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1. Introduction
The classical gamma function Γ(x) is usually defined for real x > 0 in the following way:

Γ(x) = lim
n→∞

n! nx

x(x + 1) · · · (x + n)
=
∫ ∞

0
tx−1e−t dt.

The quotient above is called the p-analogue or the p-deformation of the gamma function, that is

Γp(x) =
p! px

x(x + 1) · · · (x + p)
=
∫ p

0
tx−1

(
1 − t

p

)p
dt,

where p ∈ N and obviously limp→∞ Γp(x) = Γ(x). For the rising factorial that appears in
the denominator, we often use the Pochhammer symbol, denoted by

(x)n = x(x + 1) · · · (x + n − 1) =
Γ(x + n)

Γ(x)
. (1)

In [1], the authors introduced a generalization of the Pochhammer symbol

(x)n,k = x(x + k)(x + 2k) · · · (x + (n − 1)k), (2)

which appears in various settings, such as the combination of creation and annihilation
operators [2,3] and the perturbation computation of Feynman integrals [4]. Motivated
by this, they also defined the k-analogue of the gamma function Γk(x) for real k > 0 and
x > 0 as

Γk(x) = lim
n→∞

n! kn (nk)
x
k −1

x(x + k) . . . (x + (n − 1)k)
. (3)
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Of course, limk→1 Γk(x) = Γ(x), and we can easily derive a direct relation to the
standard gamma function:

Γk(x) = k
x
k −1Γ( x

k ). (4)

Applying (4), the properties of k-gamma and related functions are easily transferred
from the standard gamma function. Note that Γk(k) = 1 and the following recursive
property holds,

Γk(x + k) = xΓk(x),

which leads to the k-factorial function for x ∈ N. Hence, the k-Pochhammer symbol can be
written through the quotient of the k-gamma functions as

(x)n,k = x(x + k)(x + 2k) · · · (x + (n − 1)k) =
Γk(x + nk)

Γk(x)
, (5)

which corresponds nicely to the standard relation (1).
Note that introducing the k-analogue is not as significant for mathematical purposes

as for practical ones because it has a diverse application and simplifies notation and
calculation. For example, the authors in [5] used k-gamma for combinatorial analysis
in view of applications in statistics, and the authors in [6] used such functions while
solving the Schrödinger equation for harmonium and related models in view of important
applications in quantum chemistry. Also, it is interesting that the k-gamma function and
related k-Pochhammer symbol have a significant role in fractional calculus, see [7] and the
papers cited therein.

Most recently in [8], the authors combined the p and k analogues of the gamma
function and defined the (p, k)-gamma function for p ∈ N and real k > 0 and x > 0 in the
following way:

Γp,k(x) =
(p + 1)! kp+1 (pk)

x
k −1

x(x + k) . . . (x + pk)
. (6)

It is clear that Γp,k yields a commutative diagram with other definitions of the gamma function:

Γp,k Γk

Γp Γ

p→∞

k→1 k→1

p→∞

Over the last few years, various properties and many inequalities related to (p, k)-
gamma and other associated functions have been studied, see [8–16].

The asymptotic behavior of the factorial function, and consequently of the gamma
function, has been studied for centuries. The famous Stirling asymptotic formula

n! ∼
√

2πn
(n

e

)n
, n → ∞,

is a shortening of asymptotic expansion according to Barnes [17]

log Γ(x + t) ∼ 1
2

log 2π +

(
x + t − 1

2

)
log x − x +

∞

∑
n=1

(−1)n+1Bn+1(t)
n(n + 1) xn , x → ∞. (7)

Here, t = 1 leads to the formula for the factorial function, but parameter t is introduced
in the general expansion of the gamma function, since it appears naturally as a variable
in Bernoulli polynomials Bn(t) in the coefficients of this expansion. It also easily yields
expansions with shifted variables, which give better precision. In a series of papers, many
other Stirling-type asymptotic expansions for the gamma function were obtained, and their
numerical precision was compared; for an overview, see [18].
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Asymptotic analysis of the gamma function is an important tool in the application of
special functions, but has not been studied for the (p, k)-analogues in the existing literature
and papers. Therefore, the main aim of this paper is to obtain asymptotic expansions for the
(p, k)-gamma function and other (p, k)-analogues of functions related to gamma, namely
the digamma function, the polygamma functions, and the quotient of two gamma functions,
which will be discussed in the last section. Algorithms for calculating coefficients in these
expansions will be derived and some examples will be presented, namely the expansion
for the k-Pochhammer symbol. In the fourth section, the numerical precision of the derived
asymptotic formulas for the (p, k)-gamma function is shown and compared.

2. Asymptotic Expansion of (p, k)-Gamma Function
In this section, we will derive the main Stirling-type expansion (7) of the (p, k)-gamma

function, but let us start with the asymptotic expansion of the k-gamma function, which is
useful to have as a separate result.

In [1], the authors deduced only the beginning of the asymptotic formula for the
k-gamma function in the form

Γk(x + 1) ∼
√

2π

kx
x

x+1
k e−

x
k , x → ∞, (8)

but they did not present the general expansion nor the expression for the coefficients. Note that
for the k-gamma function, it is more natural to introduce parameter t in the form Γk(x + kt).
This leads to the Bernoulli polynomials Bn(t) in the same form as in the original expansion (7),
but this will also yield a direct connection to the k-Pochhammer symbol because of relation (5).
The final result is in the next proposition, which can be easily obtained by taking the logarithm
of (4) and applying expansion (7), so we will leave out the details.

Proposition 1. The logarithm of the k-gamma function has the following asymptotic expansions as
x → ∞:

log Γk(x + kt) ∼ 1
2

log
2π

k
+

(
x
k
+ t − 1

2

)
log x − x

k
+

∞

∑
n=1

(−1)n+1knBn+1(t)
n(n + 1) xn . (9)

Note that for t = 0, we obtain Bernoulli numbers Bn = Bn(0). For example, the
first few terms in the asymptotic expansion for k = 2, which leads to the double factorial
function, are as follows:

Γ2(x) ∼
√

π

x

( x
e

)x
exp

(
1

6x
− 1

45x3 +
8

315x5 − 8
105x7 + . . .

)
, x → ∞. (10)

For the asymptotic expansion of Γp,k, parameter t will be introduced in the same way
as for Γk, that is, as x + kt, to preserve the properties of Bernoulli polynomials. In the next
theorem, we will present the (p, k)-analogue of expansion (7).

Theorem 1. The logarithm of the (p, k)-gamma function has the following asymptotic expansion
as x → ∞:

log Γp,k(x + kt) ∼ log(p + 1)! +
( x

k
+ t − 1

)
log pk + (p + 1) log

k
x
+

+
∞

∑
n=1

(−k)n Bn+1(t + p + 1)− Bn+1(t)
n(n + 1)

x−n.
(11)
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Proof. By applying (5), Γp,k can be written through the quotient of k-gamma functions in
the following way

Γp,k(x) =
(p + 1)! kp+1 (pk)

x
k −1

(x)p+1,k
= (p + 1)! kp+1 (pk)

x
k −1 Γk(x)

Γk(x + (p + 1)k)
. (12)

Now, by taking the logarithm of (12), it follows that

log Γp,k(x + kt) = log(p + 1)! +
( x

k
+ t − 1

)
log pk + (p + 1) log k+

+ log Γk(x + kt)− log Γk(x + (t + p + 1)k),
(13)

and finally we apply (9) from Proposition 1.

Here, it is worthy to mention that Bernoulli polynomials satisfy nicely the property

Bn+1(s + 1)− Bn+1(s) = (n + 1)sn.

Hence, the quotient appearing in the coefficients of (11) can be calculated as follows:

Bn+1(t + p + 1)− Bn+1(t)
n + 1

=
p

∑
j=0

(t + j)n =
p

∑
j=0

n

∑
i=0

(
n
i

)
ti jn−i. (14)

Here are the first few terms in the (p, k)-analogue of Stirling asymptotic expansion for
t = 0 as x → ∞:

Γp,k(x) ∼ (p + 1)!(pk)
x
k −1
( k

x

)p+1
exp

(
kc1(p)

x
+

k2c2(p)
x2 − k3c3(p)

x3 +
k4c4(p)

x4 + . . .
)

, (15)

where

c1(p) = −1
2

p(p + 1),

c2(p) =
1

12
p(p + 1)(2p + 1),

c3(p) = − 1
12

p2(p + 1)2,

c4(p) =
1

120
p(p + 1)(2p + 1)(p2 + 3p − 1).

Note that in this case, the coefficients are directly connected to the known formulas for the
sum of powers of the first p natural numbers. In the fourth section, we will discuss the
numerical precision of this expansion for various values of p and k.

Recall that the classical digamma and polygamma functions are defined as derivatives
of the logarithm of the gamma function. Analogously, we can define the (p, k)-digamma
and (p, k)-polygamma functions as

ψ
(i)
p,k(x) =

di

dxi log Γp,k(x).

Recently, many monotonicity properties and inequalities related to the (p, k)-digamma and
polygamma functions have been studied by various authors, see [8,10,11,13–16].
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The digamma function has the following known asymptotic expansion, see [17]:

ψ(x + t) ∼ log x +
∞

∑
n=1

(−1)n−1Bn(t)
n

x−n, x → ∞. (16)

Similarly, by differentiating (11), we can obtain asymptotic expansions of the (p, k)-
analogues of the digamma and polygamma functions.

Corollary 1. ψp,k(x) has the following asymptotic expansion as x → ∞:

ψp,k(x + kt) ∼ 1
k

log(px) +
1
k

∞

∑
n=1

(−k)n Bn(t + p + 1)− Bn(t)
n

x−n,

For the (p, k)-polygamma function, the following asymptotic expansion is valid as x → ∞:

ψ
(i)
p,k(x + kt) ∼ (−1)i−1(i − 1)!

kxi − 1
ki

∞

∑
n=i

(−k)n n!
Bn−i+1(t + p + 1)− Bn−i+1(t)

(n − i)! xn+1 .

Again, the difference in Bernoulli polynomials in the coefficients of these expansions
can be calculated through sum (14). For example, the first few terms in the expansion of
ψp,k for t = 0 are exactly formulas for the sum of powers of the first p natural numbers. As
x → ∞, we have

ψp,k(x) ∼ 1
k

log px − p + 1
x

+
kp(p + 1)

2x2 − k2 p(p + 1)(2p + 1)
6x3 +

k3 p2(p + 1)2

4x4 + . . .

3. Related Asymptotic Expansions of (p, k)-Gamma Function
In this section, we will deal with the asymptotic expansions of the gamma function,

which do not involve the exponential function like classical Stirling expansion (15). These
expansions are in fact generalizations of the Laplace expansion for the factorial function:

n! ∼
√

2πn
(n

e

)n
(

1 +
1

12n
+

1
288n2 − 139

51840n3 + . . .
)

, n → ∞.

Such an approach was studied by the authors in [19], and they presented the general
expansion for m > 0 as x → ∞:

log Γ(x + t) ∼ (x + t − 1
2 ) log x − x + 1

2 log(2π) +
1
m

log

(
∞

∑
n=0

Pn(t)x−n

)
, (17)

where polynomials Pn(t) are defined by P0(t) = 1 and by the simple recursive formula

Pn(t) =
m
n

n

∑
i=1

(−1)i+1Bi+1(t)
i + 1

Pn−i(t), n ≥ 1. (18)

Many known asymptotic formulas are specific cases of this expansion for various
choices of parameter m; for example, m = 1 gives the Laplace formula and m = 6 leads to
the famous Ramanujan formula. For a complete review and comparison of these expansions,
see [18]. However, to obtain the (p, k)-analogue of expansion (17), we cannot simply use
the same method as in Theorem 1. In this case, we need additional manipulations with
asymptotic power series, but this has already been carried out for the quotient of two
gamma functions.



Axioms 2025, 14, 55 6 of 12

The ratio in the form
Γ(x + t)
Γ(x + s)

(19)

has been studied by many authors in the past decades. Many monotonicity properties
and inequalities concerning this quotient have been obtained, namely for the Wallis ratio
Γ(n + 1)
Γ(n + 1

2 )
, which comes from the famous Wallis formula for number π. For an extensive

overview of this topic, see [20]. In [21], the authors derived the asymptotic expansion of
this quotient in the form

Γ(x + t)
Γ(x + s)

∼ xt−s

(
∞

∑
n=0

Pn(t, s)x−n

) 1
m

, x → ∞, (20)

where polynomials Pn(t, s) are defined by P0(t, s) = 1 and the recursive relation

Pn(t, s) =
m
n

n

∑
k=1

(−1)k+1 Bk+1(t)− Bk+1(s)
k + 1

Pn−k(t, s), n ≥ 1. (21)

Similarly as for the gamma function, parameter m > 0 was introduced to generalize
known approximation formulas for the Wallis ratio, and the authors showed that choice
m = 1

t−s is more natural than the classical approach m = 1 by Tricomy-Erdely (1951) [17].
We will use this result to obtain the following expansion.

Theorem 2. The logarithm of the (p, k)-gamma function has the following asymptotic expansion
for m > 0 when x → ∞:

log Γp,k(x + kt) ∼ log(p + 1)! + (
x
k
+ t − 1) log pk + (p + 1) log

k
x
+

1
m

log
∞

∑
n=0

knQn(t, p)
xn , (22)

where the polynomials Qn(t, p) are defined by Q0(t, p) = 1 and the recursive relation

Qn(t, p) =
m
n

n

∑
j=1

(−1)j Bj+1(t + p + 1)− Bj+1(t)
j + 1

Qn−j(t, p), n ≥ 1. (23)

Proof. In (12), we connected the (p, k)-gamma function with the quotient of two k-gamma
functions, but using (4), we further have

Γk(x)
Γk(x + (p + 1)k)

=
k

x
k −1Γ( x

k )

k
x
k +pΓ( x

k + p + 1)
= k−p−1 Γ( x

k )

Γ( x
k + p + 1)

.

This leads to

log Γp,k(x + kt) = log(p + 1)! +
( x

k
+ t − 1

)
log pk + (p + 1) log k+

+ log
Γ( x

k + t)
Γ( x

k + t + p + 1)
, x → ∞.

(24)

and we can apply (20) with s = t + p + 1.

Similarly as in the previous section, the quotient of Bernoulli polynomials appearing
in (23) can be calculated by (14).
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Let us show an example for t = 0 and m = 1, that is, the (p, k)-analogue of Laplace
asymptotic expansion, as x → ∞:

Γp,k(x) ∼ (p + 1)! (pk)
x
k −1
( k

x

)p+1
(

1 +
k q1(p)

x
+

k2 q2(p)
x2 +

k3 q3(p)
x3 + . . .

)
where the first few polynomials qn(p) are as follows:

q1(p) = −1
2

p(p + 1),

q2(p) =
1

24
p(p + 1)(p + 2)(3p + 1),

q3(p) = − 1
48

p2(p + 1)2(p + 2)(p + 3).

However, as we have already mentioned, the most natural choice for the parameter m
is 1/(t − s), which in our case is m = 1/(p + 1). Then, we have the following asymptotic
expansion when x → ∞:

Γp,k(x) ∼ (p + 1)! (pk)
x
k −1
(

k
x
+

k2 q1(p)
x2 +

k3 q2(p)
x3 +

k4 q3(p)
x4 + . . .

)p+1

, (25)

where the first few coefficients are obviously simpler than before,

q1(p) = − p
2

,

q2(p) =
1

24
p(7p + 2),

q3(p) = − 1
16

p2(3p + 2).

It is common in the literature to study asymptotic expansions through shifted variables.
For example, De Moivre’s ’n-half’ formula follows from (17) for x = n + 1

2 and t = 1
2 with

m = 1:

n! ∼
√

2π

(
n + 1

2
e

)n+ 1
2
(

1 − 1
24(n + 1

2 )
+

1
1152(n + 1

2 )
2
+ . . .

)
, n → ∞. (26)

Shifted formulas provide a much better numerical approximation of the gamma
function than original formulas, see [18] for details.

Hence, we will derive the (p, k)-analogue of the ’n-half’ formula. The next expansion
follows from (22), with x + 1

2 k, t = − 1
2 and m = 1 as x → ∞:

Γp,k(x) ∼ (p + 1)!(pk)
x
k −1
( k

x + 1
2 k

)p+1
(

1 +
k s1(p)
x + 1

2 k
+

k2 s2(p)
(x + 1

2 k)2
+

k3 s3(p)
(x + 1

2 k)3
+ . . .

)
,

where

s1(p) = −1
2
(p2 − 1),

s2(p) =
1

24
(p2 + 3p + 2)(3p2 − 5p + 3),

s3(p) = − 1
48

(p2 − 1)(p2 + 5p + 6)(p2 − p + 1),
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and for m = 1/(p + 1) we again have a simpler expansion as x → ∞:

Γp,k(x) ∼ (p + 1)!(pk)
x
k −1

(
k

x + 1
2 k

− k2(p − 1)
2(x + 1

2 k)2
+

k3(7p2 − 10p + 6)
24(x + 1

2 k)3
+ . . .

)p+1

.

However, there is an even more natural shift for this type of asymptotic expansion.
Recall that the (p, k)-gamma function (12) is directly connected with the quotient of gamma
functions. The authors in [21] proved that polynomials Pn(t, s) in expansion (20) can be

expressed through the intrinsic variables α = t+s−1
2 , β = 1−(t−s)2

4 and that the most natural
shift for the quotient of gamma functions is x+ α. Then, all odd coefficients in the expansion
are equal to zero. In our case, variable α is equal to α = p

2 . Hence, from (22), taking t = − 1
2 p

and m = 1/(p + 1), the following expansion holds true when x → ∞:

Γp,k(x) ∼ (p + 1)!(pk)
x
k −1

(
k

x + 1
2 pk

− k3 r2(p)
(x + 1

2 pk)3
+

k5 r4(p)
(x + 1

2 pk)5
+ . . .

)p+1

, (27)

where

r2(p) =
1

24
p(p + 2),

r4(p) =
1

5760
p(p + 2)(23p2 + 46p − 24).

4. Numerical Precision of the Asymptotic Formulas
We will now check the numerical precision of the asymptotic formulas for the (p, k)-

analogues of the gamma function. Namely, we will compare the Stirling-type formula (15)
with the exponential function, the Laplace-type formula (25) with the natural choice of
parameter m = p + 1, and the shifted ’half’ formula (27), which only has even coefficients
in its expansion.

Numerical precision will be expressed through the number of exact decimal digits
(EDDs), which are defined by

EDD(x) = − log10

∣∣∣∣1 − formula(x)
exact(x)

∣∣∣∣
for some values of variable x. Since we analyze asymptotic formulas for x → ∞, only big
values of x will be considered. In the following tables, the (n)-th column is the EDDs of the
approximation formula (in the given row) using the series up to the n-th coefficient. All the
calculations were carried out with Mathematica. Here, it is worthy to note that Bernoulli
polynomials are implemented in most software packages, but nevertheless they can also
be manually implemented by various efficient algorithms from the standard literature,
e.g., [17], or in our case by the sum of powers from formula (14).

We will start with the EDDs for relatively small values of p and k, shown in Table 1.
Obviously, formulas are more accurate for larger values of x and when taking more terms
in their expansion. We can see that the shifted formula (27) gives much better precision
than the other formulas.

In Table 2, we have the EDDs for bigger values of p and small k. The formulas are
noticeably less accurate than for small values of p and practically not useful for lower
values of x. Finally, in Table 3, we have smaller values of p and greater values of k. Here,
we need even greater values of variable x to achieve precision comparable to previous
two cases. Such behavior of the formulas comes directly from the definition of the (p, k)-
gamma function.
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Table 1. Precision of the (p, k)-asymptotic formulas for p = 10 and k = 1.

Formula x (2) (3) (4) (5) (6) (7) (8)

(15) 100 3.0 4.2 5.4 6.5 7.6 8.7 9.8
(25) 100 2.7 3.8 4.9 6.0 7.1 8.2 9.3
(27) 100 5.3 8.1 10.9 13.7

(15) 1000 6.0 8.2 10.3 12.5 14.6 16.7 18.8
(25) 1000 5.7 7.8 9.9 12.0 14.1 16.2 18.3
(27) 1000 9.2 14.0 18.8 23.5

(15) 10000 9.0 12.2 15.4 18.5 21.6 24.7 27.8
(25) 10000 8.7 11.8 14.9 18.0 21.1 24.2 27.3
(27) 10000 13.2 20.0 26.8 33.5

Table 2. Precision of the (p, k)-asymptotic formulas for p = 100 and k = 1.

Formula x (2) (3) (4) (5) (6) (7) (8)

(15) 1000 2.1 3.3 4.5 5.6 6.8 7.9 9.0
(25) 1000 1.7 2.9 4.0 5.2 6.3 7.4 8.4
(27) 1000 4.5 7.4 10.2 13.0

(15) 10000 5.1 7.3 9.5 11.6 13.7 15.8 17.9
(25) 10000 4.7 6.9 9.0 11.1 13.3 15.3 17.4
(27) 10000 8.4 13.3 18.1 22.9

Table 3. Precision of the (p, k)-asymptotic formulas for p = 10 and k = 100.

Formula x (2) (3) (4) (5) (6) (7) (8)

(15) 10000 3.0 4.2 5.4 6.5 7.6 8.7 9.8
(25) 10000 2.7 3.8 4.9 6.0 7.1 8.2 9.3
(27) 10000 5.3 8.1 10.9 13.7

(15) 100000 6.0 8.2 10.3 12.5 14.6 16.7 18.8
(25) 100000 5.7 7.8 9.9 12.0 14.1 16.2 18.3
(27) 100000 9.2 14.0 18.8 23.5

As expected, when p and k become greater, the formulas are less accurate, that is,
they become better only with more terms in the expansion and for greater values of x.
Because of this, asymptotic formulas are not practical for p and k, with both having big
values, so we will skip that case. We can conclude that Stirling-type expansion (15) is better
than (25), but formula (27) with shifted variables overpowers both of them and has the best
precision with fewer terms in the expansion in all the presented cases. This coincides with
approximation formulas for the classical gamma function, see [18].

5. Asymptotic Expansions of the Ratio of (p, k)-Gamma Functions
In the last section, we will study the (p, k)-analogue of the ratio of two gamma func-

tions. In a recent paper [11], the authors studied such a quotient of two (p, k)-gamma
functions and established various related inequalities, particularly for the quotient in
the form

Γp,k(x + k)

Γp,k(x + 1
2 k)

, (28)

which is the (p, k)-analogue of the Wallis ratio mentioned before. We will now present the
analogue of the asymptotic expansion (20).

Theorem 3. The quotient of two (p, k)-gamma functions has the following asymptotic expansion
as x → ∞:

Γp,k(x + kt)
Γp,k(x + ks)

∼ (pk)t−s

(
∞

∑
n=0

knQn(t, s, p)x−n

) 1
m

, (29)

where polynomials Qn(t, s, p) are defined by Q0(t, s, p) = 1 and for n ≥ 1
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Qn(t, s, p) =
m
n

n

∑
j=1

(−1)j Bj+1(t + p + 1)− Bj+1(t) + Bj+1(s)− Bj+1(s + p + 1)
j + 1

Qn−j(t, s, p).

Proof. Applying (12) and (4), we obtain

Γp,k(x + kt)
Γp,k(x + ks)

= (pk)t−s Γ( x
k + t)

Γ( x
k + s)

Γ( x
k + s + p + 1)

Γ( x
k + t + p + 1)

Here, we cannot simply use (20), but we can apply the result from [22] concerning multiple
quotients of gamma functions. The authors showed that for t − s = v − u, the following
expansion holds

Γ(x + t)
Γ(x + s)

Γ(x + u)
Γ(x + v)

∼
(

∞

∑
n=0

Pn(t, s, u, v)x−n

) 1
m

, x → ∞, (30)

where polynomials Pn are defined recursively by Pn(t, s, u, v) = 1 and

Pn(t, s, u, v) =
m
n

n

∑
j=1

(−1)j+1 Bj+1(t)− Bj+1(s) + Bj+1(u)− Bj+1(v)
j + 1

Pn−j(t, s, u, v).

Hence, in our case u = s + p + 1, v = t + p + 1 and the theorem follows.

Let us show an example of this expansion for the quotient (28) studied in recent papers.
In this case, we have t = 1, s = 1

2 , and we will take natural choice m = 2:

Γp,k(x + k)

Γp,k(x + 1
2 k)

∼
√

pk +
pk2 q1(p)

x
+

pk3 q2(p)
x2 +

pk4 q3(p)
x3 + . . ., x → ∞,

where

q1(p) = −(p + 1),

q2(p) =
1
4
(p + 1)(4p + 5),

q3(p) = −1
2
(p + 1)2(3 + 2p).

There is another useful application of the expansion (20). Recall that the k-Pochhammer
symbol is directly connected to the quotient of gamma functions:

(x)t,k =
Γk(x + kt)

Γk(x)
= kt Γ( x

k + t)
Γ( x

k )
. (31)

We can now easily derive the asymptotic expansion of the k-Pochhammer symbol
taking s = 0 in (20). We will use the natural choice m = 1/t, which leads to

(x)t,k ∼
(

x + k p1(t) +
k2 p2(t)

x
+

k3 p3(t)
x2 +

k4 p4(t)
x3 + . . .

)t

, x → ∞. (32)
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Polynomials pn(t) are calculated by (21), and the first few are as follows:

p1(t) =
1
2
(t − 1),

p2(t) = − 1
24

(t2 − 1),

p3(t) =
1
48

(t2 − 1)(t − 1),

p4(t) = − 1
5760

(t2 − 1)(73t2 − 120t + 23).

As discussed before, polynomials pn(t) can be expressed through intrinsic variables

α = t−1
2 and β = (1−t)2

4 , and then better formulas can be obtained through shifted variable
x + α. When we apply this to our case, we have

Γk(x + kt)
Γk(x)

∼
(

x + kα +
k2 r2(β)

x + kα
+

k4 r4(β)

(x + kα)3 +
k6 r6(β)

(x + kα)5 + . . .
)t

, x → ∞, (33)

where

r2(β) =
1
6

β,

r4(β) = − 13
360

β2 − 1
60

β,

r6(β) =
737

45360
β3 +

53
2520

β2 +
1

126
β.

Polynomials r2n(β) can be efficiently calculated by the recursive relation given by the authors
in [21].

Finally, applying (29) we can derive the (p, k)-analogue of the quotient (31) connected
to the k-Pochhammer symbol. Now, we have s = 0, and for a natural choice m = 1/t it
follows that

Γp,k(x + kt)
Γp,k(x)

∼
(

pk
x

+
pk2 q1(t, p)

x2 +
pk3 q2(t, p)

x3 +
pk4 q3(t, p)

x4 + . . .
)t

, x → ∞,

where the first few polynomials qn(t, p) are as follows:

q1(t, p) = −(1 + p),

q2(t, p) =
1
2
(1 + p)(1 + 2p + t),

q3(t, p) = −1
6
(1 + p)(1 + 6p + 3t + 6pt + 6p2 + 2t2).

Of course, the quotient appearing in the coefficients (29) can be calculated through
sums (14), and it can be expressed through intrinsic variables α and β, as mentioned before. In
papers [21,22], various asymptotic expansions of the Wallis quotient were studied and efficient
algorithms for calculating coefficients in such expansions were derived. They can also be
applied to the quotient of (p, k)-gamma functions in a same way as the results above, which
we leave to the interested reader.

6. Conclusions
In this paper, the asymptotic behavior of the (p, k)-analogue of the gamma function

was studied and discussed. The general asymptotic expansion for the (p, k)-gamma func-
tion Γp,k(x), as x → ∞, was obtained and applied to the (p, k)-analogues of functions
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related to gamma, namely the digamma function, polygamma functions, and the quotient
of two gamma functions. Algorithms for calculating coefficients in these expansions were
derived, and also some examples of expansions were presented. The numerical precision of
the obtained asymptotic formulas was discussed and it was shown that the shifted formulas
give better numerical results. Obtained expansions have potential in application to various
areas from fractional analysis and statistics to quantum chemistry.
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19. Burić, T.; Elezović, N. New asymptotic expansions of the gamma function and improvements of Stirling’s type formulas. J.

Comput. Anal. Appl. 2011, 13, 785–795.
20. Qi, F. Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, 2010, 493058. [CrossRef]
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