
, then E2 is locally asymptotically stable.

Proof. The J(E2) is

J(E2) =


− rx2

k −ax2 0 0
aey2 0 γ − λy2 φ − βy2

0 0 λy2 − η θ

0 0 0 βy2 − ξ

. (10)

The eigenvalues of J(E2) are µ1 = βy2 − ξ, µ2 = λy2 − η, and µ3,4 are the solutions of:

µ2 + rx2
k µ + ea2x2y2 = 0, (11)

since rx2
k > 0 and ea2x2y2 > 0, the eigenvalues of Equation (11), exhibit negative real parts.

If y2 < min
{

ξ
β , η

λ

}
, then |arg(µ1,2)| = π > qπ

2 for all q ∈ (0, 1). As demonstrated in [35,36],
the proof is thus complete.

Lemma 3. If γ
λ < y3 < ξ

β , then E3 is locally asymptotically stable.

Proof. The J(E3) is

J(E3) =


− rx3

k −ax3 0 0
aey3 − γz3

y3
γ − λy3 φ − β y3

0 λz3 0 θ

0 0 0 βy3 − ξ

.

The eigenvalues of J(E3) are µ1 = βy3 − ξ, while the other three eigenvalues µ2,3,4 are the
solutions of

µ3 + B1µ2 + B2µ + B3 = 0, (12)

where

B1 =
rx3

k
+

γz3

y3
,

B2 =

(
rγz3

ky3
+ ea2y3

)
x3 + λ(λy3 − γ)z3,

B3 = 1
k (rλ(λy3 − γ)x3z3).

It is obvious that B1 > 0, B2 > 0, B3 > 0 and B1B2 > B3 as long as λy3 > γ. By applying the
Routh–Hurwitz criterion, it is established that all solutions of Equation (12) have negative
real parts. Consequently, the equilibrium point E3 is locally asymptotically stable when
γ
λ < y3 < ξ

β .

The stability of the equilibrium point E4 is now investigated. The J(E4) is

J(E4) =


− rx4

k −ax4 0 0
aey4 − γz4+φw4

y4
γ − λy4 φ − β y4

0 λz4 − θw4
z4

θ

0 βw4 0 0

.

The eigenvalues of J(E4) are the solutions of

µ4 + A1µ3 + A2µ2 + A3µ + A4 = 0, (13)
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where

A1 =
rx4

k
+

C2

y4
+

θw4

z4
,

A2 =
θ(kC2 + rx4y4)w4

ky4z4
+

rC2x4

ky4
+ ea2x4y4 − λC3z4 − βC4w4,

A3 =
1

ky4z4
(rθC2w4x4 + y4(kθw4(ea2x4y4 − βC4w4)− βw4(kθC3 + rC4x4)z4 − rλC3x4z2

4)),

A4 = − rβθ(C3z4 + C4w4)x4w4

kz4
,

C2 = γz4 + φw4, C3 = γ − λy4, C4 = φ − βy4.

The conditions for stability at E4 can be derived using the proposition outlined in [37].

3.3. Global Stability Analysis

The global asymptotic stability of all four equilibrium points of the fractional-order
model (4) is investigated as follows.

Theorem 3. The equilibrium point E1 is globally asymptotically stable if ak(r−H)
rm < 1.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = x − x1 − x1 ln
(

x
x1

)
+ y + z + w.

By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38],

cDqV ≤(x − x1)
(

r − rx
k
− ay − H

)
+ eaxy − my − dz − ν w

≤(x − x1)
( rx1

k
− rx

k
− ay

)
+ eaxy − my − dz − ν w

≤− r
k (x − x1)

2 + a(e − 1)xy + (ax1 − m)y − dz − νw.

Thus, cDqV ≤ 0 if ax1
m < 1 which is equivalent to ak(r−H)

rm < 1. By applying Lemma 4.6
in [39], the equilibrium point E1 is proven to be globally asymptotically stable.

Theorem 4. The equilibrium point E2 is globally asymptotically stable if rλk < 4σγ.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = C5

(
x − x2 − x2 ln

(
x
x2

))
+ y − y2 − y2 ln

(
y
y2

)
+ z + w.

By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38].
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cDqV ≤C5(x − x2)
(

r − rx
k
− ay − H

)
+ (y − y2)(aex − λz − m) +

(
y − y2

y

)
(γz − βyw + φw)

+ λyz − γz − dz + θw + βyw − φw − νw − θ w

≤− r C5
k (x − x2)

2 − a C5(x − x2)(y − y2)

+ ae(x − x2)(y − y2) + y2

(
λ − γ

y

)
z

+

(
− φy2

y
+ βy2 − ν

)
w − dz

≤− rC5
k (x − x2)

2 + a(e − C5)(x − x2)(y − y2)

+ y2

(
λ − γ

ymax

)
z.

Suppose C5 = e. Thus, cDq ≤ 0 when λ < γ
ymax

which is equivalent to rλk < 4σγ. Hence,
the proof is established.

Theorem 5. The equilibrium point E3 is globally asymptotically stable if aex3 < λz3 + m,
λ < γ

ymax
+ d

y3
, βy3 < ν, and my3 + γz3 + dz3 < aex3y3.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = e
(

x − x3 − x3 ln
(

x
x3

))
+ y − y3 − y3 ln

(
y
y3

)
+ z − z3 − z3 ln

(
z
z3

)
+ w.

By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38],

cDqV ≤e(x − x3)
(

r − rx
k
− ay − H

)
+

(
1 − y3

y

)
(aexy − λyz − βyw + γz + φw − my)

+
(

1 − z3

z

)
(λyz − γz − dz + θw) + βyw − φw − νw − θ w

≤− re
k (x − x3)

2 + (aex3 − λz3 − m)y + d(z3 − z)

+

(
λy3 −

γy3

y

)
z + (βy3 − ν)w + (my3 + γz3 − aex3y3)

≤− re
k (x − x3)

2 + (aex3 − λz3 − m)y

+

(
λy3 −

γy3

ymax
− d

)
z + (βy3 − ν)w + (my3 + γz3 + dz3 − aex3y3).

Thus, cDq ≤ 0 when aex3 < λz3 + m, λ < γ
ymax

+ d
y3

, βy3 < ν, and my3 + γz3 + dz3 <

aex3y3. Consequently, the theorem is proven.

Theorem 6. The equilibrium point E4 is globally asymptotically stable if aex4 < λz4 + βw4 + m,
λ < γ

ymax
+ d

y4
, βy4 < φy4

ymax
+ θz4

zmax
+ ν, and my4 + γz4 + ξw4 + dz4 < aex4y4.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = e
(

x − x4 − x4 ln
(

x
x4

))
+ y − y4 − y4 ln

(
y
y4

)
+ z − z4 − z4 ln

(
z
z4

)
+ w − w4 − w4 ln

(
w
w4

)
.
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By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38],

cDqV ≤e(x − x4)
(

r − rx
k
− ay − H

)
+

(
1 − y4

y

)
(aexy − λyz − βyw + γz + φw − my)

+
(

1 − z4

z

)
(λyz − γz − dz + θw) + (w − w4)(βy − φ − ν − θ)

≤− re
k (x − x4)

2 + (aex4 − λz4 − βw4 − m)y

+

(
λy4 −

γy4

y

)
z +

(
βy4 − ν − φy4

y
− θz4

z

)
w

+ (my4 + γz4 + ξw4 − aex4y4) + d(z4 − z)

≤− re
k (x − x4)

2 + (aex4 − λz4 − βw4 − m)y

+

(
λy4 −

γy4

ymax
− d

)
z +

(
βy4 − ν − φy4

ymax
− θz4

zmax

)
w

+ (my4 + γz4 + ξw4 + dz4 − aex4y4).

Thus, cDqV(x, y, z) ≤ 0, when aex4 < λz4 + βw4 + m, λ < γ
ymax

+ d
y4

, βy4 < φy4
ymax

+ θz4
zmax

+ ν

and my4 + γz4 + ξw4 + dz4 < aex4y4. By applying Lemma 4.6 in [39], the equilibrium point
E4 is proven to be globally asymptotically stable.

4. Numerical Simulations
This section presents numerical simulations performed using the numerical method

described in [40,41]. The numerical simulations are conducted to illustrate the theoretical
findings regarding the fractional order (q) and stability of model (4). The parameter values
used in the simulations are detailed in Table 2, and most of them are given in [30].

Table 2. Parameter values for model (4).

Case r m e a k γ φ β λ d ν H θ Figures

1 1 0.5 0.07 0.02 100 0.9 0.3 0.2 0.4 0.25 0.4 0.01 0.01 Figure 1
2 1 0.5 0.7 0.5 1000 0.25 0.47 0.6 0.48 0.39 0.33 0.35 0.1 Figure 2
3 1 0.05 0.7 0.2 5000 0.9 0.3 0.2 0.4 0.25 0.4 0.01 0.01 Figure 3
4 1 0.05 0.6 0.5 1000 0.25 0.3 0.6 0.48 0.39 0.33 0.1 0.1 Figure 4

In case 1 of Table 2, the fractional-order model (4) shows the equilibrium point
E1 = (99, 0, 0, 0), where all populations are healthy, and no infections exist. In this case,
ℜ0 = 0.2772 < 1, which indicates that E1 is locally asymptotically stable. This coincides
with Lemma 1 and is indicated in Figure 1. Figure 1 demonstrates that the populations
remain stable across various values of the fractional order (q), with the solutions reaching
the equilibrium point E1 = (99, 0, 0, 0).

In case 2 of Table 2, the fractional-order model (4) shows the equilibrium point
E2 = (1.428, 1.297, 0, 0). In this case, y2 = 1.29714 < min

{
ξ
β = 1.5, η

λ = 1.3
}

, which means
that E2 is locally asymptotically stable. This coincides with the result of Lemma 2 and is
shown in Figure 2. It can be observed from Figure 2 that the oscillation of fractional-order
model (4) decreases with decreasing the value of the fractional order (q). Figure 2 illustrates
that the populations maintain stability for various values of the fractional order (q ∈ (0, 1)),
with the solutions reaching the equilibrium point E2 = (1.428, 1.297, 0, 0).
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Figure 1. The local asymptotic stability of E1 for various values of the fractional order (q).

Figure 2. The local asymptotic stability of E2 for various values of the fractional order (q).

In case 3 of Table 2, the fractional-order model (4) shows the equilibrium point
E3 = (2075, 2.875, 3340.175, 0). In this case, γ

λ = 2.25 < y3 = 2.875 < ξ
β = 3.55, which

indicates that E3 is locally asymptotically stable. This coincides with the result of Lemma 3
and is indicated in Figure 3. In order to verify the Routh–Hurwitz criteria of Lemma 3, one
has B1 = 1046.04 > 0, B2 = 934.987 > 0, B3 = 138.617 > 0 and B1B2 − B3 = 977891 > 0.
Therefore, the fractional-order model (4) exhibits local asymptotic stability around E3,
as demonstrated in Figure 3. Figure 3 shows that the populations remain stable for different
values of fractional order (q ∈ (0, 1)), with the solutions reaching the equilibrium point
E3 = (2075, 2.875, 3340.175, 0).

In case 4 of Table 2 the fractional-order model (4) shows the coexistence equilibrium
point E4 = (291.667, 1.217, 185.104, 103.658), where all the populations in the ecosystem
coexist: the prey (x), susceptible predator (y), predator infected by the first disease (z),
and predator infected by the second disease (w) reach constant levels over time. In this
case, the E4 is locally asymptotically stable as shown in Figure 4. This means that the
two infectious diseases will persist in the predator population. Figure 4 indicates that the
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populations remain stable for different values of fractional order (q ∈ (0, 1)), with the
solutions reaching the equilibrium point E4 = (291.667, 1.217, 185.104, 103.658). It is to
be noted that the integer-order model (1) given in [30] cannot be sustained at a stable
coexistence equilibrium level. However, the newly proposed fractional-order model (4)
can be sustained at the stable coexistence equilibrium level as illustrated in Figure 4 and
coincides with Theorem 6. Therefore, the fractional order has a stabilization effect.

Figure 3. The local asymptotic stability of E3 for various values of the fractional order (q).

Figure 4. The local asymptotic stability of E4 for various values of the fractional order (q).

Figure 5 shows the 3D plot of the basic reproduction number ℜ0 when the predation
rate of susceptible predator (a) and prey harvesting (H) varies. It is observed that as the
predation rate of susceptible predator (a) increases, ℜ0 will increase and cross the threshold
ℜ0 = 1, thus leading to the outbreak of the diseases. Moreover, when the prey harvesting
(H) increases, ℜ0 will increase. Therefore, one can control the reproduction ℜ0 by reducing
the predation rate of susceptible predator (a) and prey harvesting (H).
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Figure 5. The 3D plot of the basic reproduction number ℜ0 when the predation rate of susceptible
predator (a) and prey harvesting (H) varies.

5. Conclusions
This paper proposed and analyzed a fractional-order eco-epidemiological model in-

corporating two disease strains in the predator population and harvesting. The model
categorizes the populations into four groups: prey (x), susceptible predators (y), preda-
tors infected by the first disease (z), and predators infected by the second disease (w).
The proposed model (4) has been analyzed to investigate its dynamical behavior. The
model’s dynamics, including positivity, boundedness, and the existence and uniqueness of
solutions, have been studied. The proposed eco-epidemiological model exhibits four non-
negative equilibrium points, and the threshold parameters have been utilized to determine
equilibrium existence and stability conditions. Furthermore, sufficient conditions for the
locally asymptotic stability of the four equilibrium points have been derived. The global
properties of the equilibrium points E1, E2, E3 and E4 have been investigated by construct-
ing suitable Lyapunov functions. Numerical simulations have been performed to illustrate
the theoretical findings, demonstrating the influence of the fractional order (q) on the
stability of the equilibrium points. It has been shown that the populations remain stable
for different values of fractional order (q ∈ (0, 1)), though the solutions reach the obtained
equilibrium points. It has been observed that the integer-order model (1) given in [30]
cannot be sustained at a stable coexistence equilibrium level. However, it has been shown
that the fractional-order model (4) can be sustained at the stable coexistence equilibrium
level. Therefore, the fractional order has a stabilization effect. Future research will explore
the inclusion of time delays in the system and analyze their potential effect.

Author Contributions: Methodology, M.E.-S.; Software, M.M.; Validation, M.E.-S.; Investigation,
M.M.; Writing—original draft, M.M.; Writing—review & editing, M.E.-S.; Visualization, M.E.-S. and
M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The researchers would like to thank the Deanship of Scientific Research, Qassim
University, for funding the publication of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.



Axioms 2025, 14, 53 15 of 16

References
1. Wang, Z.; Xie, Y.; Lu, J.; Li, Y. Stability and bifurcation of a delayed generalized fractional-order prey–predator model with

interspecific competition. Appl. Math. Comput. 2019, 347, 360–369. [CrossRef]
2. Boccara, N. Modeling Complex Systems; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010.
3. Khajanchi, S. Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function.

Appl. Math. Comput. 2017, 302, 122–143. [CrossRef]
4. Nosrati, K.; Shafiee, M. Dynamic analysis of fractional-order singular Holling type-II predator–prey system. Appl. Math. Comput.

2017, 313, 159–179. [CrossRef]
5. Zhang, F.; Chen, Y.; Li, J. Dynamical analysis of a stage-structured predator-prey model with cannibalism. Math. Biosci. 2019,

307, 33–41. [CrossRef] [PubMed]
6. Das, M.; Samanta, G.P. A prey-predator fractional order model with fear effect and group defense. Int. J. Dyn. Control 2021, 9, 334–349.

[CrossRef]
7. Blackmore, D.; Chen, J.; Perez, J.; Savescu, M. Dynamical properties of discrete Lotka–Volterra equations. Chaos Solitons Fractals

2001, 12, 2553–2568. [CrossRef]
8. Biswas, S.; Sasmal, S.K.; Samanta, S.; Saifuddin, M.; Pal, N.; Chattopadhyay, J. Optimal harvesting and complex dynamics in a

delayed eco-epidemiological model with weak Allee effects. Nonlinear Dyn. 2017, 87, 1553–1573. [CrossRef]
9. Samui, P.; Mondal, J.; Khajanchi, S. A mathematical model for COVID-19 transmission dynamics with a case study of India.

Chaos Solitons Fractals 2020, 140, 110173. [CrossRef]
10. Gurski, K.; Peace, A.; Prosper, O.; Stepien, T.; Teboh-Ewungkem, M.I. Mathematicians Navigating Parenthood: Lessons Learned,

Methodologies, and Useful Solutions That Were Beneficial During the COVID-19 Pandemic. Not. Am. Math. Soc. 2023, 69, 1918–1922.
11. Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Dynamical analysis of a fractional order eco-epidemiological model with

nonlinear incidence rate and prey refuge. J. Appl. Math. Comput. 2021, 65, 623–650. [CrossRef]
12. Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Dynamical analysis of a fractional-order eco-epidemiological model with

disease in prey population. Adv. Differ. Equ. 2020, 2020, 48. [CrossRef]
13. Bulai, I.M.; Hilker, F.M. Eco-epidemiological interactions with predator interference and infection. Theor. Popul. Biol. 2019, 130,

191–202. [CrossRef] [PubMed]
14. Moustafa, M.; Abdullah, F.A.; Shafie, S.; Ismail, Z. Dynamical behavior of a fractional-order Hantavirus infection model

incorporating harvesting. Alex. Eng. J. 2022, 61, 11301–11312. [CrossRef]
15. Juneja, N.; Agnihotri, K. Global Stability of Harvested Prey–Predator Model with Infection in Predator Species. In Information and

Decision Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 559–568.
16. Agnihotri, K.; Juneja, N. An eco-epidemic model with disease in both prey and predator. IJAEEE 2015, 4, 50–54.
17. Gao, X.; Pan, Q.; He, M.; Kang, Y. A predator–prey model with diseases in both prey and predator. Phys. A Stat. Mech. Its Appl.

2013, 392, 5898–5906. [CrossRef]
18. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,

The Netherlands, 2006.
19. Li, H.; Muhammadhaji, A.; Zhang, L.; Teng, Z. Stability analysis of a fractional-order predator–prey model incorporating a

constant prey refuge and feedback control. Adv. Differ. Equ. 2018, 2018, 325. [CrossRef]
20. Yang, Y.; Xu, L. Stability of a fractional order SEIR model with general incidence. Appl. Math. Lett. 2020, 105, 106303. [CrossRef]
21. Shi, R.; Lu, T.; Wang, C. Dynamic analysis of a fractional-order delayed model for hepatitis B virus with CTL immune response.

Virus Res. 2020, 277, 197841. [CrossRef]
22. Elsadany, A.A.; Matouk, A.E. Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization.

J. Appl. Math. Comput. 2015, 49, 269–283. [CrossRef]
23. Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Dynamical analysis of a fractional-order Rosenzweig–MacArthur model

incorporating a prey refuge. Chaos Solitons Fractals 2018, 109, 1–13. [CrossRef]
24. El-Saka, H.A.; Lee, S.; Jang, B. Dynamic analysis of fractional-order predator–prey biological economic system with Holling type

II functional response. Nonlinear Dyn. 2019, 96, 407–416. [CrossRef]
25. Moustafa, M.; Zali, S.M.; Shafie, S. Dynamical Analysis of Eco-Epidemiological Model with Fading Memory. J. Appl. Nonlinear

Dyn. 2024, 13, 191–202. [CrossRef]
26. Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Dynamical Analysis of a Fractional-Order Hantavirus Infection Model.

Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 171–181. [CrossRef]
27. Wang, X.; Wang, Z.; Xia, J. Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with

incommensurate orders. J. Frankl. Inst. 2019, 356, 8278–8295. [CrossRef]
28. Moustafa, M.; Abdullah, F.A.; Shafie, S.; Amirsom, N.A. Global stability of a fractional-order eco-epidemiological model with

infected predator: Theoretical analysis. Commun. Math. Biol. Neurosci. 2023, 56, 1–11.

http://doi.org/10.1016/j.amc.2018.11.016
http://dx.doi.org/10.1016/j.amc.2017.01.019
http://dx.doi.org/10.1016/j.amc.2017.05.067
http://dx.doi.org/10.1016/j.mbs.2018.11.004
http://www.ncbi.nlm.nih.gov/pubmed/30445129
http://dx.doi.org/10.1007/s40435-020-00626-x
http://dx.doi.org/10.1016/S0960-0779(00)00214-9
http://dx.doi.org/10.1007/s11071-016-3133-2
http://dx.doi.org/10.1016/j.chaos.2020.110173
http://dx.doi.org/10.1007/s12190-020-01408-6
http://dx.doi.org/10.1186/s13662-020-2522-5
http://dx.doi.org/10.1016/j.tpb.2019.07.016
http://www.ncbi.nlm.nih.gov/pubmed/31445973
http://dx.doi.org/10.1016/j.aej.2022.05.004
http://dx.doi.org/10.1016/j.physa.2013.07.077
http://dx.doi.org/10.1186/s13662-018-1776-7
http://dx.doi.org/10.1016/j.aml.2020.106303
http://dx.doi.org/10.1016/j.virusres.2019.197841
http://dx.doi.org/10.1007/s12190-014-0838-6
http://dx.doi.org/10.1016/j.chaos.2018.02.008
http://dx.doi.org/10.1007/s11071-019-04796-y
http://dx.doi.org/10.5890/JAND.2024.06.001
http://dx.doi.org/10.1515/ijnsns-2018-0292
http://dx.doi.org/10.1016/j.jfranklin.2019.07.028


Axioms 2025, 14, 53 16 of 16

29. Thorne, E.T.; Williams, E.S. Disease and endangered species: The black-footed ferret as a recent example. Conserv. Biol. 1988,
2, 66–74. [CrossRef]

30. Roman, F.; Rossotto, F.; Venturino, E. Ecoepidemics with two strains: Diseased predators. WSEAS Trans. Biol. Biomed. 2011,
8, 73–85.

31. Das, M.; Maiti, A.; Samanta, G.P. Stability analysis of a prey-predator fractional order model incorporating prey refuge. Ecol.
Genet. Genom. 2018, 7, 33–46. [CrossRef]
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